Polycrystalline Pr0.75Na0.05K0.20Mn1-xCrxO3 (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05) manganites were synthesized by the solid-state reaction method to examine the role of Chromium (Cr) substitution on structural, electrical, and dielectric behavior. X-ray diffraction (XRD) with Rietveld refinement confirmed a single-phase orthorhombic (Pnma) structure with Cr3+ incorporation at Mn3+/Mn4+ sites, reflected in compositional changes of unit cell volume. Field-emission scanning electron microscopy (FESEM) revealed grain refinement with increasing Cr, indicating inhibited grain growth and enhanced grain boundary density. Impedance spectroscopy showed a conduction shift from bulk-dominated (x ≤ 0.02) to grain boundary-controlled (x ≥ 0.03), with higher Cr levels producing non-Debye relaxation due to carrier localization. Dielectric studies demonstrated frequency-dependent dispersion, where Cr substitution suppressed dielectric constant, dielectric loss, and loss tangent by reducing space-charge and grain boundary effects. The x = 0.02 composition exhibited the most stable dielectric response. These findings establish Cr doping as an effective strategy for tailoring structure-property correlations and enhancing dielectric stability in perovskite manganites.
Citation: Siti Sumaiyah Sheikh Abdul Aziz, Nor Asmira Amaran, Rozilah Rajmi, Sikiru Surajudeen Olalekan, Zakiah Mohamed, Norazila Ibrahim. Influence of Cr substitution on electrical and dielectric properties of monovalent doped Pr-based manganites[J]. AIMS Materials Science, 2025, 12(4): 909-927. doi: 10.3934/matersci.2025040
Polycrystalline Pr0.75Na0.05K0.20Mn1-xCrxO3 (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05) manganites were synthesized by the solid-state reaction method to examine the role of Chromium (Cr) substitution on structural, electrical, and dielectric behavior. X-ray diffraction (XRD) with Rietveld refinement confirmed a single-phase orthorhombic (Pnma) structure with Cr3+ incorporation at Mn3+/Mn4+ sites, reflected in compositional changes of unit cell volume. Field-emission scanning electron microscopy (FESEM) revealed grain refinement with increasing Cr, indicating inhibited grain growth and enhanced grain boundary density. Impedance spectroscopy showed a conduction shift from bulk-dominated (x ≤ 0.02) to grain boundary-controlled (x ≥ 0.03), with higher Cr levels producing non-Debye relaxation due to carrier localization. Dielectric studies demonstrated frequency-dependent dispersion, where Cr substitution suppressed dielectric constant, dielectric loss, and loss tangent by reducing space-charge and grain boundary effects. The x = 0.02 composition exhibited the most stable dielectric response. These findings establish Cr doping as an effective strategy for tailoring structure-property correlations and enhancing dielectric stability in perovskite manganites.
| [1] |
Guney E, Karimzadeh Khoei J, Sengul BS, et al. (2024) Functional copolymer coatings on electrospun fibers via photo‐initiated chemical vapor deposition. J Appl Polym Sci 141: e55210. https://doi.org/10.1002/app.55210 doi: 10.1002/app.55210
|
| [2] |
Zurauskiene N (2023) Engineering of advanced materials for high magnetic field sensing: A review. Sensors 23: 2939. https://doi.org/10.3390/s23062939 doi: 10.3390/s23062939
|
| [3] |
Anwar MS, Ahmed F, Koo BH (2014) Structural distortion effect on the magnetization and magnetocaloric effect in Pr modified La0.65Sr0.35MnO3 manganite. J Alloys Compd 617: 893–898. https://doi.org/10.1016/j.jallcom.2014.08.105 doi: 10.1016/j.jallcom.2014.08.105
|
| [4] |
Gamzatov AG, Batdalov AB, Khanov LN, et al. (2012) Influence of grain boundaries on resistivity of manganites La1-xKxMnO3. Phys Solid State 54: 617–621. https://doi.org/10.1134/S1063783412030110 doi: 10.1134/S1063783412030110
|
| [5] |
Rozilah R, Ibrahim N, Mohamed Z, et al. (2017) Inducement of ferromagnetic-metallic phase in intermediate-doped charge-ordered Pr0.75Na0.25MnO3 manganite by K+ substitution. Physica B Condens Matter 521: 281–294. https://doi.org/10.1016/j.physb.2017.07.001 doi: 10.1016/j.physb.2017.07.001
|
| [6] |
Hassine A Ben, Dhahri J, Hcini S, et al. (2018) Effects of barium deficiency on structural, magnetic and magnetocaloric properties of La0.6Nd0.1Ba0.3-xMn0.9Cr0.1O3 manganites. Phase Transit 91: 71–82. https://doi.org/10.1080/01411594.2017.1359835 doi: 10.1080/01411594.2017.1359835
|
| [7] |
Khelifi J, Tozri A, Issaoui F, et al. (2014) The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1-xNdx)2/3(Ca1-ySry)1/3MnO3 oxides. Ceram Int 40: 1641–1649. https://doi.org/10.1016/j.ceramint.2013.07.055 doi: 10.1016/j.ceramint.2013.07.055
|
| [8] |
Denbri F, Mahamdioua N, Meriche F, et al. (2021) A-site Pb doping effect on structural, microstructural and magnetotransport properties of La0.5Sm0.2Ca0.3-xPbxMnO3 (x = 0, 0.05, 0.10) manganite. Mater Chem Phys 267: 124550. https://doi.org/10.1016/j.matchemphys.2021.124550 doi: 10.1016/j.matchemphys.2021.124550
|
| [9] |
Saw AK, Channagoudra G, Hunagund S, et al. (2019) Study of transport, magnetic and magnetocaloric properties in Sr2+ substituted praseodymium manganite. Mater Res Express 7: 016105. https://doi.org/10.1088/2053-1591/ab636d doi: 10.1088/2053-1591/ab636d
|
| [10] |
Moualhi Y, M’nassri R, Nofal MM, et al. (2020) Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material. Eur Phys J Plus 135: 809. https://doi.org/10.1140/epjp/s13360-020-00838-2 doi: 10.1140/epjp/s13360-020-00838-2
|
| [11] |
Raveau B, Martin C, Maignan A (1998) What about the role of B elements in the CMR properties of ABO3 perovskites? J Alloys Compd 275–277: 461–467. https://doi.org/10.1016/S0925-8388(98)00372-7 doi: 10.1016/S0925-8388(98)00372-7
|
| [12] |
Elleuch F, Triki M, Bekri M, et al. (2015) A-site-deficiency-dependent structural, magnetic and magnetoresistance properties in the Pr0.6Sr0.4MnO3 manganites. J Alloys Compd 620: 249–255. https://doi.org/10.1016/j.jallcom.2014.09.035 doi: 10.1016/j.jallcom.2014.09.035
|
| [13] |
Pant P, Agarwal H, Bharadwaj S, et al. (2022) Effects of Cr and Fe substitution at Mn-sites of GdMn1-xTxO3 (x = 0, 0.10) on its structural and complex dielectric properties. Mater Chem Phys 290: 126518. https://doi.org/10.1016/j.matchemphys.2022.126518 doi: 10.1016/j.matchemphys.2022.126518
|
| [14] |
Abdouli K, Hassini F, Cherif W, et al. (2022) Investigation of the structural, electrical, and dielectric properties of La0.5Sm0.2Sr0.3Mn1-xCrxO3 for electrical application. RSC Adv 12: 16805–16822. https://doi.org/10.1039/d2ra01006b doi: 10.1039/d2ra01006b
|
| [15] |
Zahrin A, Ibrahim N, Mohamed Z (2022) Effects of Bi substitution on electroresistance behaviours in La0.8BiNa0.2MnO3 manganites. Mater Chem Phys 292: 126790. https://doi.org/10.1016/j.matchemphys.2022.126790 doi: 10.1016/j.matchemphys.2022.126790
|
| [16] |
Siwach PK, Singh HK, Srivastava ON (2008) Low field magnetotransport in manganites. J Phys Condens Matter 20: 273201. https://doi.org/10.1088/0953-8984/20/27/273201 doi: 10.1088/0953-8984/20/27/273201
|
| [17] |
Raddaoui Z, El Kossi S, Brahem R, et al. (2021) Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic. J Mater Sci Mater Electron 32: 16113–16125. https://doi.org/10.1007/s10854-021-06160-6 doi: 10.1007/s10854-021-06160-6
|
| [18] |
Tayari F, Nassar KI, Carvalho JP, et al. (2025) Sol–gel synthesis and comprehensive study of structural, electrical, and magnetic properties of BiBaO3 perovskite. Gels 11: 450. https://doi.org/10.3390/gels11060450 doi: 10.3390/gels11060450
|
| [19] |
Kumar N, Kishan H, Rao A, et al. (2010) Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1-xCrxO3 (0 ≤ x ≤ 1) manganites. J Appl Phys 107: 08390. https://doi.org/10.1063/1.3342462 doi: 10.1063/1.3342462
|
| [20] |
Gadani K, Keshvani MJ, Dhruv D, et al. (2017) Low field magnetoelectric and magnetotransport properties of sol–gel grown nanostructured LaMnO3 manganites. J Alloys Compd 719: 47–57. https://doi.org/10.1016/j.jallcom.2017.05.165 doi: 10.1016/j.jallcom.2017.05.165
|
| [21] |
Swain A, Anil Kumar PS, Gorige V (2019) Electrical conduction mechanism for the investigation of charge ordering in Pr0.5Ca0.5MnO3 manganite system. J Magn Magn Mater 485: 358–368. https://doi.org/10.1016/j.jmmm.2019.04.097 doi: 10.1016/j.jmmm.2019.04.097
|
| [22] |
Belmabrouk H, Alharbi T (2023) Dielectric properties and conduction mechanism of La0.7Sr0.25Na0.05Mn0.95Al0.05O3 perovskite manganite. J Taibah Univ Sci 17: 2204809. https://doi.org/10.1080/16583655.2023.2204809 doi: 10.1080/16583655.2023.2204809
|
| [23] |
Sumaiyah S, Ibrahim N, Mohamed Z, et al. (2024) Electrical, magnetic, and magnetoresistance studies in chromium-doped Pr-based manganites. J Mater Sci Mater Electron 35: 1336. https://doi.org/10.1007/s10854-024-13054-w doi: 10.1007/s10854-024-13054-w
|
| [24] |
Manju V, Rohith R, Thejas Prasannakumar A, et al. (2022) Dielectric and electrochemical performance of rhombohedral lanthanum manganite perovskite nanostructures. New J Chem 46: 19874–19887. https://doi.org/10.1039/d2nj04213d doi: 10.1039/d2nj04213d
|
| [25] |
Achary PGR, Behera S, Choudhary RNP, et al. (2021) Structural, dielectric and electrical properties of cerium-modified strontium manganite ceramics. J Mater Sci Mater Electron 32: 5738–5754. https://doi.org/10.1007/s10854-021-05295-w doi: 10.1007/s10854-021-05295-w
|
| [26] |
Thakur S, Thakur V, Punia R, et al. (2023) An insight into the temperature-dependent dielectric dispersion and conduction mechanisms in BaTiO3 modified bismuth borate glass-ceramic system. J Non Cryst Solids 606: 12–15. https://doi.org/10.1016/j.jnoncrysol.2023.122184 doi: 10.1016/j.jnoncrysol.2023.122184
|
| [27] |
Dhahri A, Hcini S, Omri A, et al. (2016) Effect of 20% Cr-doping on structural and electrical properties of La0.67Ca0.33MnO3 perovskite. J Alloys Compd 687: 521–528. https://doi.org/10.1016/j.jallcom.2016.06.140 doi: 10.1016/j.jallcom.2016.06.140
|
| [28] |
Bettaibi A, M’Nassri R, Selmi A, et al. (2015) Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J Alloys Compd 650: 268–276. https://doi.org/10.1016/j.jallcom.2015.05.161 doi: 10.1016/j.jallcom.2015.05.161
|
| [29] |
Aydi S, Cherif W, Khammassi F, et al. (2021) Microstructural properties, dielectric behaviour, conduction mechanism, impedance, and electrical modulus of La0.65Ca0.25Sr0.1MnO3 manganite. Appl Phys A 127: 931. https://doi.org/10.1007/s00339-021-05057-9 doi: 10.1007/s00339-021-05057-9
|
| [30] |
Moualhi Y, Mleiki A, Rahmouni H, et al. (2022) Investigation of the dielectric response and the transport properties of samarium and strontium-based manganite. Eur Phys J Plus 137: 406. https://doi.org/10.1140/epjp/s13360-022-02640-8 doi: 10.1140/epjp/s13360-022-02640-8
|
| [31] |
Rahmouni H, Cherif B, Khirouni K, et al. (2016) Influence of polarization and iron content on the transport properties of praseodymium-barium manganite. J Phys Chem Solids 88: 35–40. https://doi.org/10.1016/j.jpcs.2015.09.011 doi: 10.1016/j.jpcs.2015.09.011
|
| [32] |
Bilkees R, Khan AA, Javed M, et al. (2021) Dielectric relaxation and variable range hopping conduction in sol-gel auto combustion derived La0.7Bi0.3Fe0.5Mn0.5O3 manganite. Mater Sci Eng B Solid State Mater Adv Technol 269: 115153. https://doi.org/10.1016/j.mseb.2021.115153 doi: 10.1016/j.mseb.2021.115153
|
| [33] |
Selmi A, Bettaibi A, Rahmouni H, et al. (2015) Physical properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. Ceram Int 41: 11221–11227. https://doi.org/10.1016/j.ceramint.2015.05.072 doi: 10.1016/j.ceramint.2015.05.072
|
| [34] |
Selmi M, Smida A, Kossi S El (2021) Effect of Polaron formation in conduction and dielectric behavior in La0.7Sr0.25K0.05MnO3 oxide. J Mater Sci Mater Electron 32: 6014–6027. https://doi.org/10.1007/s10854-021-05321-x doi: 10.1007/s10854-021-05321-x
|
| [35] |
Aakansha, Ravi S (2019) Influence of Cr substitution on magnetic and dielectric properties of gadolinium iron garnets. Solid State Commun 300: 113690. https://doi.org/10.1016/j.ssc.2019.113690 doi: 10.1016/j.ssc.2019.113690
|
| [36] |
Ben Jazia Kharrat A, Bourouina M, Moutia N, et al. (2018) Gd doping effect on impedance spectroscopy properties of sol-gel prepared Pr0.5-xGdxSr0.5MnO3 (0 ≤ x ≤ 0.3) perovskites. J Alloys Compd 741: 723–733. https://doi.org/10.1016/j.jallcom.2018.01.236 doi: 10.1016/j.jallcom.2018.01.236
|
| [37] |
Chhabra Y, Kumar R, Singh P, et al. (2022) Detailed impedance and electrical studies of Zr4+ doped La0.7Ca0.3(Mn0.5Fe0.5)O3 for cathode materials in solid oxide fuel cells. Mater Today Proc 65: 192–199. https://doi.org/10.1016/j.matpr.2022.06.082 doi: 10.1016/j.matpr.2022.06.082
|
| [38] |
Elkossi S, Selmi M, Bourguiba F, et al. (2023) Colossal dielectric response and non-Debye relaxation of La0.7Sr0.25Na0.05Mn0.85Ti0.15O3 ceramic. Inorg Chem Commun 153: 110761. https://doi.org/10.1016/j.inoche.2023.110761 doi: 10.1016/j.inoche.2023.110761
|
| [39] |
Bajpai N, Saleem M, Mishra A (2021) Effect of samarium (Sm3+) doping on structural, optical, dielectric and magnetic nature of La1.95Y0.05NiMnO6 double perovskite. Appl Phys A 127: 723. https://doi.org/10.1007/s00339-021-04874-2 doi: 10.1007/s00339-021-04874-2
|
| [40] |
Sharma A, Singh M, Kishore K, et al. (2025) Influence of low sintering temperature on the structural, morphological, and dielectric properties of (Bi0.4Ba0.1)Na0.5TiO3 ceramics. J Mater Sci Mater Electron 36: 392. https://doi.org/10.1007/s10854-025-14459-x doi: 10.1007/s10854-025-14459-x
|
| [41] |
Molak A, Mahato DK, Szeremeta AZ (2018) Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: Effects of doping in cationic and anionic sublattice: Materials for applications. Prog Cryst Growth Ch 64: 1–22. https://doi.org/10.1016/j.pcrysgrow.2018.02.001 doi: 10.1016/j.pcrysgrow.2018.02.001
|
| [42] |
Rahangdale KK, Ganguly S (2023) Magneto-dielectric properties of B-site doped (Fe3+, Zr4+) BiMnO3 perovskite ceramic. Mater Sci Eng B Solid State Mater Adv Technol 289: 116225. https://doi.org/10.1016/j.mseb.2022.116225 doi: 10.1016/j.mseb.2022.116225
|
| [43] |
Ouni I, Ben Khlifa H, M’nassri R, et al. (2021) Transport properties and dielectric response of Pr0.8Na0.2-xKxMnO3 (x = 0, 0.05, 0.1, 0.15, and 0.2) ceramics synthesized by sol–gel method. Appl Phys A 127: 631. https://doi.org/10.1007/s00339-021-04760-x doi: 10.1007/s00339-021-04760-x
|
| [44] |
Ncib W, Ben Jazia Kharrat A, Wederni MA, et al. (2018) Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0.0, 0.1) manganites. J Alloys Compd 768: 249–262. https://doi.org/10.1016/j.jallcom.2018.07.192 doi: 10.1016/j.jallcom.2018.07.192
|
| [45] |
Bourguiba M, Raddaoui Z, Dhahri A, et al. (2020) Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite. J Mater Sci Mater Electron 31: 11810–11818. https://doi.org/10.1007/s10854-020-03733-9 doi: 10.1007/s10854-020-03733-9
|
| [46] |
Phillips J (2018) Toward an improved understanding of the role of dielectrics in capacitors. Materials 11: 1–15. https://doi.org/10.3390/ma11091519 doi: 10.3390/ma11091519
|
| [47] |
Baazaoui M, Moulahi A, Hamdaoui N, et al. (2021) Study of the dielectric behavior as a function of the frequency at different temperatures on the sample Pr0.525Y0.075Ca0.1Sr0.3Mn0.975Fe0.025O3. Int J At Nucl Phys 6: 025. https://doi.org/10.35840/2631-5017/2525 doi: 10.35840/2631-5017/2525
|
| [48] |
Bharathi M, Anuradha KN, Murugendrappa MV (2023) Structural, AC conductivity, dielectric and impedance studies of polypyrrole/praseodymium calcium manganite nanocomposites. Dig J Nanomater Biostruct 18: 343–365. https://doi.org/10.15251/djnb.2023.181.343 doi: 10.15251/djnb.2023.181.343
|
| [49] |
Ben Jazia Kharrat A, Moutia N, Khirouni K, et al. (2018) Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater Res Bull 105: 75–83. https://doi.org/10.1016/j.materresbull.2018.04.035 doi: 10.1016/j.materresbull.2018.04.035
|