Industrial waste has been rapidly increased day by day because of the fast-expanding population which inappropriately dumps the waste resulting in environmental pollutions. It has been recommended that the disposal of industrial waste would be greatly reduced if it could be incorporated into concrete production. The basic objective of this investigation is to examine the characteristics of concrete using marble slurry as binding material in proportions 5%, 10%, 15%, 20%, 25%, and 30% by weight of cement. Many properties have been reviewed in the current paper; the results observed from the various studies depict that replacement of marble slurry to a certain extent enhances strength properties of the concrete but simultaneously decreases the slump value with the increase of replacement level of marble slurry.
Citation: Jawad Ahmad, Osama Zaid, Muhammad Shahzaib, Muhammad Usman Abdullah, Asmat Ullah, Rahat Ullah. Mechanical properties of sustainable concrete modified by adding marble slurry as cement substitution[J]. AIMS Materials Science, 2021, 8(3): 343-358. doi: 10.3934/matersci.2021022
[1] | Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014 |
[2] | Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649 |
[3] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[4] | Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012 |
[5] | Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009 |
[6] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[7] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[8] | Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010 |
[9] | Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267 |
[10] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
Industrial waste has been rapidly increased day by day because of the fast-expanding population which inappropriately dumps the waste resulting in environmental pollutions. It has been recommended that the disposal of industrial waste would be greatly reduced if it could be incorporated into concrete production. The basic objective of this investigation is to examine the characteristics of concrete using marble slurry as binding material in proportions 5%, 10%, 15%, 20%, 25%, and 30% by weight of cement. Many properties have been reviewed in the current paper; the results observed from the various studies depict that replacement of marble slurry to a certain extent enhances strength properties of the concrete but simultaneously decreases the slump value with the increase of replacement level of marble slurry.
Homogenization theory has become an important tool in the investigation of processes taking place in highly heterogenous media ranging from soil to the most advanced aircraft the construction of which uses composite materials. So far, the problems solved by means of homogenization have mainly involved deterministic partial differential equations (PDEs) and the homogenization of PDEs with randomly oscillating coefficients; the great wealth of results obtained over several decades on problems of diverse classes and methodologies can be found for instance in [9,6,40,41,23,34,22,49,31,17,4,32,36,46,50,33], for the deterministic case and [13,14,18,20,24,37,19,47,48]. for the random case. Fundamental methods were subsequently developed such as the method of asymptotic expansions ([9], [6], [40], [41]), the two scale-convergence ([4], [32]), Tartar method of oscillating test functions and H-convergence ([49]), the asymptotic method for non periodically perforated domains ([23], [46]), G-convergence ([36]) and
However physical processes under random fluctuations are better modelled by stochastic partial differential equations (SPDEs). It was therefore natural to consider homogenization of this very important class of PDEs. Research in this direction is still at its infancy, despite the importance of such problems in both applied and fundamental sciences. Some relevant interesting work have recently been undertaken, mainly for parabolic SPDEs; see for instance [3,8,10,11,21,43,44]. We also note the closely related work [3,25,15,16] dealing with stochastic homogenization for SPDEs with small parameters. The list of references is of course not exhaustive, but a representation of the main trends in the field.
The homogenization of hyperbolic SPDEs was initiated in [27], [28,29], [30] where the authors studied the homogenization of Dirichlet problems for linear hyperbolic equation with rapidly oscillating coefficients using the method of the two-scale convergence pioneered by Nguetseng in [32] and developed by Allaire in [4] and [5]; they also dealt with the linear Neumann problem by means of Tartar's method and obtained the corresponding corrector results within these settings; [30] deals with a semilinear hyperbolic SPDE by Tartar's method.
In the present work, following the two-scale convergence method, we investigate the homogenization of a non-linear hyperbolic equation with nonlinear damping, where the intensity of the noise is also nonlinear and is assumed to satisfy Lipschitz's condition. Our investigation relies on crucial compactness results of analytic (Aubin-Lions-Simon's type) and probabilistic (Prokhorov and Skorokhod fundamental theorems) nature. It should be noted that these methods extend readily to the case when Lipschitz condition on the intensity of the noise is replaced by a mere continuity. In contrast to the linear and the semilinear cases considered in previous papers, the type of nonlinear damping and nonlinear noise in the present paper leads to new challenges in obtaining uniform a priori estimates as well as in the passage to the limit. It should be noted that the process of damping in mechanical systems is a crucial stabilizing factor when the system is subjected to very extreme tasks; mathematically this translates in some regularizing effects on the solution of the governing equations.
We are concerned with the homogenization of the initial boundary value problem with oscillating data, referred to throughout the paper as problem
duϵt−div(Aϵ(x)∇uϵ)dt+B(t,uϵt)dt=f(t,x,x/ε,∇uϵ)dt+g(t,x,x/ε,uϵt)dW in (0,T)×Quϵ=0 on(0,T)×∂Q,uϵ(0,x)=aϵ(x), uϵt(0,x)=bϵ(x) in Q, |
where
Few words about the difference between the current work and previous works by the authors on homogenization of SPDEs. Compared to [27,28,29,30], the structure of problem (
We now introduce some functions spaces needed in the sequel.
For
W1,p(Q)={ϕ:ϕ∈Lp(Q),∂ϕ∂xj∈Lp(Q),j=1,...,n}, |
where the derivatives exist in the weak sense, and
For a Banach space
||ϕ||Lp(0,T;X)=(∫T0||ϕ||pXdt)1p,0≤p<∞. |
When
‖ϕ‖L∞(0,T;X)=esssup[0,T]‖ϕ‖X<∞. |
For
||ϕ||Lq(Ω,F,P;Lp(0,T;X))=(E||ϕ||qLp(0,T;X))1/q. |
When
||ϕ||Lq(Ω,F,P;L∞(0,T;X))=(E||ϕ||qL∞(0,T;X))1/q. |
It is well known that under the above norms,
We now impose the following hypotheses on the data.
n∑i,j=1ai,jξiξj≥αn∑i=1ξ2i for, ξ∈Rn,ai,j∈L∞(Rn),i,j=1,…,n. |
(ⅰ)
(ⅱ) There exists a constant
(ⅲ) There exists a positive constant
(ⅳ)
(ⅴ) The map
(A3) We assume that
||f(t,x,xε,w)||L2(Q)≤C||w||L2(Q), |
for any
(A4)
(A5)
●
●
||gj(t,x,y,ϕ)||L2(Q)≤C(1+||ϕ||L2(Q)), | (1) |
and
●
|gj(t,x,y,s1)−gj(t,x,y,s2)|≤L|s1−s2|, | (2) |
with the constant
If
From now on we use the following oscillating functions
fϵ(t,x,w)=f(t,x,xε,w), gεj(t,x,ϕ)=gi(t,x,xε,ϕ). |
We now introduce our notion of solution; namely the strong probabilistic one.
Definition 1.1. We define the strong probabilistic solution of the problem
uϵ:Ω×[0,T]⟶H10(Q), |
satisfying the following conditions:
(1)
(2)
uϵ∈L2(Ω,F,P;C(0,T;H10(Q)))uϵt∈L2(Ω,F,P;C(0,T;L2(Q)))∩Lp(Ω,F,P;Lp(0,T;W1,p0(Q))), |
(3)
(uϵt(t,.),ϕ)−(uϵt(0,.),ϕ)+∫t0(Aϵ∇uϵ(s,.),∇ϕ)ds+∫t0⟨Bϵ(s,uϵt),ϕ⟩ds=∫t0(fϵ(s,.,∇uϵ),ϕ)ds+(∫t0gϵ(s,.,uϵt)dW(s),ϕ),∀ϕ∈C∞c(Q). |
The problem of existence and uniqueness of a strong probabilistic solution of
Theorem 1.2. Suppose that the assumptions
Our goal is to show that as
(P){dut−divA0∇udt+B(t,ut)dt=˜f(t,x,∇u)dt+˜g(t,x,ut)d˜W in Q×(0,T),u=0 on∂Q×(0,T),u(0,x)=a(x)∈H10(Q),ut(0,x)=b(x)∈L2(Q), |
where
A0=1|Y|∫Y(A(y)−A(y)χ(y))dy, |
{divy(A(y)∇yχ(y))=∇y⋅A(y)inYχisYperiodic, |
for any
˜f(t,x,∇u)=1|Y|∫YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]dy,˜g(t,x,ut)=1|Y|∫Yg(t,x,y,ut)dy, |
Here and in the sequel,
Lemma 2.1. Under the assumptions
Esup0≤t≤T‖uϵ(t)‖2H10(Q)≤C,Esup0≤t≤T‖uϵt(t)‖2L2(Q)≤C, | (3) |
and
E∫T0‖uϵt(t)‖pW1,p0(Q)≤C. | (4) |
Proof. The following arguments are used modulo appropriate stopping times. It
d[‖uϵt‖2L2(Q)+(Aϵ∇uϵ,∇uϵ)]+2⟨B(t,uϵt),uϵt)⟩dt=2(fϵ(t,x,∇uϵ)),uϵt)dt+2(gϵ(t,x,uϵt),uϵt)dW+m∑j=0‖gϵj(t,x,uϵt)‖2L2(Q)dt. |
Integrating over
‖uϵt(t)‖2L2(Q)+(Aϵ∇uϵ(t),∇uϵ(t))+2∫t0⟨B(s,uϵt(s)),uϵt(s))⟩ds=‖uϵ1‖2L2(Q)+(Aϵ∇uϵ0,∇uϵ0)+2∫t0(fϵ(s,x,∇uϵ),uϵt)ds+2∫t0(gϵ(s,x,uϵt),uϵt)dW+m∑j=0∫t0‖gϵj(s,x,uϵt)‖2L2(Q)ds. |
Using the assumptions
E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)+2γ∫t0‖uϵt(s)‖pW1,p0(Q)ds]≤C[C1+∫t0‖uϵt(t)‖2L2(Q)dt+2∫t0|(fϵ(s,x,∇uϵ),uϵt)|ds+2sup0≤s≤t|∫s0(gϵ(σ,x,uϵt),uϵt)dW|], | (5) |
where
C1=C(T)+‖uϵ1‖2L2(Q)+‖uϵ0‖2H10(Q). |
Using assumptions (A3), thanks to Cauchy-Schwarz's and Young's inequalities, we have
E∫T0|(fϵ(s,x,∇uϵ),uϵt)|dt≤E∫T0‖∇uϵ‖L2(Q)‖uϵt‖L2(Q)dt≤Esup0≤t≤T‖uϵt(t)‖L2(Q)∫T0‖∇uϵ‖L2(Q)dt≤ϱEsup0≤t≤T‖uϵt(t)‖2L2(Q)+C(ϱ)T(∫T0‖∇uϵ‖2L2(Q)dt), | (6) |
where
Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW(σ)|≤CE(∫t0(gϵ(σ,x,uϵt(σ)),uϵt(σ))2dσ)12≤CE(sup0≤s≤t‖uϵt(s)‖L2(Q)∫t0‖gϵ(σ,x,uϵt(σ))‖2L2(Q)dσ)12. |
Again using Young's inequality and the assumptions
2Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW|≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)∫T0‖gϵ(σ,uϵt(σ))‖2L2(Q)dσ≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)(T)+C(ϱ)∫T0‖uϵt(σ)‖2L2(Q)dσ, | (7) |
for
Esup0≤t≤T‖uϵt(t)‖2L2(Q)+Esup0≤t≤T‖uϵ(t)‖2H10(Q)+CE∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C(T,C1,C2)+CE∫t0[‖uϵt(s)‖2L2(Q)+‖uϵ(s)‖2H10(Q)]dt, | (8) |
Using Gronwall's inequality, we have
E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)]≤C, |
and subsequently
E∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C. |
The proof is complete.
The following lemma will be of great importance in proving the tightness of probability measures generated by the solution of problem
Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and let
Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p, |
for any
Proof..
Assume that
uϵt(t+θ)−uϵt(t)=∫t+θtdiv(Aϵ∇uϵ)ds−∫t+θtB(s,uϵt(s))ds+∫t+θtfϵ(s,x,∇uϵ)ds+∫t+θtgϵ(s,uϵt(s))dW(s). |
Then
‖uϵt(t+θ)−uϵt(t)‖W−1,p′(Q)≤‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)+‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtgϵ(s,uϵt(s))dW(s)‖W−1,p′(Q). | (9) |
Firstly, thanks to assumption
‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtdiv(Aϵ∇uϵ)ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|=supϕ∈W1,p0(Q):‖ϕ‖=1∫Q∫t+θtAϵ∇uϵ∇ϕdxds≤Csupϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖∇uϵ‖Lp′(Q)‖∇ϕ‖Lp(Q)ds≤C∫t+θt‖∇uϵ‖L2(Q)ds≤Cθ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, | (10) |
where we have used the fact that
Secondly, we use assumption
‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtB(s,uϵt(s))ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|≤supϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖B(s,uϵt(s))‖W−1,p′(Q)‖ϕ‖W1,p0(Q)ds≤Cθ1/p(∫t+θt‖uϵt‖pW1,p0(Q)ds)1/p′. | (11) |
Thirdly,
‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)≤‖∫t+θtfϵ(s,x,∇uϵ)ds‖L2(Q)≤C∫t+θt‖∇uϵ‖L2(Q)≤θ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, | (12) |
where we have used assumption (A3).
Using 10, 11 and 12 in 9 raised to the power
Esup0<θ≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤CEsup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2dt+CEsup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt+Esup0<θ≤δ∫T0‖∫t+θtgϵ(s,uϵt(s)dW(s)‖p′W−1,p′(Q)dt. | (13) |
We now estimate the term involving the stochastic integral.
We use the embedding
W1,p0(Q)↪L2(Q)↪W−1,p′(Q) |
to get the estimate
Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt. | (14) |
Thanks to Fubini's theorem and H
E∫T0sup0<θ≤δ||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt≤∫T0(∫QEsup0<θ≤δ(∫t+θtgϵ(s,uϵt(s))dW(s))2dx)p′/2dt≤∫T0(E∫t+δt||gϵ(s,uϵt(s)||2L2(Q)ds)p′/2dt, | (15) |
where we have used Burkholder-Davis-Gundy's inequality. We now invoke assumption
Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤∫T0[E∫t+δt(1+||uϵt(s)||2L2(Q))ds]p′/2dt≤CTδp′/2. | (16) |
For the first term in the right-hand side of 13, we use Fubini's theorem, H
Esup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2≤δp′/2∫T0(E∫t+δt‖∇uϵ‖2L2(Q)ds)p′/2≤CTδp′. | (17) |
The second term on the right hand side of 13 is estimated using 4 and we get
Esup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt≤δp′/p∫T0E∫T0‖uϵt‖pW1,p0(Q)dsdt≤Cδp′/p. | (18) |
Combining 13, 16, 17 and 18, and taking into account the fact that the similar estimates hold for
Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p. |
This completes the proof.
The following Lemmas are needed in the proof of the tightness and the study of the properties of the probability measures generated by the sequence
We have from [45]
Lemma 3.1. Let
Ns,p(0,T;B1)={v∈Lp(0,T;B1):suph>0h−s‖v(t+h)−v(t)‖Lp(0,T−θ,B1)<∞}. |
Then
The following two lemmas are collected from [12]. Let
Lemma 3.2. (Prokhorov) A sequence of probability measures
Lemma 3.3. (Skorokhod) Suppose that the probability measures
limn→∞ξn=ξ,P−a.s.; |
the symbol
Let us introduce the space
Z1={ϕ:sup0≤t≤T‖ϕ(t)‖2H10(Q)≤C1,sup0≤t≤T‖ϕ′(t)‖2L2(Q)≤C1}, |
and
Z2={ψ:sup0≤t≤T‖ψ(t)‖2L2(Q)≤C3,∫T0‖ψ(t)‖pW1,p0(Q)dt≤C4,∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q)≤C5θ1/p}. |
We endow
‖(ϕ,ψ)‖Z=‖ϕ‖Z1+‖ψ‖Z2=sup0≤t≤T‖ϕ′(t)‖L2(Q)+sup0≤t≤T‖ϕ‖H10(Q)+sup0≤t≤T‖ψ(t)‖2L2(Q)+(∫T0‖ψ(t)‖pW1,p0(Q)dt)1p+(supθ>01θ1/p∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q))1p′. |
Lemma 3.4. The above constructed space
Proof. Lemma 3.1 together with suitable arguments due to Bensoussan [7] give the compactness of
We now consider the space
Ψϵ:ω↦(W(ω),uϵ(ω),uϵt(ω)). |
Define on
Πϵ(A)=P(Ψ−1ϵ(A))for allA∈B(X). |
Lemma 3.5. The family of probability measures
Proof. We carry out the proof following a long the lines of the proof of [27,lemma 7]. For
Wδ⊂C(0,T;Rm),Dδ⊂L2(0,T;L2(Q)),Eδ⊂L2(0,T;L2(Q)) |
such that
Πϵ{(W,uϵ,uϵt)∈Wδ×Dδ×Eδ}≥1−δ. |
This is equivalent to
P{ω:W(⋅,ω)∈Wδ,uϵ(⋅,ω)∈Dδ,uϵt)(⋅,ω)∈Eδ}≥1−δ, |
which can be proved if we can show that
P{ω:W(⋅,ω)∉Wδ}≤δ,P{uϵ(⋅,ω)∉Dδ}≤δ,P{uϵt)(⋅,ω).∉Eδ}≤δ. |
Let
Wδ={W(⋅)∈C(0,T;Rm):supt,s∈[0,T]n|W(s)−W(t)|≤Lδ:|s−t|≤Tn−1}. |
Using Arzela's theorem and the fact that
P(ω:η(ω)≥α)≤E|η(ω)|kαk, | (19) |
where
P{ω:W(⋅,ω)∉Wδ}≤P[∞⋃n=1(supt,s∈[0,T]|W(s)−W(t)|≥Lδn:|s−t|≤Tn−1)]≤∞∑n=0P[n6⋃j=1(supTjn−6≤t≤T(j+1)n−6|W(s)−W(t)|≥Lδn)]. |
But
E(Wi(t)−Wi(s))2k=(2k−1)!!(t−s)k,k=1,2,3,…, |
where
For
P{ω:W(.,ω)∉Wδ}≤∞∑n=0n6∑j=1(nLδ)4E(supTjn−6≤t≤T(j+1)n−6|W(t)−W(jTn−6)|4)≤C∞∑n=0n6∑j=1(nLδ)4(Tn−6)2=CT2(Lδ)4∞∑n=0n−2. |
Choosing
P{ω:W(.,ω)∉Wδ}≤δ3. |
Now, let
Dδ={z:sup0≤t≤T‖z(t)‖2H10(Q)≤Kδ,sup0≤t≤T‖z′(t)‖2L2(Q)≤Mδ}. |
Lemma 3.4 shows that
P{uϵ∉Dδ}≤P{sup0≤t≤T‖uϵ(t)‖2H10(Q)≥Kδ}+P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥Mδ}. |
Markov's inequality 19 gives
P{uϵ∉Dδ}≤1KδEsup0≤t≤T‖uϵ(t)‖2H10(Q)+1MδEsup0≤t≤T‖uϵt(t)‖2L2(Q)≤CKδ+CMδ=δ3. |
for
Similarly, we let
Bδ={v:sup0≤t≤T‖v(t)‖2L2(Q)≤K′δ,∫T0‖v(t)‖pW1,p0(Q)dt≤L′δ,supθ≤μn∫T0‖v(t+θ)−v(t)‖p′W−1,p′(Q)dt≤νnM′δ}. |
Owing to Proposition 3.1 in [7],
P{uϵt∉Bδ}≤P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥K′δ}+P{∫T0‖uϵt(t)‖pW1,p0(Q)dt≥L′δ}+P{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt≥νnM′δ}. |
Again thanks to 19, we obtain
P{uϵt∉Bδ}≤1K′δEsup0≤t≤T‖uϵt(t)‖2L2(Q)+1L′δE∫T0‖uϵt(t)‖pW1,p0(Q)dt+∑∞n=01νnM′δE{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt}≤CK′δ+CL′δ+CM′δ∑μp′/pnνn=δ3δ, |
for
From Lemmas 3.2 and 3.5, there exist a subsequence
Πϵj⇀Π |
weakly. From lemma 3.3, there exist a probability space
(Wϵj,uϵj,uϵjt)→(˜W,u,ut)inX,˜P−a.s.. | (20) |
Let us define the filtration
~Ft=σ{˜W(s),u(s),ut(s)}0≤s≤t. |
We show that
In this section, we state some key facts about the powerful two-scale convergence invented by Nguetseng [32].
Definition 4.1. A sequence
limϵ→0∫T0∫Qvϵψϵdxdt=1|Y|∫T0∫Q×Yv(t,x,y)ψ(t,x,y)dydxdt, | (21) |
where
The following result deals with some of the properties of the test functions which we are considering; it is a modification of Lemma 9.1 from [17,p.174].
Lemma 4.2. (i) Let
‖ψ(⋅,⋅,⋅ϵ)‖Lp(0,T;Lp(Q))≤‖ψ(⋅,⋅,⋅)‖Lp((0,T)×Q;Cper(Y)) | (22) |
and
ψ(⋅,⋅,⋅ϵ)⇀1|Y|∫Yψ(⋅,⋅,y)dyweakly inLp(0,T;Lp(Q)). |
Furthermore if
limϵ→0∫T0∫Q[ψ(t,x,xϵ)]2dxdt=1|Y|∫T0∫Q×Y[ψ(t,x,y)]2dtdxdy. | (23) |
(ii) If
1r+1s=1p, |
then
ψ(⋅,⋅,⋅ϵ)⇀ψ1(⋅,⋅)|Y|∫Yψ2(y)dyweakly inLp(0,T;Lp(Q)). |
The following theorems are of great importance in obtaining the homogenization result; for their proofs, we refer to [4], [17] and [26].
Theorem 4.3. Let
‖uϵ‖L2(0,T;L2(Q))<∞. | (24) |
Then up to a subsequence
Theorem 4.4. Let
‖uϵ‖L2(0,T;H10(Q))<∞. |
Then, up to a subsequence, there exists a couple of functions
uϵ→u 2−s inL2(0,T;L2(Q)), | (25) |
∇uϵ→∇xu+∇yu1 2−s inL2(0,T;L2(Q)). | (26) |
The following lemma is crucial in obtaining the convergence of the stochastic integral in the next section
Lemma 4.5. The oscillating data given in (A5) satisfies the following convergence
g(t,x,xε,uεt)⇀˜g(t,x,ut)=:1|Y|∫Yg(t,x,y,ut)dy weakly in L2((0,T)×Q), ˜P−a.s.. | (27) |
Proof. Test with
∫T0∫Qg(t,x,xε,uεt)ψ(t,x,xε)dxdt=Iε1+Iε2, |
where
Iε1=∫T0∫Q[g(t,x,xε,uεjt)−g(t,x,xε,ut)]ψ(t,x,xε)dxdt,Iε2=∫T0∫Qg(t,x,xε,ut)ψ(t,x,xε)dxdt. |
Then
Iε1≤||ψ(t,x,xε)||L2((0,T)×Q)||g(t,x,xε,uεt)−g(t,x,xε,ut)||L2((0,T)×Q)≤C||uεt−ut||L2((0,T)×Q), |
thanks to the Lipschitz condition on
Now we can apply 2-scale convergence for the limit of
limε→0Iε2=∫T0∫Q∫Yg(t,x,y,ut)ψ(t,x,y)dxdt,˜P−a.s. |
Therefore
g(t,x,xε,uεt)2−s→g(t,x,y,ut), ˜P−a.s. | (28) |
and this implies the result.
Remark 1. From the assumption (A5), 28 and 23, we have the following strong convergence
limϵ→0∫T0∫Q[g(t,x,xϵ,uϵt)]2dxdt=1|Y|∫T0∫Q×Y[g(t,x,y,ut)]2dtdxdy. | (29) |
We will now study the asymptotic behaviour of the problem
Theorem 5.1. Suppose that the assumptions on the data are satisfied. Let
aϵj⇀a,weakly inH10(Q), | (30) |
bϵj⇀b,weakly inL2(Q). | (31) |
Then there exist a probability space
Proof. From estimates 3 and 4 and assumption
uϵj⇀uweakly inL∞(0,T;H10(Q))ˆP−a.s, | (32) |
uϵjt⇀utweakly inL∞(0,T;L2(Q))ˆP−a.s, | (33) |
uϵjt⇀utweakly inLp(0,T;W1,p0(Q))ˆP−a.s, | (34) |
B(t,uϵjt)⇀χweakly inLp′(0,T;W−1,p′(Q))ˆP−a.s.. | (35) |
Now let us identify the limit in 35. By arguing as in [38,Lemma 2.6,p. 51], we get
\begin{equation} \int_{0}^{t}\left\langle B(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}}\right\rangle ds\rightarrow \int_{0}^{t}\langle \chi ,u_{t}\rangle ds,\,\,\text{weakly in}\,\,\,L^{1}(\Omega ),\ \forall t\in \lbrack 0,T]. \end{equation} | (36) |
Having this in hand, let
\begin{equation} \chi _{\epsilon _{j}} = \widehat{\mathbb{E}}\int_{0}^{T}\left\langle B(t,u_{t}^{\epsilon _{j}})-B(t,v),u_{t}^{\epsilon _{j}}-v\right\rangle dt. \end{equation} | (37) |
From the monotonicity assumption
\begin{equation*} \widehat{\mathbb{E}}\int_{0}^{T}\left\langle \chi -B(t,v),u_{t}-v\right\rangle dt\geq 0. \end{equation*} |
For
\begin{equation} \widehat{\mathbb{E}}\int_{0}^{T}\left\langle \chi -B(t,u_{t}(t)-\lambda w(t)),w(t)\right\rangle dt\geq 0. \end{equation} | (38) |
Using the hemicontinuty assumption
\begin{equation*} \left\langle \chi -B(t,u_{t}(t)-\lambda w(t)),w(t)\right\rangle \longrightarrow \left\langle \chi -B(t,u_{t}(t)),w(t)\right\rangle ,\ \text{ as}\ \lambda \longrightarrow 0,\ \widehat{\mathbb{P}}-a.s.. \end{equation*} |
Now, from assumptions
\begin{equation} \widehat{\mathbb{E}}\int_{0}^{T}\left\langle \chi -B(t,u_{t}(t)),w(t)\right\rangle dt\geq 0. \end{equation} | (39) |
But the inequality 39 is true for all
\begin{equation*} \chi = B(t,u_{t}(t),\quad \widehat{\mathbb{P}}-a.s.. \end{equation*} |
Testing problem
\begin{align} & -\int_{0}^{T}\int_{Q} u_{t}^{\epsilon _{j}}\Phi_{t} (t,x)dxdt+\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\nabla \Phi dxdt+\int_{0}^{T}\int_{Q}\langle B^{\epsilon _{j}}(t,u_{t}^{\epsilon _{j}}),\Phi \rangle dxdt \\ & = \int_{0}^{T}\int_{Q}f^{\epsilon _{j}}(t,x,\nabla u^{\epsilon _{j}})\Phi dxdt+\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x,u_{t}^{\epsilon _{j}})\Phi dxdW_{\epsilon _{j}}, \end{align} | (40) |
Using estimate 3, the convergence 20 and Theorems 4.3 and 4.4, we show the two-scale convergence
\begin{equation*} \nabla u^{\epsilon _{j}}\rightarrow \nabla _{x}u+\nabla _{y}u_{1}\,\,\text{ 2-s in},\,\,L^{2}(0,T;L^{2}(Q)). \end{equation*} |
Let
\begin{align} & -\int_{0}^{T}\int_{Q}u_{t}^{\epsilon _{j}}(t,x)\bigg[\phi _{t}(t,x)+\epsilon _{j}\phi _{1t}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}(x)\nabla u^{\epsilon _{j}}(x,t) \bigg [\nabla _{x}\phi (t,x)+\epsilon _{j}\nabla _{x}\phi _{1}(t,x,\frac{x}{ \epsilon _{j}})+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}\left\langle B(t,u_{t}^{\epsilon _{j}}),\bigg[\phi _{t}(t,x)+\epsilon _{j}\phi _{1t}(t,x,\frac{x}{\epsilon _{j}})\bigg] \right\rangle dxdt \\ & = \int_{0}^{T}\int_{Q}f^{\epsilon _{j}}(t,x,\nabla u^{\epsilon _{j}})\bigg[ \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,u_{t}^{\epsilon _{j}})\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg] dxdW_{\epsilon _{j}}. \end{align} | (41) |
Let us deal with these terms one by one, when
\begin{align*} & \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}u_{t}^{\epsilon _{j}}(t,x)\bigg[\phi _{t}(t,x)+\epsilon _{j}\phi _{1t}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & = \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}u_{t}^{\epsilon _{j}}(t,x)\phi _{t}(t,x)dxdt+\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\int_{0}^{T}\int_{Q}u_{t}^{\epsilon _{j}}(t,x)\phi _{1t}(t,x,\frac{x}{\epsilon _{j}})dxdt \\ & = \int_{0}^{T}\int_{Q}u_{t}(t,x)\phi _{t}(t,x)dxdt,\quad \tilde{\mathbb{P}}-a.s.. \end{align*} |
The second term can be written as follows,
\begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}& \int_{0}^{T}\int_{Q}\nabla u^{\epsilon _{j}}(x,t)A_{\epsilon _{j}}\bigg [\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(x,t)\nabla _{x}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})dxdt. \end{align} | (42) |
Since
\begin{align*} & \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}\nabla u^{\epsilon _{j}}(x,t)A_{\epsilon _{j}}\bigg [\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)][\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt. \end{align*} |
Thanks to H
\begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(x,t)\nabla _{x}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})dxdt = 0,\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} |
Again, thanks to estimate 22 and convergence 35, we have
\begin{align*} & \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}\left\langle B(t,u_{t}^{\epsilon _{j}}),\bigg[\phi _{t}(t,x)+\epsilon _{j}\phi _{1t}(t,x, \frac{x}{\epsilon _{j}})\bigg]\right\rangle dxdt \\ & = \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}\left\langle B(t,u_{t}^{\epsilon _{j}}),\phi _{t}(t,x)\right\rangle dxdt\\&+\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\int_{0}^{T}\int_{Q}\left\langle B(t,u_{t}^{\epsilon _{j}}),\phi _{1t}(t,x,\frac{x}{\epsilon _{j}} )\right\rangle dxdt \\ & = \int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi _{t}(t,x)\rangle dxdt,\quad \tilde{\mathbb{P}}-a.s.. \end{align*} |
Let us write
\begin{align} & \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}f^{\epsilon _{j}}(t,x,\nabla u^{\epsilon _{j}})\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & = \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}F^{\epsilon _{j}}(t,x)\cdot \nabla u^{\epsilon _{j}}\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & = \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}F^{\epsilon _{j}}(t,x)\cdot\nabla u^{\epsilon _{j}}\phi (t,x)dxdt\\&\qquad+\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\int_{0}^{T}\int_{Q}F^{\epsilon _{j}}(t,x).\nabla u^{\epsilon _{j}}\phi _{1}(t,x,\frac{x}{\epsilon _{j}} )dxdt, \end{align} | (43) |
where we have used the assumption (A3). It is easy to see that the second term in 43, converges to zero. For the first term in the right-hand side of 43, we readily have
\begin{align} & \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}F^{\epsilon _{j}}(t,x)\cdot\nabla u^{\epsilon _{j}}\phi (t,x)dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y)\cdot \left[ \nabla _{x}u+\nabla _{y}u_{1}\right] \phi (t,x)dxdydt,\quad \tilde{\mathbb{P}}-a.s.. \end{align} | (44) |
Concerning the stochastic integral, we have
\begin{align} & \tilde{\mathbb{E}}\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x,u_{t}^{\epsilon _{j}})\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}}) \bigg]dxdW_{\epsilon _{j}} \\ & = \tilde{\mathbb{E}}\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x,u_{t}^{\epsilon _{j}})\phi (t,x)dxdW_{\epsilon _{j}}+\tilde{\mathbb{E}}\epsilon _{j}\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x, u_{t}^{\epsilon _{j}})\phi _{1}(t,x,\frac{x}{\epsilon _{j}})dxdW_{\epsilon _{j}}. \end{align} | (45) |
We deal with the term involving
\begin{align} \tilde{\mathbb{E}}\int_{0}^{T}&\int_{Q}\phi \left( t,x\right) g\left( t,x, \frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dW_{t}^{\varepsilon } \\ & = \tilde{\mathbb{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x, \frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) d\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right)\\ &+\tilde{\mathbb{E}}\int_{0}^{T}\int_{Q} \phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) d\tilde{W}_{t}. \end{align} | (46) |
In view of the unbounded variation of
\begin{equation} g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) = \frac{1}{\lambda }\int_{0}^{T}\rho \left( -\frac{t-s}{\lambda }\right) g\left( s,x,\frac{x}{\varepsilon },u_{s}^{\varepsilon }\left( s\right) \right) ds\ \text{for}\ \lambda > 0, \end{equation} | (47) |
where
We have that
\begin{equation} \mathbb{\tilde{E}}\int_{0}^{T}\left\vert \left\vert g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) \right\vert \right\vert _{L_{2}\left( Q\right) }^{2}dt\leq \mathbb{\tilde{E}} \int_{0}^{T}\left\vert \left\vert g\left( t,x,\frac{x}{\varepsilon } ,u_{t}^{\varepsilon }\left( t\right) \right) \right\vert \right\vert _{L_{2}\left( Q\right) }^{2}dt,\ \text{for any }\lambda > 0, \end{equation} | (48) |
and for any
\begin{equation} g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) \rightarrow g^{\varepsilon }\left( t,x,u_{t}^{\varepsilon }\left( t\right) \right) \ \text{strongly in}\ L^{2}\left( \tilde{\Omega},\mathcal{\tilde{F}}, \mathbb{\tilde{P}},L_{2}\left( \left( 0,T\right) \times Q\right) \right) \text{ as }\lambda \rightarrow 0. \end{equation} | (49) |
We split the first term in the right-hand side of 46 as
\begin{eqnarray} &&\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g^{\varepsilon }\left( t,x,u_{t}^{\varepsilon }\left( t\right) \right) dxd\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) \\ && = \mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) dxd\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) \\ &&+\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) \left[ g^{\varepsilon }\left( t,x,u_{t}^{\varepsilon }\left( t\right) \right) -g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) \right] dxd\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) . \end{eqnarray} | (50) |
Owing to 49, and Burkholder-Davis-Gundy's inequality, it readily follows that the second term in 50 is bounded by a function
\begin{eqnarray} &&\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) d\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) \\ && = \mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) \frac{\partial }{\partial t}\left[ \phi \left( t,x\right) g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) \right] dt \\ &&+\mathbb{\tilde{E}}\int_{Q}\phi \left( T,x\right) g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( T\right) \left( W_{T}^{\varepsilon }-\tilde{W}_{T}\right) . \end{eqnarray} | (51) |
Thanks to the conditions on
\begin{equation} W_{t}^{\varepsilon }\rightarrow \tilde{W}_{t}\ \text{uniformly in }C\left( \left[ 0,T \right] \right) ,\ \tilde{\mathbb{P}}-\text{a.s.,} \end{equation} | (52) |
we get that both terms on the right-hand side of 51 are bounded by the product
\begin{equation} \left\vert \mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g^{\varepsilon }\left( t,x,u_{t}^{\varepsilon }\left( t\right) \right) dxd\left( W_{t}^{\varepsilon }-\tilde{W}_{t}\right) \right\vert \leq \sigma _{1}\left( \lambda \right) +\sigma _{2}\left( \lambda \right) \eta _{1}\left( \varepsilon \right) . \end{equation} | (53) |
Thus, we infer from 46 that
\begin{align} \left\vert \mathbb{\tilde{E}}\int_{0}^{T}\int_{Q} \right.&\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dxdW_{t}^{\varepsilon } &\\&- \left.\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) d\tilde{W}_{t}\right\vert \\ &\leq \sigma _{1}\left( \lambda \right) +\sigma _{2}\left( \lambda \right) \eta _{1}\left( \varepsilon \right) \end{align} | (54) |
Taking the limit in 54 as
\begin{align*} \lim\limits_{\varepsilon \rightarrow 0} \left\vert \mathbb{\tilde{E}} \int_{0}^{T}\int_{Q}\right.&\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon } ,u_{t}^{\varepsilon }\right) dxdW_{t}^{\varepsilon }\\&-\left.\mathbb{\tilde{E}} \int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon } ,u_{t}^{\varepsilon }\right) d\tilde{W}_{t}\right\vert \leq \sigma _{1}\left( \lambda \right) ; \end{align*} |
but the left-hand side of this relation being independent of
\begin{align} \lim\limits_{\varepsilon \rightarrow 0}\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}&\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dxdW_{t}^{\varepsilon }\\ & = \lim\limits_{\varepsilon \rightarrow 0}\mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x,\frac{x}{ \varepsilon },u_{t}^{\varepsilon }\right) d\tilde{W}_{t}. \end{align} | (55) |
Owing to 27; that is
\begin{equation*} g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) \rightharpoonup \tilde{g}\left( t,x,u_{t}\right) \text{ weakly in } L^{2}\left( \left( 0,T\right) \times Q\right) ,\ \mathbb{\tilde{P}-} \text{a.s.,} \end{equation*} |
we can call upon the convergence theorem for stochastic integrals due to Rozovskii [39,Theorem 4,p. 63] to claim that
\begin{equation*} \mathbb{\tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x, \frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dW_{t}\rightarrow \mathbb{ \tilde{E}}\int_{0}^{T}\int_{Q}\phi \left( t,x\right) \tilde{g}\left( t,x,u_{t}\right) d\tilde{W}_{t}. \end{equation*} |
Hence, we deduce from 55 that,
\begin{equation} \int_{0}^{T}\int_{Q}\phi \left( t,x\right) g\left( t,x,\frac{x}{\varepsilon } ,u_{t}^{\varepsilon }\right) dW_{t}^{\varepsilon }\rightarrow \int_{0}^{T}\int_{Q}\phi \left( t,x\right) \tilde{g}\left( t,x,u_{t}\right) d\tilde{W}_{t},\ \mathbb{\tilde{P}-}\text{a.s.}. \end{equation} | (56) |
For the second term in 45, thanks to Burkholder-Davis-Gundy's inequality, the assumptions on
\begin{align*} & \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\tilde{\mathbb{E}}\sup\limits_{t\in \lbrack 0,T]}\bigg|\int_{0}^{t}\int_{Q}\phi _{1}\left( t,x,\frac{x}{ \varepsilon }\right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dxdW_{t}^{\epsilon _{j}}\bigg| \\ & \leq C\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\tilde{\mathbb{E}} \bigg(\int_{0}^{T}\bigg(\int_{Q}\phi _{1}\left( t,x,\frac{x}{\varepsilon } \right) g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) dx \bigg)^{2}dt\bigg)^{\frac{1}{2}} \\ & \leq C\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\tilde{\mathbb{E}} \bigg(\int_{0}^{T}\Vert g\left( t,x,\frac{x}{\varepsilon } ,u_{t}^{\varepsilon }\right) \Vert _{L^{2}(Q)}\Vert \phi _{1}(t,x,\frac{x}{ \epsilon _{j}})\Vert _{L^{2}(Q)}dt\bigg)^{\frac{1}{2}} \\ & \leq C\lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\bigg( \int_{0}^{T}\Vert g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) \Vert _{L^{2}(Q)}dt\bigg)^{\frac{1}{2}}\rightarrow 0,\quad \tilde{ \mathbb{P}}-a.s. \end{align*} |
Combining the above convergences, we obtain
\begin{align} -\int_{0}^{T}&\int_{Q}u_{t}(t,x)\phi _{t}(t,x)dxdt \\ & +\frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\\ &\cdot[\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y).[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}\left( t,x,u_{t}\right) \phi (t,x)\tilde{W} dx. \end{align} | (57) |
Choosing in the first stage
\begin{equation} \int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)][\nabla _{y}\phi _{1}(t,x,y)]dydxdt = 0, \end{equation} | (58) |
and
\begin{align} & -\int_{0}^{T}\int_{Q}u_{t}(t,x)\phi _{t}(t,x)dxdt \\ & +\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)][\nabla _{x}\phi (t,x)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y).[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}\left( t,x,u_{t}\right) \phi (t,x)d\tilde{W} dx. \end{align} | (59) |
By standard arguments (see [17]), equation 58 has a unique solution given by
\begin{equation} u_{1}(t,x,y) = -\chi (y)\cdot \nabla _{x}u(t,x)+\tilde{u_{1}}(t,x), \end{equation} | (60) |
where
\begin{equation} \left\{ \begin{array}{c} \text{div}_{y}(A(y)\nabla _{y}\chi (y)) = \nabla _{y}\cdot A(y),\,\,\text{in} \,\,Y, \\ \chi \,\,\,\text{is}\,\,Y\,\,\text{periodic}. \end{array} \right. \end{equation} | (61) |
As for the uniqueness of the solution of 59, we prove it as follows. Using 60 in 59, one obtains that 59 is the weak formulation of the equation
\begin{equation} du_{t}-A_{0}\Delta udt+B(t,u_{t})dt = \tilde{f}(t,x,\nabla u)dt+\tilde{g}(t,x,u_{t})d\tilde{W}, \end{equation} | (62) |
where
\begin{array}{*{20}{c}} {A_{0} = \frac{1}{|Y|}\int_{Y}(A(y)-A(y)\nabla _{y}\chi (y))dy,}\\ {\tilde{f}(t,x,\nabla u) = \frac{1}{|Y|}\int_{Y}F(t,x,y)\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]dy, } \end{array} | (63) |
and
\begin{equation*} \tilde{g}\left( t,x,u_{t}\right) = \frac{1}{\left\vert Y\right\vert }\int_{Y}g\left( t,x,y,u_{t}\right) dy. \end{equation*} |
But the initial boundary value problem corresponding to 62 has a unique solution by [38]. It remains to show that
\begin{align*} & -\int_{0}^{T}\int_{Q}u_{t}^{\epsilon _{j}}(t,x)\bigg[\phi _{t}(t,x)+\epsilon _{j}\phi _{1t}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}(x)\nabla u^{\epsilon _{j}}(x,t)\cdot \bigg [\nabla _{x}\phi (t,x)+\epsilon _{j}\nabla _{x}\phi _{1}(t,x,\frac{x}{ \epsilon _{j}})+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}\left \langle B(t,u_{t}^{\epsilon }),\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]\right \rangle dxdt \\ & = \int_{0}^{T}\int_{Q}f^{\epsilon _{j}}(t,x,\nabla u^{\epsilon _{j}})\bigg[ \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x,u_{t}^{\epsilon })\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg] dxdW_{\epsilon _{j}}+\int_{Q}u_{t}^{\epsilon _{j}}(x,0)v(x)dx, \end{align*} |
where we pass to the limit, to get
\begin{align*} & -\int_{0}^{T}\int_{Q}u_{t}(t,x)\phi _{t}(t,x)dxdt \\ & +\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot [\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y)\cdot [\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}\left( t,x,u_{t}\right) \phi (t,x)\tilde{W} dxdt+\int_{Q}b(x)v(x)dx. \end{align*} |
The integration by parts, in the first term gives
\begin{align*} & \int_{0}^{T}\int_{Q}du_{t}(t,x)\phi (t,x)dx+\int_{Q}u_{t}(x,0)v(x)dx \\ & +\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot [\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y)\cdot [\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}(t,x,u_{t})\phi (t,x)\tilde{W} dxdt+\int_{Q}b(x)v(x)dx. \end{align*} |
In view of equation 57, we deduce that
\begin{equation*} \int_{Q}u_{t}(x,0)v(x)dx = \int_{Q}b(x)v(x)dx, \end{equation*} |
for any
\begin{align*} & \int_{0}^{T}\int_{Q}u^{\epsilon _{j}}(t,x)\bigg[\phi _{tt}(t,x)+\epsilon _{j}\phi _{1tt}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}(x)\nabla u^{\epsilon _{j}}(x,t)\cdot \bigg [\nabla _{x}\phi (t,x)+\epsilon _{j}\nabla _{x}\phi _{1}(t,x,\frac{x}{ \epsilon _{j}})+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}\left \langle B(t,u_{t}^{\epsilon }),\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]\right \rangle dxdt \\ & = \int_{0}^{T}\int_{Q}f^{\epsilon _{j}}(t,x,\nabla u^{\epsilon _{j}})\bigg[ \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg]dxdt \\ & +\int_{0}^{T}\int_{Q}g^{\epsilon _{j}}(t,x,u_{t}^{\epsilon })\bigg[\phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})\bigg] dxdW_{\epsilon _{j}}-\int_{Q}u^{\epsilon _{j}}(x,0)v(x)dx. \end{align*} |
Passing to the limit in this equation, we obtain
\begin{align*} & \int_{0}^{T}\int_{Q}u(t,x)\phi _{tt}(t,x)dxdt \\ & +\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot[\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times ,Y}F(t,x,y)\cdot [\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}(t,x,u_{t})\phi (t,x)\tilde{W} dxdt-\int_{Q}a(x)v(x)dx. \end{align*} |
We integrate by parts again to obtain
\begin{align*} & -\int_{0}^{T}\int_{Q}u_{t}(t,x)\phi _{t}(t,x)dxdt-\int_{Q}u(x,0)v(x)dx \\ & +\int_{0}^{T}\int_{Q\times Y}A(y)[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot [\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)]dydxdt \\ & +\int_{0}^{T}\int_{Q}\langle B(t,u_{t}),\phi (t,x)\rangle dxdt \\ & = \frac{1}{|Y|}\int_{0}^{T}\int_{Q\times Y}F(t,x,y)\cdot [\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\phi (t,x)dxdydt \\ & +\int_{0}^{T}\int_{Q}\tilde{g}(t,x,u_{t})\phi (t,x)\tilde{W} dxdt-\int_{Q}a(x)v(x)dx. \end{align*} |
Using the same argument as before, we show that
Let us introduce the energies associated with the problems (
\begin{align*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)& = \frac{1}{2}\tilde{ \mathbb{E}}\Vert u_{t}^{\epsilon _{j}}(t)\Vert _{L^{2}(Q)}^{2}+\frac{1}{2} \tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(x,t)\cdot\nabla u^{\epsilon _{j}}(x,t)dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}\langle B(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}}\rangle ds \\ \mathcal{E}(u)(t)& = \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{t}(t)\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{0}\nabla u(x,t)\cdot\nabla u(x,t)dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}\langle B(s,u_{t}),u_{t}\rangle ds. \end{align*} |
But from It
\begin{align*} & \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{t}^{\epsilon _{j}}(t)\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(t)\cdot\nabla u^{\epsilon _{j}}(t)dx+\tilde{\mathbb{E}} \int_{0}^{t}\langle B(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}}\rangle ds \\ & = \tilde{\mathbb{E}}\bigg[\frac{1}{2}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot \nabla u_{0}^{\epsilon _{j}}dx+\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds+\int_{0}^{t}(g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})dW_{\epsilon _{j}}\bigg] . \end{align*} |
Thus
\begin{align} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)& = \frac{1}{2}\tilde{ \mathbb{E}}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2} \tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot\nabla u_{0}^{\epsilon _{j}}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds, \end{align} | (64) |
\begin{align} \mathcal{E}(u)(t)& = \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{1}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{0}\nabla u_{0}\cdot \nabla u_{0}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(\tilde{f}(s,x,\nabla u),u_{t})ds+\frac{1}{2 }\tilde{\mathbb{E}}\int_{0}^{t}\Vert \tilde{g}\left( s,x,u_{t}\right) \Vert _{L^{2}(Q)}^{2}ds. \end{align} | (65) |
The vanishing of the expectation of the stochastic integrals is due to the fact that
Theorem 6.1. Assume that the assumptions of Theorem 5.1 are fulfilled and
\begin{align} & -div(A_{\epsilon _{j}}\nabla a^{\epsilon _{j}})\rightarrow -div(A_{0}\nabla a),\,\,\,\, strongly\ in\,\,\,H^{-1}(Q), \end{align} | (66) |
\begin{align} & b^{\epsilon _{j}}\rightarrow b,\,\,\,\,\ strongly\ in\,\,\,L^{2}(Q). \end{align} | (67) |
Then
\begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t)\,\,\,in\,\,C([0,T]), \end{equation*} |
where
Proof. Thanks to the convergences 20, 44, 29, 66 and 67, we show that
\begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t),\,\,\,\forall t \in [0,T]. \end{equation*} |
Now we need to show that
\begin{align*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert & \leq \frac{1}{2}\tilde{\mathbb{E}}\Vert b^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{\alpha }{2}\tilde{\mathbb{E}}\Vert a^{\epsilon _{j}}\Vert _{H_{0}^{1}}+\tilde{\mathbb{E}}\int_{0}^{t}\left\vert (f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})\right\vert ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} |
Thanks to the assumptions on the data
\begin{equation*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert \leq C,\quad \forall t\in \lbrack 0,T]. \end{equation*} |
For any
\begin{align*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})&(t+h)- \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)| \\ & \leq \tilde{\mathbb{E}}\int_{t}^{t+h}|(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})|ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{t}^{t+h}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} |
Again assumptions (A3), (A5) and Cauchy-Schwarz's inequality, give
\begin{equation*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t+h)-\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)|\leq C\left( h+h^{\frac{1}{2}}\right) . \end{equation*} |
This implies the equicontinuity of the sequence
In this section, we establish a corrector result stated in the following
Theorem 7.1. Let the assumptions of Theorems 5.1 and 6.1 be fulfilled. Assume that
\begin{equation*} \frac{1}{r}+\frac{1}{s} = \frac{1}{2}. \end{equation*} |
Then
\begin{align} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P}}-a.s., \end{align} | (68) |
\begin{align} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;H^{1}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{align} | (69) |
Proof. It is easy to see that
\begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} |
Then convergence 20 gives
\begin{equation*} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{.}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P} }-a.s.. \end{equation*} |
Thus 68 holds. Similarly we show that
\begin{equation*} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} |
It remains to show that
\begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} ))\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n})\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} |
We have
\begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )) = \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}}))-\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})). \end{equation*} |
Again
\begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n}), \quad \tilde{\mathbb{P}}-a.s.. \end{equation*} |
Now from the ellipticity assumption on the matrix
\begin{align} \alpha \mathbb{E}\int_{0}^{T}&\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}dt \\ & \leq \mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\right) \\ & \cdot \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & = \mathbb{E}\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot\nabla u^{\epsilon _{j}}dxdt \\ &-2\mathbb{E}\int_{0}^{T}\int_{Q}\nabla u^{\epsilon _{j}}A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & +\mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) \\ &\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt. \end{align} | (70) |
Let us pass to the limit in this inequality. We start with
\begin{equation*} \mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx. \end{equation*} |
From the convergence of the energies in Theorem 6.1 and using 63 and 60, we have
\begin{align} & \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx \\ & = \mathbb{E}\int_{Q\times Y}A(y)\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]dydx. \end{align} | (71) |
Next, using the two-scale convergence of
\begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&\nabla u^{\epsilon _{j}}(t,x)\cdot A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(t,x,\frac{x}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ &\cdot A\left( y\right) \cdot\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} | (72) |
Now, let us write
\begin{align*} \psi (t,x,y)& = A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ & = A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)+2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}u_{1}(t,x,y)\\ &+A\left( y\right) \nabla _{y}u_{1}(t,x,y)\cdot\nabla _{y}u_{1}(t,x,y). \end{align*} |
For
\begin{align*} \psi (t,x,y) = & A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)-2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)] \\ & +A\left( y\right) \nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]. \end{align*} |
Now using
\begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&A\left( \frac{x}{ \epsilon _{j}}\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{x}{ \epsilon _{j}})\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{ y}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} | (73) |
Combining 71, 72 and 73 with 70, we deduce that
\begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{0}^{T}\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(.,.,\frac{.}{\epsilon _{j}} )\Vert _{L^{2}(Q)}^{2}dt = 0\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} |
Thus the proof is complete.
As a closing remark, we note that our results can readily be extended to the case of infinite dimensional Wiener processes taking values in appropriate Hilbert spaces; for instance cylindrical Wiener processes.
The authors express their deepest gratitude to the reviewers for their careful reading of the paper and their insightful comments which have improved the paper. Part of this work was conducted when the first author visited the African Institute for Mathematical Sciences (AIMS), South Africa, he is grateful to the generous hospitality of AIMS.
[1] |
Agrawal D, Hinge P, Waghe UP, et al. (2014) Utilization of industrial waste in construction material—A review. IJIRSET 3: 8390-8397. doi: 10.15680/IJIRSET.2014.0308073
![]() |
[2] | Saikia N, Brito J (2009) Use of industrial waste and municipality solid waste as aggregate, filler or fiber in cement mortar and concrete. Adv Mater Sci Res 3: 65-116. |
[3] |
Li LG, Ouyang Y, Zhuo ZY, et al. (2021) Adding ceramic polishing waste as filler to reduce paste volume and improve carbonation and water resistances of mortar. ABE 2: 1-19. doi: 10.1186/s43251-020-00022-7
![]() |
[4] |
Ahmad J, Manan A, Ali A, et al. (2020) A study on mechanical and durability aspects of concrete modified with steel fibers (SFs). Civil Eng Archit 8: 814-823. doi: 10.13189/cea.2020.080508
![]() |
[5] |
Ahmad J, Tufail RF, Aslam F, et al. (2021) A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability 13: 824. doi: 10.3390/su13020824
![]() |
[6] |
Bederina M, Makhloufi Z, Bounoua A, et al. (2013) Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Constr Build Mater 47: 146-158. doi: 10.1016/j.conbuildmat.2013.05.037
![]() |
[7] |
Li LG, Feng JJ, Zhu J, et al. (2021) Pervious concrete: Effects of porosity on permeability and strength. Mag Concrete Res 73: 69-79. doi: 10.1680/jmacr.19.00194
![]() |
[8] |
Li LG, Huang ZH, Tan YP, et al. (2019) Recycling of marble dust as paste replacement for improving strength, microstructure and eco-friendliness of mortar. J Clean Prod 210: 55-65. doi: 10.1016/j.jclepro.2018.10.332
![]() |
[9] | Kuswah RP, Sharma IC, Chaurasia PBL (2015) Utilization of marble slurry in cement concrete replacing fine aggregate. AJER 4: 55-58. |
[10] | Ahmad J, Al-Dala'ien RNS, Manan A, et al. (2020) Evaluating the effects of flexure cracking behaviour of beam reinforced with steel fibres from environment affect. JGE 10: 4998-5016. |
[11] |
Ahmad J, Aslam F, Zaid O, et al. (2021) Self-fibers compacting concreteproperties reinforced with propylene fibers. Sci Eng Compos Mater 28: 64-72. doi: 10.1515/secm-2021-0006
![]() |
[12] | El Haggar S (2010) Sustainable Industrial Design and Waste Management: Cradle-to-Cradle for Sustainable Development, Elsevier Academic Press. |
[13] |
Corinaldesi V, Moriconi G, Naik TR (2010) Characterization of marble powder for its use in mortar and concrete. Constr Build Mater 24: 113-117. doi: 10.1016/j.conbuildmat.2009.08.013
![]() |
[14] |
Karaşahin M, Terzi S (2007) Evaluation of marble waste dust in the mixture of asphaltic concrete. Constr Build Mater 21: 616-620. doi: 10.1016/j.conbuildmat.2005.12.001
![]() |
[15] |
Dosho Y (2007) Development of a sustainable concrete waste recycling system. J Adv Concr Technol 5: 27-42. doi: 10.3151/jact.5.27
![]() |
[16] | Shirulea PA, Rahmanb A, Gupta RD (2012) Partial replacement of cement with marble dust powder. IJAERS 1: 175-177. |
[17] | Katuwal K, Duarah A, Sarma MK, et al. (2017) Comparative study of M35 concrete using marble dust as partial replacement of cement and fine aggregate. IJIRSET 6: 9094-9100. |
[18] | Latha G, Reddy AS, Mounika K (2015) Experimental investigation on strength characteristics of concrete using waste marble powder as cementitious material. IJIRSET 4: 12691-12698. |
[19] | Vigneshpandian GV, Shruthi EA, Venkatasubramanian C, et al. (2017) Utilisation of waste marble dust as fine aggregate in concrete, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12007. |
[20] | Kore SD, Vyas AK (2016) Impact of marble waste as coarse aggregate on properties of lean cement concrete. Case Stud Constr Mater 4: 85-92. |
[21] | Ahmad J, Rehman SU, Zaid O, et al. (2020) To study the characteristics of concrete by using high range water reducing admixture. IJMPERD 10: 14271-14278. |
[22] | Grout G, ASTM C476, except with a maximum slump of 4 inches, as measured according to ASTM C 143. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=22.%09Grout+F+ASTM+C+476%2C+except+with+a+maximum+slump+of+4+inches%2C+as+measured+according+to+ASTM+C+143.+C+143M&btnG=. |
[23] | ASTM C39/C39M-12a (2012) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. |
[24] |
Shannag MJ, Brincker R, Hansen W (1997) Pullout behavior of steel fibers from cement-based composites. Cement Concrete Res 27: 925-936. doi: 10.1016/S0008-8846(97)00061-6
![]() |
[25] | Test CC, DrilledT, Concrete C (2010) Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) 1. |
[26] | Specimen Compression Test, ASTM C31; one set of four standard cylinders for each compressive-strength test, unless otherwise directed. Mold and store cylinders for laboratory-cured test specimens except when field-cured test specimens are required. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=26.%09Specimen+CT+ASTM+C+31%3B+one+set+of+four+standard+cylinders+for+each+compressive-strength+test%2C+unless+otherwise+directed.+Mold+store+Cylind+Lab+test+specimens+Except+when+field-cured+test+specimens+are+required&btnG=. |
[27] |
Aggarwal Y, Siddique R (2014) Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater 54:210-223 doi: 10.1016/j.conbuildmat.2013.12.051
![]() |
[28] |
Hebhoub H, Aoun H, Belachia M, et al. (2011) Use of waste marble aggregates in concrete. Constr Build Mater 25: 1167-1171. doi: 10.1016/j.conbuildmat.2010.09.037
![]() |
[29] |
Hameed MS, Sekar ASS, Saraswathy V (2012) Strength and permeability characteristics study of self-compacting concrete using crusher rock dust and marble sludge powder. Arab J Sci Eng 37: 561-574. doi: 10.1007/s13369-012-0201-x
![]() |
[30] | Designation ASTM C496‐71 (1976) Stand Method Test Splitting Tensile Strength Cylind Concrete Specimens. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designation+A+%281976%29+C496-71.&btnG=. |
[31] |
Amin SK, Allam ME, Garas GL, et al. (2020) A study of the chemical effect of marble and granite slurry on green mortar compressive strength. Bull Natl Res Cent 44: 19. doi: 10.1186/s42269-020-0274-8
![]() |
[32] | Ashby MF (2011) Materials Selection in Mechanical Design, 4th Eds., Burlington: Elsevier. |
[33] |
Ercikdi B, Külekci G, Yılmaz T (2015) Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Constr Build Mater 93: 573-583. doi: 10.1016/j.conbuildmat.2015.06.042
![]() |
1. | Hermano Frid, Kenneth H. Karlsen, Daniel Marroquin, Homogenization of stochastic conservation laws with multiplicative noise, 2022, 283, 00221236, 109620, 10.1016/j.jfa.2022.109620 | |
2. | Mogtaba Mohammed, Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions, 2022, 14, 2073-8994, 1722, 10.3390/sym14081722 | |
3. | Mogtaba Mohammed, Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition, 2023, 8, 2473-6988, 12093, 10.3934/math.2023609 | |
4. | Mogtaba Mohammed, Noor Ahmed, Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains, 2020, 120, 18758576, 123, 10.3233/ASY-191582 | |
5. | Chigoziem Emereuwa, Mogtaba Mohammed, Homogenization of a stochastic model of a single phase flow in partially fissured media, 2022, 129, 18758576, 413, 10.3233/ASY-211735 | |
6. | Mogtaba Mohammed, Waseem Asghar Khan, Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes, 2021, 12, 1756-9737, 10.1142/S1756973721500086 | |
7. | Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168 |