Research article

When engagement performs better: Revenue management on user-generated content platforms

  • Published: 25 November 2025
  • Primary: 91A10, 91A35; Secondary: 91B06

  • User-generated content (UGC) platforms, such as YouTube and TikTok, motivate creators through revenue-sharing mechanisms. However, it remains unclear whether platforms should allocate revenue based on viewership or user engagement. Linear viewership-oriented models often overlook the crucial role of engagement, which directly influences both content exposure and advertising revenue. In this study, we developed a stylized model comparing the Viewership-oriented Model (VOM) and the Engagement-oriented Model (EOM). The analysis demonstrated that EOM encourages higher content quality and platform incentives to promote engaging videos. When the revenue-sharing rates were endogenously determined, EOM could yield Pareto improvements and generate a win–win outcome for platforms and creators, reinforcing its managerial relevance. Overall, the study highlights that engagement-based contracts enhance the effectiveness and sustainability for the long-term growth of UGC platforms, offering practical implications for platform design and revenue management.

    Citation: Run Tang, Zhengyang Wang, Yangyang Peng, Ziyuan Zeng, Tong Zhang, Yingjun Shen. When engagement performs better: Revenue management on user-generated content platforms[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 282-309. doi: 10.3934/jimo.2026011

    Related Papers:

  • User-generated content (UGC) platforms, such as YouTube and TikTok, motivate creators through revenue-sharing mechanisms. However, it remains unclear whether platforms should allocate revenue based on viewership or user engagement. Linear viewership-oriented models often overlook the crucial role of engagement, which directly influences both content exposure and advertising revenue. In this study, we developed a stylized model comparing the Viewership-oriented Model (VOM) and the Engagement-oriented Model (EOM). The analysis demonstrated that EOM encourages higher content quality and platform incentives to promote engaging videos. When the revenue-sharing rates were endogenously determined, EOM could yield Pareto improvements and generate a win–win outcome for platforms and creators, reinforcing its managerial relevance. Overall, the study highlights that engagement-based contracts enhance the effectiveness and sustainability for the long-term growth of UGC platforms, offering practical implications for platform design and revenue management.



    加载中


    [1] T. Daugherty, M. Eastin, L. Bright, Exploring consumer motivations for creating user-generated content, J. Interact. Advert., 8 (2008), 16–25. https://doi.org/10.1080/15252019.2008.10722139 doi: 10.1080/15252019.2008.10722139
    [2] A. M. Kaplan, M. Haenlein, Users of the world, unite! The challenges and opportunities of social media, Bus. Horiz., 53 (2010), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003 doi: 10.1016/j.bushor.2009.09.003
    [3] E. Sydney, A. Rachel, On Instagram and Other Social Media, Redefining 'User Engagement', Report of The New York Times, 2015. Available from: https://www.nytimes.com/2015/09/21/business/media/retailers-use-of-their-fans-photos-draws-scrutiny.html?searchResultPosition = 8.
    [4] K. Zhang, M. Sarvary, Differentiation with user-generated content, Manage. Sci., 61 (2015), 898–914. https://doi.org/10.1287/mnsc.2014.1907 doi: 10.1287/mnsc.2014.1907
    [5] M. Yang, Y. Ren, G. Adomavicius, Understanding User-Generated Content and Customer Engagement on Facebook Business Pages, Inf. Syst. Res., 30 (2019), 839–855. https://doi.org/10.1287/isre.2019.0834 doi: 10.1287/isre.2019.0834
    [6] Aslam, YouTube by the Numbers: Stats, Demographics & Fun Facts, 2022. Available from: https://www.omnicoreagency.com/youtube-statistics.
    [7] M. Hall, How Do People Make Money on YouTube, 2021. Available from: https://www.investopedia.com/ask/answers/012015/how-do-people-make-money-videos-they-upload-youtube.asp.
    [8] TikTok, Creator Rewards Program, Report of TikTok Support Center, 2025. Available at: https://support.tiktok.com/en/business-and-creator/creator-rewards-program/creator-rewards-program.
    [9] Riverside, How Much Does TikTok Pay? TikTok Creator Fund and Rewards Explained, Report of Riverside Blog, 2025. Available from: https://riverside.com/blog/how-much-does-tiktok-pay.
    [10] L. Forristal, Flip launches a creator fund that grants up to $ \$ $100M of equity, Report of TechCrunch, 2025. Available from: https://techcrunch.com/2025/01/24/flip-launches-a-creator-fund-that-grants-up-to-100m-of-equity/.
    [11] S. Jain, K. Qian, Compensating online content producers: A theoretical analysis, Manage. Sci., 67 (2021), 7075–7090. https://doi.org/10.1287/mnsc.2020.3862 doi: 10.1287/mnsc.2020.3862
    [12] Molenaar, How Many YouTube Views Do You Really Need to Make Money, 2022. Available from: https://influencermarketinghub.com/youtube-views-to-make-money.
    [13] H. Bhargava, The Creator Economy: Managing Ecosystem Supply, Revenue Sharing, and Platform Design, Manage. Sci., 68 (2022), 5233–5251. https://doi.org/10.1287/mnsc.2021.4126 doi: 10.1287/mnsc.2021.4126
    [14] J. C. Rochet, J. Tirole, Platform competition in two-sided markets, J. Eur. Econ. Assoc., 1 (2003), 990–1029. https://doi.org/10.1162/154247603322493212 doi: 10.1162/154247603322493212
    [15] M. Armstrong, Competition in two-sided markets, RAND J. Econ., 37 (2006), 668–691. https://doi.org/10.1111/j.1756-2171.2006.tb00037.x doi: 10.1111/j.1756-2171.2006.tb00037.x
    [16] H. Guda, U. Subramanian, Your Uber is arriving: Managing on-demand workers through surge pricing, forecast communication, and worker incentives, Manage. Sci., 65 (2019), 1995–2014. https://doi.org/10.1287/mnsc.2018.3050 doi: 10.1287/mnsc.2018.3050
    [17] F. Ren, C. Quan, Linguistic-based emotion analysis and recognition for measuring consumer satisfaction: An application of affective computing, Inf. Technol. Manage., 13 (2012), 321–332. https://doi.org/10.1007/s10799-012-0138-5 doi: 10.1007/s10799-012-0138-5
    [18] S. Choi, S. Ko, Y. Han, A movie recommendation algorithm based on genre correlations, Expert Syst. Appl., 39 (2012), 8079–8085. https://doi.org/10.1016/j.eswa.2012.01.132 doi: 10.1016/j.eswa.2012.01.132
    [19] C. C. Chen, Y. Wan, M. Chung, Y. Sun, An effective recommendation method for cold start new users using trust and distrust networks, Inf. Sci., 224 (2013), 19–36. https://doi.org/10.1016/j.ins.2012.10.037 doi: 10.1016/j.ins.2012.10.037
    [20] A. Prasad, V. Mahajan, B. Bronnenberg, Advertising versus pay per-view in electronic media, Int. J. Res. Mark., 20 (2003), 13–30. https://doi.org/10.1016/S0167-8116(02)00119-2 doi: 10.1016/S0167-8116(02)00119-2
    [21] S. P. Anderson, S. Coate, Market provision of broadcasting: A welfare analysis, Rev. Econ. Stud., 72 (2005), 947–972. https://doi.org/10.1111/0034-6527.00357 doi: 10.1111/0034-6527.00357
    [22] M. Peitz, T. M. Valletti, Content and advertising in the media: Pay-TV versus free-to-air, Int. J. Indu. Organ., 26 (2008), 949–965. https://doi.org/10.1016/j.ijindorg.2007.08.003 doi: 10.1016/j.ijindorg.2007.08.003
    [23] E. Calvano, M. Polo, Strategic differentiation by business models: Free-to-air and pay-TV, Econ. J., 130 (2020), 50–64. https://doi.org/10.1093/ej/uez037 doi: 10.1093/ej/uez037
    [24] D. Godes, E. Ofek, M. Sarvary, Content vs. advertising: The impact of competition on media firm strategy, Mark. Sci., 28 (2009), 20–35. https://doi.org/10.1287/mksc.1080.0390 doi: 10.1287/mksc.1080.0390
    [25] W. Amaldoss, J. Du, W. Shin, Media platform's content provision strategy and source of profits, Mark. Sci., 40 (2021), 527–547. https://doi.org/10.1287/mksc.2020.1248 doi: 10.1287/mksc.2020.1248
    [26] C. Dellarocas, Double marginalization in performance-based advertising: Implications and solutions, Manage. Sci., 58 (2012), 1178–1195. https://doi.org/10.1287/mnsc.1110.1474 doi: 10.1287/mnsc.1110.1474
    [27] S. Kumar, Y. Tan, L. Wei, When to play your advertisement? Optimal insertion policy of behavioral advertisement, Inf. Syst. Res., 31 (2020), 589–606. https://doi.org/10.1287/isre.2019.0904 doi: 10.1287/isre.2019.0904
    [28] A. K. Basu, R. Lal, V. Srinivasan, R. Staelin, Salesforce compensation plans: An agency theoretic perspective, Mark. Sci., 4 (1985), 267–291. https://doi.org/10.1287/mksc.4.4.267 doi: 10.1287/mksc.4.4.267
    [29] R. C. Rao, Compensating heterogeneous salesforces: Some explicit solutions, Mark. Sci., 9 (1990), 319–341. https://doi.org/10.1287/mksc.9.4.319 doi: 10.1287/mksc.9.4.319
    [30] R. Lal, V. Srinivasan, Compensation plans for single-and multiproduct salesforces: An application of the Holmstrom-Milgrom model, Manage. Sci., 39 (1993), 777–793. https://doi.org/10.1287/mnsc.39.7.777 doi: 10.1287/mnsc.39.7.777
    [31] A. Kalra, M. Shi, Designing optimal sales contests: A theoretical perspective, Mark. Sci., 20 (2001), 170–193. https://doi.org/10.1287/mksc.20.2.170.10193 doi: 10.1287/mksc.20.2.170.10193
    [32] P. Casas-Arce, F. A. Martínez-Jerez, Relative performance compensation, contests, and dynamic incentives, Manage. Sci., 55 (2009), 1306–1320. https://doi.org/10.1287/mnsc.1090.1021 doi: 10.1287/mnsc.1090.1021
    [33] B. Shiller, J. Waldfogel, The challenge of revenue sharing with bundled pricing: An application to music, Econ. Inquiry, 51 (2013), 1155–1165. https://doi.org/10.1111/j.1465-7295.2011.00442.x doi: 10.1111/j.1465-7295.2011.00442.x
    [34] Y. Bakos, H. Halaburda, Platform Competition with Multihoming on Both Sides: Subsidize or Not?, Manage. Sci., 66 (2020), 5599–5607. https://doi.org/10.1287/mnsc.2020.3636 doi: 10.1287/mnsc.2020.3636
    [35] S. Alaei, G. Ghasemiesfeh, A. Khodaverdian, H. Nazerzadeh, Revenue-Sharing Allocation Strategies for Two-Sided Media Platforms: Pro-Rata vs. User-Centric, Manage. Sci., 68 (2022), 8699–8721. https://doi.org/10.1287/mnsc.2022.4307 doi: 10.1287/mnsc.2022.4307
    [36] G. Bergantinos, J. D. Moreno-Ternero, Revenue Sharing at Music Streaming Platforms, Manage. Sci., 71 (2025), 8319–8335. https://doi.org/10.1287/mnsc.2023.03830 doi: 10.1287/mnsc.2023.03830
    [37] F. Moreau, P. Wikstrom, O. Haampland, R. Johannessen, Alternative payment models in the music streaming market: A comparative approach based on stream-level data, Inf. Econ. Policy, 68 (2024), 101103. https://doi.org/10.1016/j.infoecopol.2024.101103 doi: 10.1016/j.infoecopol.2024.101103
    [38] F. Lopez-Navarrete, J. Sánchez-Soriano, O. Bonastre, Dynamic generation and attribution of revenues in a video platform, preprint, 2023, arXiv: 2304.12268.
    [39] A. Panjwani, H. Xiong, Subscription Revenue and Advertising Strategies on YouTube, 2023. Available from: https://aniketpanjwani.com/patreon.pdf.
    [40] M. Sun, F. Zhu, Ad revenue and content commercialization: Evidence from blogs, Manage. Sci., 59 (2013), 2314–2331. https://doi.org/10.1287/mnsc.1120.1704 doi: 10.1287/mnsc.1120.1704
    [41] Q. Ren, Advertising and Content Creation on Digital Content Platforms, Mark. Sci., 43 (2023), 734–750. https://doi.org/10.1287/mksc.2022.0387 doi: 10.1287/mksc.2022.0387
    [42] J. Oh, B. Koh, S. Raghunathan, Value appropriation between the platform provider and app developers in mobile platform mediated networks, J. Inf. Technol., 30 (2015), 245–259. https://doi.org/10.1057/jit.2015.21 doi: 10.1057/jit.2015.21
    [43] P. B. Goes, C. Guo, M. Lin, Do Incentive Hierarchies Induce User Effort? Evidence from an Online Knowledge Exchange, Inf. Syst. Res., 27 (2016), 497–516. https://doi.org/10.1287/isre.2016.0635 doi: 10.1287/isre.2016.0635
    [44] Y. Deng, J. Zheng, W. Khern-am-nuai and K. Kannan, More than the Quantity: The Value of Editorial Reviews for a User-Generated Content Platform, Manage. Sci., 68 (2021), 6865–6888. https://doi.org/10.1287/mnsc.2021.4238 doi: 10.1287/mnsc.2021.4238
    [45] O. Toubia, A. T. Stephen, Intrinsic vs. image-related utility in social media: Why do people contribute content to twitter? Mark. Sci., 32 (2013), 368–392. https://doi.org/10.1287/mksc.2013.0773 doi: 10.1287/mksc.2013.0773
    [46] G. Tang, B. Gu, A. B. Whinston, Content contribution for revenue sharing and reputation in social media: A dynamic structural model, J. Manage. Inf. Syst., 29 (2012), 41–76. https://doi.org/10.2753/MIS0742-1222290203 doi: 10.2753/MIS0742-1222290203
    [47] Y. Kwark, J. Chen, S. Raghunathan, User-Generated Content and Competing Firms' Product Design, Manage. Sci., 64 (2017), 4608–4628. https://doi.org/10.1287/mnsc.2017.2839 doi: 10.1287/mnsc.2017.2839
    [48] S. Ransbotham, G. C. Kane, N. H. Lurie, Network Characteristics and the Value of Collaborative User-Generated Content, Mark. Sci., 31 (2012), 387–405. https://doi.org/10.1287/mksc.1110.0684 doi: 10.1287/mksc.1110.0684
    [49] Y. Liu, J. Feng, Does money talk? The impact of monetary incentives on user-generated content contributions, Inf. Syst. Res., 32 (2021), 394–409. https://doi.org/10.1287/isre.2020.0971 doi: 10.1287/isre.2020.0971
    [50] Y. Sun, X. Dong, S. McIntyre, Motivation of User-Generated Content: Social Connectedness Moderates the Effects of Monetary Rewards, Mark. Sci., 36 (2017), 329–337. https://doi.org/10.1287/mksc.2016.1022 doi: 10.1287/mksc.2016.1022
    [51] Yang, S., Brossard, D., Scheufele, D. A., & Xenos, M. A, The science of YouTube: What factors influence user engagement with online science videos on YouTube? PLoS ONE, 17 (2022), e0267697. https://doi.org/10.1371/journal.pone.0267697 doi: 10.1371/journal.pone.0267697
    [52] P. Covington, J. Adams, E. Sargin, Deep Neural Networks for YouTube Recommendations, Proceedings of the 10th ACM Conference on Recommender Systems (RecSys), Boston, USA, 2016,191–198. https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf
    [53] Y. Wang, A. Majeed, How do users' feedback influence creators' contributions: An empirical study of an online music community, Behav. Inf. Technol., 42 (2022), 1357–1373. https://doi.org/10.1080/0144929X.2022.2073472 doi: 10.1080/0144929X.2022.2073472
    [54] I. Fainmesser, D. Lauga, C. Ofek, Ratings, Reviews, and the Marketing of New Products, Manage. Sci., 67 (2021), 7023–7045. https://doi.org/10.1287/mnsc.2020.3848 doi: 10.1287/mnsc.2020.3848
    [55] H. Bhargava, K. Wang, X. Zhang, Fending Off Critics of Platform Power with Differential Revenue Sharing: Doing Well by Doing Good? Manage. Sci., 68 (2022), 8249–8260. https://doi.org/10.1287/mnsc.2022.4545 doi: 10.1287/mnsc.2022.4545
    [56] Landsberg, The Complete List Of YouTube Ad Sizes And Specifications, 2022. Available from: https://strikesocial.com/blog/youtube-ad-specifications/.
  • jimo-22-01-011-s001.pdf
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(611) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog