Due to the COVID-19 pandemic, every country faces numerous issues, and seemingly inadequate treatment of medical waste (MW) is one of them. If proper measurements are not taken about MW, then it will have hazardous effects on the environment and nature. In this study, we identified significant barriers to integrating blockchain (BC) and big data (BD) to manage MW and analyze their interrelationship effectively. This study was designed in three parts: Identifying barriers through a literature review, past studies, and expert judgments; and analyzing barriers and their impact using a hybrid approach, including Interpretive Structural Modeling (ISM), MICMAC, and the Analytic Hierarchy Process (AHP). In this study, 10 factors were mined from the literature review, and five were taken from experts' opinions, which influenced the adoption of BC and BD for managing medical waste management (MWM) in metropolitan city hospitals. The results from ISM-MICMAC indicated that the key barriers were: Insufficient resources, lack of management rules and policies, lack of technical infrastructures, and lack of skilled workforce. These were more most formidable challenges for the adoption of BDBC-MWM in the Pakistan medical industry, and the same as the results from AHP showed that the significant barriers and most formidable challenge for the adoption of BDBC-MWM were: Lack of research and development units, lack of training and education of staff, lack of management support, lack of rules, regulations, and policies, lack of international cooperation, and inadequate technological infrastructure.
Citation: Muhammad Ismail, Zhongdong Xiao, Abdul Waheed, Asifa Iqbal, El-Sayed M. El-Kenawy, Amel Ali Alhussan, Marwa M. Eid, Doaa Sami Khafaga. Sustainable medical waste management through blockchain technology and big data: A structural analysis and modeling of barriers using the ISM-MICMAC and AHP approach[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 336-373. doi: 10.3934/jimo.2026013
Due to the COVID-19 pandemic, every country faces numerous issues, and seemingly inadequate treatment of medical waste (MW) is one of them. If proper measurements are not taken about MW, then it will have hazardous effects on the environment and nature. In this study, we identified significant barriers to integrating blockchain (BC) and big data (BD) to manage MW and analyze their interrelationship effectively. This study was designed in three parts: Identifying barriers through a literature review, past studies, and expert judgments; and analyzing barriers and their impact using a hybrid approach, including Interpretive Structural Modeling (ISM), MICMAC, and the Analytic Hierarchy Process (AHP). In this study, 10 factors were mined from the literature review, and five were taken from experts' opinions, which influenced the adoption of BC and BD for managing medical waste management (MWM) in metropolitan city hospitals. The results from ISM-MICMAC indicated that the key barriers were: Insufficient resources, lack of management rules and policies, lack of technical infrastructures, and lack of skilled workforce. These were more most formidable challenges for the adoption of BDBC-MWM in the Pakistan medical industry, and the same as the results from AHP showed that the significant barriers and most formidable challenge for the adoption of BDBC-MWM were: Lack of research and development units, lack of training and education of staff, lack of management support, lack of rules, regulations, and policies, lack of international cooperation, and inadequate technological infrastructure.
| [1] |
K. Mori, A. Christodoulou, Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI), Environ. Impact Assess. Rev. , 32 (2012), 94−106.https://doi.org/10.1016/j.eiar.2011.06.001 doi: 10.1016/j.eiar.2011.06.001
|
| [2] | U. Habitat, State of the worlds cities: The millennium development goals and urban sustainability: 30 years of shaping the Habitat Agenda, Malta: Gutenberg Press Ltd, 2006. |
| [3] |
L. Y. Shen, J. J. Ochoa, M. N. Shah, X. Zhang, The application of urban sustainability indicators–A comparison between various practices, Habitat Int. , 35 (2011), 17−29.https://doi.org/10.1016/j.habitatint.2010.03.006 doi: 10.1016/j.habitatint.2010.03.006
|
| [4] |
A. Chauhan, A. Singh, S. Jharkharia, An interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India, J. Air Waste Manage. Assoc. , 68 (2018), 100−110.https://doi.org/10.1080/10962247.2016.1249441 doi: 10.1080/10962247.2016.1249441
|
| [5] |
N. Singh, O. A. Ogunseitan, Y. Tang, Medical waste: Current challenges and future opportunities for sustainable management, Crit. Rev. Environ. Sci. Technol., 52 (2022), 2000−2022.https://doi.org/10.1080/10643389.2021.1885325 doi: 10.1080/10643389.2021.1885325
|
| [6] | G. Tchobanoglous, F. Kreith, Handbook of solid waste management, McGraw-Hill Education, 2002. |
| [7] |
Y. Wei, M. Cui, Z. Ye, Q. Guo, Environmental challenges from the increasing medical waste since SARS outbreak, J Clean Prod., 291 (2021), 125246.https://doi.org/10.1016/j.jclepro.2020.125246 doi: 10.1016/j.jclepro.2020.125246
|
| [8] |
A. Chauhan, A. Singh, Modelling the drivers of healthcare waste management in India: A policy perspective, Manag. Environ. Qual., 29 (2018), 456–471.https://doi.org/10.1108/MEQ-08-2017-0091 doi: 10.1108/MEQ-08-2017-0091
|
| [9] | World Health Organization (WHO), Policy analysis: management of health-care wastes, 2001. |
| [10] |
F. Musa, A. Mohamed, N. Selim, Assessment of nurses' practice and potential barriers regarding the MWM at Hamad medical corporation in Qatar: a cross‑sectional study, Cureus, 12 (2020), e8281.https://doi.org/10.7759/cureus.8281 doi: 10.7759/cureus.8281
|
| [11] | M. Kassou, S. Bourekkadi, S. Khoulji, K. Slimani, H. Chikri, M. L. Kerkeb, Blockchain-based medical and water waste management conception, E3S Web of Conferences, 2021.https://doi.org/10.1051/e3sconf/202123400070 |
| [12] | A. Abubakar, Environmental and health implications of management of medical wastes in selected hospitals in niger state, Nigeria (Doctoral dissertation), 2021. |
| [13] | Y. Y. Babanyara, Poor MWM (MWM) practices and its risks to human health and the environment: A literature review, Int J Environ Ealth Sci Eng, 7 (2013), 11. |
| [14] |
S. Datta, S. Namasudra, Energy‐Efficient Blockchain‐Based Secure Model to Share Medical Data Using Mobile Edge Computing, Concurr. Comput. : Pract. Exp. , 37 (2025), e70087.https://doi.org/10.1002/cpe.70087 doi: 10.1002/cpe.70087
|
| [15] | P. Sahni, G. Arora, A. K. Dubey, Healthcare waste management and application through big data analytics, In: Communications in Computer and Information Science, Springer, 2017. https://doi.org/10.1007/978-981-10-8527-7_7 |
| [16] |
S. Datta, S. Namasudra, N. R. Moparthi, S. Kumari, R. G. Crespo, Transforming Healthcare With Artificial Intelligence and Blockchain: A Secure, Transparent and Energy‐Efficient Approach, Expert Syst., 42 (2025), e70101.https://doi.org/10.1111/exsy.70101 doi: 10.1111/exsy.70101
|
| [17] |
M. N. Hasan, S. Datta, S. Namasudra, Inter-hospital secure healthcare data exchange process by using proxy re-encryption and blockchain technology, Comput Biol Med, 194 (2025), 110462.https://doi.org/10.1016/j.compbiomed.2025.110462 doi: 10.1016/j.compbiomed.2025.110462
|
| [18] |
R. Hanumantharaju, K. N. Shreenath, B. J. Sowmya, K. G. Srinivasa, Fog-driven approach for distributed intrusion detection system in auditing the data dased on blockchain-cloud systems, Cloud Comput. Data Sci. , 5 (2024), 1−182.https://doi.org/10.37256/ccds.5120243772 doi: 10.37256/ccds.5120243772
|
| [19] |
D. Komilis, A. Fouki, D. Papadopoulos, Hazardous medical waste generation rates of different categories of health-care facilities, Waste manage, 32 (2012), 1434−1441.https://doi.org/10.1016/j.wasman.2012.02.015 doi: 10.1016/j.wasman.2012.02.015
|
| [20] |
D. Nguyen, X. Bui, T. Nguyen, Estimation of current and future generation of medical solid wastes in Hanoi City, Vietnam, Int. J. Waste Resour, 4 (2014), 1−5.https://doi.org/10.4172/2252-5211.1000139 doi: 10.4172/2252-5211.1000139
|
| [21] |
Z. Yong, G. Xiao, G. Wang, T. Zhou, D. Jiang, MWM in China: A case study of Nanjing, Waste manage, 29 (2009), 1376−1382.https://doi.org/10.1016/j.wasman.2008.10.023 doi: 10.1016/j.wasman.2008.10.023
|
| [22] | K. Radha, K. Kalaivani, R. Lavanya, A case study of bioMWM in hospitals, Glob. J. Health Sci., 1 (2009), 82−88. |
| [23] |
M. A. Patwary, W. T. O'Hare, M. H. Sarker, An illicit economy: Scavenging and recycling of medical waste, J. Environ. Manage. , 92 (2011), 2900−2906.https://doi.org/10.1016/j.jenvman.2011.06.051 doi: 10.1016/j.jenvman.2011.06.051
|
| [24] |
A. M. M. Moreira, W. Günther, Assessment of MWM at a primary health-care center in São Paulo, Brazil, Waste manage, 33 (2013), 162−167.https://doi.org/10.1016/j.jenvman.2011.06.051 doi: 10.1016/j.jenvman.2011.06.051
|
| [25] |
P. Aghapour, R. Nabizadeh, J. Nouri, M. Monavari, K. Yaghmaeian, Analysis of hospital waste using a healthcare waste management index, Toxicol. Environ. Chem., 95 (2013), 579−589.https://doi.org/10.1080/02772248.2013.802792 doi: 10.1080/02772248.2013.802792
|
| [26] | F. A. Akum, An assessment of MWM in Bawku Presbyterian hospital of the upper east region of Ghana, Res. J. Environ. Toxicol. , 2 (2014), 27−38. |
| [27] | A. Sarsour, A. Ayoub, I. Lubbad, A. Omran, I. Shahrour, Assessment of MWM within selected hospitals in Gaza strip Palestine: A pilot study, Int. J. Sci. Res. Environ. Sci., 2 (2014), 164. |
| [28] | S. Maina, N. Andrew, W. Caroline, Assessment of level of knowledge in MWM in selected hospitals in Kenya, Applied Micro Open, 2 (2016), 1−7. |
| [29] | S. Tippat, A. Pachkhade, Survey of bio-medical waste disposal system in some hospitals of Amravati city, IJCPS, 4 (2015), 530−535. |
| [30] |
M. A. Moktadir, S. M. Ali, S. K. Paul, N. Shukla, Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh, Comput. Ind. Eng. , 128 (2019), 1063−1075.https://doi.org/10.1016/j.cie.2018.04.013 doi: 10.1016/j.cie.2018.04.013
|
| [31] |
S. Bag, D. A. Viktorovich, A. K. Sahu, A. K. Sahu, Barriers to adoption of blockchain technology in green supply chain management, J. Glob. Oper. Strateg. Sourc. , 14 (2020), 104−133.https://doi.org/10.1108/JGOSS-06-2020-0027 doi: 10.1108/JGOSS-06-2020-0027
|
| [32] |
F. Malomo, V. Sena, Data intelligence for local government? Assessing the benefits and barriers to use of big data in the public sector, Policy Internet, 9 (2017), 7−27.https://doi.org/10.1002/poi3.141 doi: 10.1002/poi3.141
|
| [33] |
M. Farooque, V. Jain, A. Zhang, Z. Li, Fuzzy DEMATEL analysis of barriers to Blockchain-based life cycle assessment in China, Comput. Ind. Eng. , 147 (2020), 106684.https://doi.org/10.1016/j.cie.2020.106684 doi: 10.1016/j.cie.2020.106684
|
| [34] |
S. Mukhtar, H. Khan, Z. Kiani, S. Nawaz, S. Zulfiqar, N. Tabassum, Hospital waste management: execution in Pakistan and environmental concerns—a review, Environ Contam Rev, 1 (2018), 18−23.https://doi.org/10.26480/ecr.01.2018.18.23 doi: 10.26480/ecr.01.2018.18.23
|
| [35] |
M. Kouhizadeh, S. Saberi, J. Sarkis, Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers, Int. J. Prod. Econ. , 231 (2021), 107831.https://doi.org/10.1016/j.ijpe.2020.107831 doi: 10.1016/j.ijpe.2020.107831
|
| [36] |
I. A. Ibrahim, J. Truby, Governance in the era of Blockchain technology in Qatar: a roadmap and a manual for Trade Finance, J. Bank Regul. , 23 (2022), 419–438.https://doi.org/10.1057/s41261-021-00165-1 doi: 10.1057/s41261-021-00165-1
|
| [37] |
T. S. Aung, S. Luan, Q. Xu, Application of multi-criteria-decision approach for the analysis of MWM systems in Myanmar, J. Clean Prod. , 222 (2019), 733−745.https://doi.org/10.1016/j.jclepro.2019.03.049 doi: 10.1016/j.jclepro.2019.03.049
|
| [38] |
T. Chin, W. Wang, M. Yang, Y. Duan, Y. Chen, The moderating effect of managerial discretion on blockchain technology and the firms' innovation quality: evidence from Chinese manufacturing firms, Int. J. Prod. Econ. , 240 (2021), 108219.https://doi.org/10.1016/j.ijpe.2021.108219 doi: 10.1016/j.ijpe.2021.108219
|
| [39] | S. Swain, K. Muduli, J. N. Biswal, S. Tripathy, T. K. Panda, Evaluation of barriers of health care waste management in India—a gray relational analysis approach, In: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-3153-3_18 |
| [40] |
M. Attaran, Digital technology enablers and their implications for supply chain management, Supply Chain Forum, 21 (2020), 158–172.https://doi.org/10.1080/16258312.2020.1751568 doi: 10.1080/16258312.2020.1751568
|
| [41] |
H. Chen, Y. Dou, Y. Xiao, Understanding the role of live streamers in live-streaming e-commerce, Electron. Commer. Res. Appl. , 59 (2023), 101266.https://doi.org/10.1016/j.elerap.2023.101266 doi: 10.1016/j.elerap.2023.101266
|
| [42] |
S. Bag, S. Gupta, L. Wood, Big data analytics in sustainable humanitarian supply chain: Barriers and their interactions, Ann. Oper. Res. , 319 (2022), 721–760.https://doi.org/10.1007/s10479-020-03790-7 doi: 10.1007/s10479-020-03790-7
|
| [43] |
S. Bag, D. A. Viktorovich, A. K. Sahu, A. K. Sahu, Barriers to adoption of blockchain technology in green supply chain management, J. Glob. Oper. Strateg. Sour. , 14 (2021), 104–133.https://doi.org/10.1108/JGOSS-06-2020-0027 doi: 10.1108/JGOSS-06-2020-0027
|
| [44] | H. Alsobhi, A. Mirdad, S. Alotaibi, M. Almadani, I. Alanazi, M. Alalyan, et al., Innoative Blockchain-Based Applications-State of the Art and Future Directions, In: International Conference on Advanced Information Networking and Applications, Springer, 2021. https://doi.org/10.1007/978-3-030-75078-7_33 |
| [45] |
H. B. Sharma, K. R. Vanapalli, B. Samal, V. R. S. Cheela, B. K Dubey, J. Bhattacharya, Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery, Sci Total Environ., 800 (2021), 149605.https://doi.org/10.1016/j.scitotenv.2021.149605 doi: 10.1016/j.scitotenv.2021.149605
|
| [46] |
S. C. Walpole, A. Vyas, J. Maxwell, B. J. Canny, R. Woollard, C. Wellbery, et al., Building an environmentally accountable medical curriculum through international collaboration, Med. Teach, 39 (2017), 1040−1050.https://doi.org/10.1080/0142159X.2017.1342031 doi: 10.1080/0142159X.2017.1342031
|
| [47] |
P. T. Chen, Medical big data applications: Intertwined effects and effective resource allocation strategies identified through IRA-NRM analysis, Technol. Forecast. Soc. Chang., 130 (2018), 150−164.https://doi.org/10.1016/j.techfore.2018.01.033 doi: 10.1016/j.techfore.2018.01.033
|
| [48] |
H. Guo, Big Earth data: A new frontier in Earth and information sciences, Big Earth Data, 1 (2017), 4−20.https://doi.org/10.1080/20964471.2017.1403062 doi: 10.1080/20964471.2017.1403062
|
| [49] |
A. P. Sage, T. J. Smith, On group assessment of utility and worth attributes using interpretive structural modeling, Comput. Electr. Eng. , 4 (1977), 185−198.https://doi.org/10.1016/0045-7906(77)90029-5 doi: 10.1016/0045-7906(77)90029-5
|
| [50] |
S. Kumar, M. Valeri, S. Asthana, Understanding the relationship among factors influencing rural tourism: A hierarchical approach, J. Organ. Chang. Manage. , 35 (2022), 385–407.https://doi.org/10.1108/JOCM-01-2021-0006 doi: 10.1108/JOCM-01-2021-0006
|
| [51] |
R. K. Singh, A. Gupta, Framework for sustainable maintenance system: ISM–fuzzy MICMAC and TOPSIS approach, Ann. Oper. Res. , 290 (2020), 643−676.https://doi.org/10.1007/s10479-019-03162-w doi: 10.1007/s10479-019-03162-w
|
| [52] |
N. Hajiheydari, M. S. Delgosha, Y. Wang, H. Olya, Exploring the paths to big data analytics implementation success in banking and financial service: an integrated approach, Ind. Manage. Data Syst. , 121 (2021), 2498−2529.https://doi.org/10.1108/IMDS-04-2021-0209 doi: 10.1108/IMDS-04-2021-0209
|
| [53] |
V. A. Bhosale, R. Kant, An integrated ISM fuzzy MICMAC approach for modelling the supply chain knowledge flow enablers, Int. J. Prod. Res. , 54 (2016), 7374−7399.https://doi.org/10.1080/00207543.2016.1189102 doi: 10.1080/00207543.2016.1189102
|
| [54] |
S. Devi K, K. P. Paranitharan, I. Agniveesh A, Interpretive framework by analysing the enablers for implementation of Industry 4.0: an ISM approach, Total Qual. Manag. Bus. Excell. , 32 (2021), 1494−1514.https://doi.org/10.1080/14783363.2020.1735933 doi: 10.1080/14783363.2020.1735933
|
| [55] |
S. Sindhu, V. Nehra, S. Luthra, Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach, Renew. Sust. Energ. Rev. , 62 (2016), 70−88.https://doi.org/10.1016/j.rser.2016.04.033 doi: 10.1016/j.rser.2016.04.033
|
| [56] | N. Munier, E. Hontoria, Uses and Limitations of the AHP Method, Springer, 2021. https://doi.org/10.1007/978-3-030-60392-2 |
| [57] | J. N. Warfield, A. R. Cárdenas, A handbook of interactive management, Iowa State University Press Ames, 1994. |
| [58] |
J. Saxena, P. Vrat, Scenario building: a critical study of energy conservation in the Indian cement industry, Technol. Forecast. Soc. Chang. , 41 (1992), 121−146.https://doi.org/10.1016/0040-1625(92)90059-3 doi: 10.1016/0040-1625(92)90059-3
|
| [59] |
M. Qureshi, D. Kumar, P. Kumar, An integrated model to identify and classify the key criteria and their role in the assessment of 3PL services providers, Asia Pac. J. Market. Logist. , 20 (2008), 227–249.https://doi.org/10.1108/13555850810864579 doi: 10.1108/13555850810864579
|
| [60] | Y. K. Dwivedi, M. Janssen, E. L. Slade, N. P. Rana, V. Weerakkody, J. Millard, et al., Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling, Inf. Syst. Front., 19 (2017), 197−212. https://doi.org/10.1007/s10796-016-9675-5 |
| [61] |
P. Sharma, M. D. Borah, S. Namasudra, Improving security of medical big data by using Blockchain technology, Comput. Electr. Eng. , 96 (2021), 107529.https://doi.org/10.1016/j.compeleceng.2021.107529 doi: 10.1016/j.compeleceng.2021.107529
|
| [62] |
A. Gomes, N. M. Islam, M. R. Karim, Data-driven environmental risk management and sustainability analytics, J. Comput. Sci. Technol. Stud. , 7 (2025), 812−825.https://doi.org/10.32996/jcsts.2025.7.3.89 doi: 10.32996/jcsts.2025.7.3.89
|
| [63] |
A. Y. Adewuyi, K. B. Adebayo, D. Adebayo, J. M. Kalinzi, U. O. Ugiagbe, O. O. Ogunruku, et al., Application of big data analytics to forecast future waste trends and inform sustainable planning, World J. Adv. Res. Rev. , 23 (2024), 2469−2479.https://doi.org/10.32996/jcsts.2025.7.3.89 doi: 10.32996/jcsts.2025.7.3.89
|
| [64] |
R. W. Ahmad, K. Salah, R. Jayaraman, I. Yaqoob, M. Omar, Blockchain for waste management in smart cities: A survey, IEEE Access, 9 (2021), 131520−131541.https://doi.org/10.1109/ACCESS.2021.3113380 doi: 10.1109/ACCESS.2021.3113380
|
| [65] | D. K. Israni, M. K. Shah, Blockchain: a decentralized, persistent, immutable, consensus, and irrevocable system in healthcare, In: Blockchain for Healthcare 4.0, CRC Press, 2023. https://doi.org/10.1201/9781003408246-3 |
| [66] |
F. Faiz, N. Ninduwezuor-Ehiobu, U. M. Adanma, N. O. Solomon, Blockchain for sustainable waste management: Enhancing transparency and accountability in waste disposal, Compr. Res. Rev. Sci. Technol., 02 (2024), 045–069.https://doi.org/10.57219/crrst.2024.2.1.0032 doi: 10.57219/crrst.2024.2.1.0032
|
| [67] | I. Dondjio, M. Themistocleous, Blockchain technology and waste management: a systematic literature review, In: European, Mediterranean, and Middle Eastern Conference on Information Systems, Springer, 2021. https://doi.org/10.1007/978-3-030-95947-0_14 |
| [68] |
V. Sharma, A. Jamwal, R. Agrawal, S. Pratap, A review on digital transformation in healthcare waste management: Applications, research trends and implications, Waste Manage. Res. , 43 (2025), 828−849.https://doi.org/10.1177/0734242X241285420 doi: 10.1177/0734242X241285420
|
| [69] |
G. Ali, D. Asiku, M. M. Mijwil, I. Adamopoulos, M. Dudek, Fusion of Blockchain, IoT, Artificial Intelligence, and Robotics for Efficient Waste Management in Smart Cities, Int. J. Innov. Technol. Interdiscip. Sci., 8 (2025), 388−495.https://doi.org/10.15157/IJITIS.2025.8.3.388-495 doi: 10.15157/IJITIS.2025.8.3.388-495
|
| [70] |
M. Kharub, H. Gupta, S. Rana, O. McDermott, Determination of driving power and dependency of wastes in the healthcare sector: a lean and ISM-Based approach, Int. J. Qual. Reliab. Manag. , 41 (2024), 1838−1864.https://doi.org/10.1108/IJQRM-11-2021-0380 doi: 10.1108/IJQRM-11-2021-0380
|