
Citation: O. A. Oluwadare, M.T. Olowokere, F. Taoili, P.A. Enikanselu, R.M. Abraham-Adejumo. Application of time-frequency decomposition and seismic attributes for stratigraphic interpretation of thin reservoirs in 'Jude Field', Offshore Niger Delta[J]. AIMS Geosciences, 2020, 6(3): 378-396. doi: 10.3934/geosci.2020021
[1] | Sayed Saifullah, Amir Ali, Zareen A. Khan . Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293 |
[2] | Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi . Lump-type kink wave phenomena of the space-time fractional phi-four equation. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637 |
[3] | Khalid K. Ali, Mohamed S. Mohamed, Weam G. Alharbi, M. Maneea . Solving the time fractional q-deformed tanh-Gordon equation: A theoretical analysis using controlled Picard's transform method. AIMS Mathematics, 2024, 9(9): 24654-24676. doi: 10.3934/math.20241201 |
[4] | Jing Li, Linlin Dai, Kamran, Waqas Nazeer . Numerical solution of multi-term time fractional wave diffusion equation using transform based local meshless method and quadrature. AIMS Mathematics, 2020, 5(6): 5813-5838. doi: 10.3934/math.2020373 |
[5] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
[6] | Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785 |
[7] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
[8] | Farman Ali Shah, Kamran, Zareen A Khan, Fatima Azmi, Nabil Mlaiki . A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation. AIMS Mathematics, 2024, 9(10): 27122-27149. doi: 10.3934/math.20241319 |
[9] | Bengisen Pekmen Geridonmez . RBF simulation of natural convection in a nanofluid-filled cavity. AIMS Mathematics, 2016, 1(3): 195-207. doi: 10.3934/Math.2016.3.195 |
[10] | Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144 |
Fractional calculus have recently become a fascinating field of study due to its vast applications in various aspects of modern life. It has been observed that many physical phenomena can be modeled successfully by means of fractional order differential equations, where the integer-order differential equations fails in modeling certain issues [1]. Compared to integer order derivatives some properties of the non-integer order derivatives are very tedious to deal with. Thus, it becomes of great importance to establish more results for fractional calculus. Recently lots of researchers have proposed new and efficient analytical and numerical schemes to approximate the solutions of numerous fractional order problems. In this connection one can find efficient work done by researchers such as the analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory [2], a homotopy perturbation sumudu transform method (HPSTM) for solving fractional equal width (EW) equation [3]. The ternary-fractional differential transform method, that extends its applicability to encompass initial value problems in the fractal 3D space [1]. The local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method for a fractal vehicular traffic flow problem [4]. The authors in [5] have proposed a numerical algorithm based on homotopic technique to examine the fractional vibration equation in Atangana-Baleanu sense. The authors in [6] have presented the efficiency of the Atangana-Baleanu (AB) derivative over Caputo-Fabrizio (CF) to some nonlinear partial differential equations. The authors in [7] have done a comparative analysis of exothermic reactions model having constant heat source in the porous media via Caputo, Caputo Fabrizio and Atangana-Baleanu theories. In [8] a hybrid numerical scheme based on the homotopy analysis transform method (HATM) to examine the fractional model of nonlinear wave-like equations having variable coefficients is presented. The Klein-Gordon is one of the most important mathematical model which finds its applications in numerous phenomenon in science and engineering. It has been applied to non linear optics, quantum field theory, Plasma physics, fluid dynamics, chemical kinetics and solid state physics [9,10,11]. In literature a lot of work has been done on solving the Klein-Gordon equation analytically some of them are the tanh and the sine-cosine methods [12], the differential transform method [13], Modified Kudryashov method [14,15], ansatz method [16], Exp(−ϕ(ϵ))-expansion method [17], and the variational iteration method [18]. The residual power series method for linear time fractional Klein-Gordon equation [19], homotopy analysis method [20,21], local fractional series expansion method [10], homotopy perturbation method [22], and the fractional Riccati expansion method [23]. In [24] a hybrid method based on local fractional Sumudu transform method and homotopy perturbation technique is employed to find the non differentiable solution of Klein-Gordon equation on Cantor sets. Since Most of the problems cannot be solved analytically so one must use numerical methods. Despite the fact that, numerical approximation of these equations are rare, in literature some excellent work is available, such as Mohebi et al utilized the Compact finite difference method [25] and the implicit RBF meshless method [26] for the approximation of linear time fractional Klein-Gordon equations. M. M. Khader [27] applied an efficient method based on the generalized laguerre polynomials for approximating the linear time fractional Klein-Gordon equations. In [28] the authors used the wavelet method for approximating a class of fractional Klein-Gordon equations. The authors in [29] proposed a numerical algorithm based on the applications of the operational matrices of the Legendre scaling functions for the approximation of fractional Klein-Gordon equation. The authors in [30] applied a high order compact finite difference scheme to two dimensional fractional Klein-Gordon equations. Dehghan et al [31] used radial basis functions to approximate the solution of non linear Klein-Gordon equations. However in these time stepping schemes the computations may be very expansive because each new iteration is dependent on the previous time step. An alternative way is to use the Laplace transform coupled with these numerical methods. In literature one can find numerous research work on the coupling of other numerical methods and Laplace transform. The Laplace transform was first coupled with the boundary integral method by Rizzo and Shippey [32]. Moridis and Reddell coupled Laplace transform with finite difference, boundary element and finite element methods [33,34,35]. In [36] the authors coupled the Galerkin method with Laplace transform. Moridis and Kansa [37] coupled multiquadric method and Laplace transform for the approximation of PDEs. In [38] the author studied RBF method coupled with Laplace transform on unit sphere. Similarly the coupling of Laplace transform with other numerical methods such as spectral method, finite difference method, boundary particle method, RBF method, and the finite element method can be found in [39,40,41,42,43,44] and the references therein. In this work we apply the idea of [45,46], the Laplace transform is coupled with local RBF method to approximate linear time-fractional Klein-Gordon equation. The Laplace transform is used to avoid the stability restrictions, which are commonly encountered in time-stepping procedure. The local radial basis function method is used to resolve the issue of ill-conditioning of the differentiation matrices and the sensitivity of shape parameter in global radial basis functions method. The main idea of the local radial basis function method is the collocation on overlapping sub-domains of the whole domain. The overlapping sub-domains remarkably reduce the size of collocation matrix by solving many small size matrices. Each small matrix has the same size as the number of nodes in the domain of influence of each node. In order to validate our method we consider linear time-fractional Klein-Gordon equation of the form [25]
βα−1∂αχ(x,t)∂tα+η∂χ(x,t)∂t+κχ(x,t)=Lχ(x,t)+βα−1f(x,t),0≤x≤L,1<α≤2,0≤t≤1,η≥0,κ≥0, | (1.1) |
with initial and boundary conditions given in (1.2) and (1.3),
χ(x,0)=f1(x),∂χ(x,t)∂t|t=0=f2(x),x∈Ω, | (1.2) |
Bχ(x,t)=h(t),x∈∂Ω. | (1.3) |
Here L and B are the governing and boundary differential operators, and ∂α∂tα is the Caputo fractional derivative of order α defined by [47]:
∂α∂tαχ(t)=1Γ(p−α)∫t0(t−s)m−α−1dmdsmχ(s)ds,m−1≤α≤m,m∈N. | (1.4) |
Let the Laplace transform of χ(t) be denoted and defined by
ˆχ(s)=L{χ(t)}=∫∞0e−stχ(t)dt, | (1.5) |
and the Laplace transform of the Caputo derivative is defined by
L{∂α∂tαχ(t)}=sαˆχ(s)−m−1∑i=0sα−i−1χ(i)(0). | (1.6) |
Here we construct a local RBF method coupled with Laplace transform for the approximation of the solution of the linear time-fractional Klein-Gordon equations. In order to avoid the time stepping procedure the Laplace transform is used to eliminate the time variable. Then the local RBF method is utilized to approximate the time independent linear PDE.
Applying the Laplace transform to Eqs (1.1) and (1.3), we get
βα−1(sαˆχ(x,s)−sα−1χ(x,0)−sα−2χt(x,0))+η(sˆχ(x,s)−χ(x,0))+κˆχ(x,s)=Lˆχ(x,s)+βα−1ˆf(x,s), | (2.1) |
thus we have the following linear system
(βα−1sαI+ηsI+κI−L)ˆχ(x,s)=ˆg(x,s),x∈Ω, | (2.2) |
Bˆχ(x,s)=h(s),x∈∂Ω, | (2.3) |
where
ˆg(x,s)=βα−1sα−1χ(x,0)+βα−1sα−2χt(x,0)+ηχ(x,0)+βα−1ˆfχ(x,s). |
In the following section the local RBF method is used to approximate the differential operator L and B in order to solve the problem (2.2)–(2.3) in Laplace space.
In local RBF method the approximation of the function ˆχ(x), for a given set of data points {ˆχ(xi):i=1,...,N}, where {xi:i=1,...,N}⊂Ω⊂Rd,d≥1 takes the form
ˆχ(xi)=∑xj∈Ωiλjϕ(‖xi−xj‖), | (2.4) |
where λi={λij:j=1,...,n} is the vector of expansion coefficients, ϕ(r),r≥0 is radial kernel and the distance between the centers xi and xj is r=‖xi−xj‖, and Ωi is a sub domain of Ω containing xi, and around xi it contains n neighboring centers. So we have N number of n×n linear systems given by
\begin{equation} {\bf{\hat{ \pmb{\mathsf{ χ}}}}}^i = \Phi^i{\mathit{\boldsymbol{\lambda}}}^{i},i = 1,2,3,...,N, \end{equation} | (2.5) |
the elements of the interpolation matrix \Phi^i are b^{i}_{kj} = \phi(\|{\bf{x}}_k-{\bf{x}}_j\|), \text{where} \; {\bf{x}}_k, {\bf{x}}_j \in \Omega_{i} , each n\times n system is then solved for the unknowns {\mathit{\boldsymbol{\lambda}}}^{i} = \{\lambda^{i}_{j}:j = 1, ..., n\} . Next the operator \mathcal{L}\hat{\chi}({\bf{x}}) , is approximated by
\begin{equation} \mathcal{L}\hat{\chi}({\bf{x}}_i) = \sum\limits_{{\bf{x}}_j\in \Omega_i}{\mathit{\boldsymbol{\lambda}}}^{i}_{j}\mathcal{L}\phi(\|{\bf{x}}_i-{\bf{x}}_j\|), \end{equation} | (2.6) |
the above Eq (2.6) can be expressed as
\begin{equation} \mathcal{L}\hat{\chi}({\bf{x}}_i) = {\mathit{\boldsymbol{\lambda}}}^{i}\cdot{\mathit{\boldsymbol{\nu}}}^i, \end{equation} | (2.7) |
where {\mathit{\boldsymbol{\nu}}}^i is of order 1\times n and {\mathit{\boldsymbol{\lambda}}}^{i} of order n\times 1 , the entries of {\mathit{\boldsymbol{\nu}}}^i are shown in the following equation
\begin{equation} {\mathit{\boldsymbol{\nu}}}^i = \mathcal{L}\phi(\|{\bf{x}}_i-{\bf{x}}_j\|),\; {\bf{x}}_j \in \Omega_{i}, \end{equation} | (2.8) |
using Eq (2.5), the coefficients {\mathit{\boldsymbol{\lambda}}}^{i} can be eliminated as,
\begin{equation} {\mathit{\boldsymbol{\lambda}}}^{i} = (\Phi^i)^{-1}\mathit{\boldsymbol{\hat{\chi}}}^i, \end{equation} | (2.9) |
using the values of {\mathit{\boldsymbol{\lambda}}}^{i} from (2.9) in (2.7) we get,
\begin{equation} \mathcal{L}\hat{\chi}({\bf{x}}_i) = {\mathit{\boldsymbol{\nu}}}^i(\Phi^i)^{-1}\mathit{\boldsymbol{\hat{\chi}}}^i = {\bf{w}}^i\mathit{\boldsymbol{\hat{\chi}}}^i \end{equation} | (2.10) |
where,
\begin{equation} {\bf{w}}^i = {\mathit{\boldsymbol{\nu}}}^i(\Phi^i)^{-1}, \end{equation} | (2.11) |
Hence the linear differential \mathcal{L} is approximated using the local RBF method for each center {\bf{x}}_i as
\begin{equation} \mathcal{L}\hat{\chi}\equiv{\bf{D}}\mathit{\boldsymbol{\hat{\chi}}}. \end{equation} | (2.12) |
The matrix {\bf{D}} is sparse differentiation matrix which approximates the linear differential operator \mathcal{L} . The matrix {\bf{D}} has order N\times N which contains n non-zero and N-n zero entries, where n is the number of centers in the sub domain \Omega_{i}. The same procedure can be applied to the boundary operator \mathcal{B} .
In literature a large number of radial kernels are available. In this article we have selected the multi-quadrics \phi(r) = \sqrt{1+(r c)^2} for our numerical approximation. The accuracy of the numerical solution greatly depends on the parameter c . The researchers always search for that value of c which gives an optimal solution. In this regard a large amount of work has been done such as [48,49,50] and references therein. Here we utilize the uncertainty principle [51] for optimal shape parameter c .
Algorithm:
● The interval 10^{12} < Cond < 10^{16} is selected for the condition number (Cond) of the system matrices of the given problem.
● Using SVD, the interpolation matrix is decomposed as {\bf{R, P, Q}} = svd(\Phi^i) . The order of \Phi^i is n \times n (n is the number of centers in each \Omega_{i} ), and the n singular values of the matrix \Phi^i lies on the diagonal of the matrix {\bf{P}} ( {\bf{P}} is a diagonal matrix), and the condition number of \Phi^i is Cond = \|\Phi^i\|\|(\Phi^i)^{-1}\| = \frac{\mbox{max}({\bf{P}})}{\mbox{min}({\bf{P}})} .
● The c is searched until the condition 10^{12} < Cond < 10^{16} is satisfied, the algorithm is given as
Step 1: set Cond = 1
Step 2: select 10^{12} < Cond < 10^{16}
Step 3: \mbox{while}\; Cond > Cond_{max} \; \mbox{and}\; Cond < Cond_{min}
Step 4: {\bf{R, P, Q}} = svd(\Phi^i)
Step 5: Cond = \frac {\mbox{max}({\bf{P}})}{\mbox{min}({\bf{P}})}
Step 6: \mbox{if}\; Cond < Cond_{min}, \; c = c-\delta c
Step 7: \mbox{if}\; Cond > Cond_{max}, \; c = c+\delta c
c\; {(\mbox{optimal})} = c .
Optimal value of the parameter c is obtained, when the above condition is satisfied, and then we can compute the inverse using ({\Phi^i})^{-1} = {\bf{(RPQ^{T}})}^{-1} = {\bf{Q}}{\bf{P}}^{-1}{\bf{R}}^{T} [52]. Hence {\bf{w}}^i in (2.11) can be computed.
Following the discretization by local RBF method of the linear differential and boundary operators \mathcal{L} and \mathcal{B} respectively, the system (2.2)–(2.3) is solved for each point s . Finally the solution of the problem (1.1)–(1.3) is obtained using the inverse of Laplace transform
\begin{equation} \chi({\bf{x}},t) = \frac{1}{2 \pi i}\int^{\sigma+i\infty}_{\sigma-i\infty }e^{st} \hat{\chi}({\bf{x}},s)ds. \end{equation} | (2.13) |
In applying the Laplace transform method the calculation of inverse Laplace transform is the main difficulty. In many cases it is difficult to find the inverse Laplace transform analytically so numerical methods must be used. A large number of methods for the numerical inversion of Laplace transform have been developed. In this work we use the idea of [39,42] in which the integration is performed over a parabolic or hyperbolic path \Gamma, so the integral in equation (2.13) can be written as
\begin{equation} \chi({\bf{x}},t) = \frac{1}{2 \pi i}\int_{\Gamma }e^{st} \hat{\chi}({\bf{x}},s)ds, \; \; \; \sigma \gt \sigma_{0}, \end{equation} | (2.14) |
where \Gamma is a path of integration joining \sigma-i\infty to \sigma+i\infty and
\begin{equation} s = s(\omega), \end{equation} | (2.15) |
using (2.15) in (2.14), we find the following expression
\begin{equation} \chi({\bf{x}},t) = \frac{1}{2 \pi i}\int^{\infty}_{-\infty }e^{s(\omega)t} \hat{\chi}({\bf{x}},s(\omega))\acute{s}(\omega)d \omega, \end{equation} | (2.16) |
Finally the trapezoidal rule with uniform step size k is used to approximate (2.16), as
\begin{equation} \chi_{k}({\bf{x}},t) = \frac{k}{2 \pi i}\sum\limits^{M}_{j = -M} e^{s_{j}t}\hat{\chi}({\bf{x}},s_{j})\acute{s}_{j}, \; \; s_{j} = s(\omega_{j}), \omega_{j} = jk. \end{equation} | (2.17) |
The approximate solution of the proposed scheme is defined by Eq (2.17). The accuracy of (2.17) greatly depends on the path of the integration \Gamma . There are various contours available in the literature. Recently the hyperbolic [41] and parabolic [42] contours are used to approximate the integer and fractional order PDEs. In our computations the hyperbolic path due to [41] is used.
\begin{equation} s(\omega) = \eta+\gamma\left(1-sin(\delta-\iota \omega)\right), \; \mbox{for} \; \omega \in\mathcal{R},\; \; \; \; (\Gamma) \end{equation} | (3.1) |
where \eta \geq 0 , \gamma > 0 , \frac{1}{2}\pi < \beta < \pi , and 0 < \delta < \beta - \frac{1}{2}\pi . In fact, when we choose Im \; \omega = \lambda , the Eq (3.1) is reduced to the left branch of the hyperbola
\begin{equation} \left(\frac{x-\gamma-\eta}{\gamma \sin(\delta+\lambda)}\right)^{2}-\left(\frac{y}{\gamma \cos(\delta+\lambda)}\right)^{2} = 1, \end{equation} | (3.2) |
transforming the strip Z_{r} = \{\omega: Im \; \omega \leq r, r > 0\} into the hyperbola \Omega_{r} = \{s: \omega \in Z_{r}\}\supset \Gamma. Suppose \Sigma_{\phi} = \{s \neq 0 :|arg s|\leq\phi \} \cup 0, \; 0 < \phi < \frac{(1-\alpha)\phi}{2}, and let \Sigma^{\eta}_{\beta} = \eta+\Sigma_{\beta}, \Gamma\subset \Omega_{r}\subset \Sigma^{\eta}_{\beta}. The following theorem gives the error estimate of the scheme for the contour \Gamma .
Theorem 3.1 ([41], Theorem 2.1) let the solution of (1.1) be \chi({\bf{x}}, t) , with \hat{f}({\bf{x}}, t) analyitc in \Sigma^{\eta}_{\beta}. Let \Gamma\subset \Omega_{r}\subset \Sigma^{\eta}_{\beta}, and b > 0 be defined by b = cosh^{-1}(\frac{1}{\theta \tau \sin(\delta)}) , where \tau = \frac{t_0}{T} , 0 < \theta < 1 , 0 < t_0 < T , and let \gamma = \frac{\theta \overline{r}M}{bT}. Then for the approximate solution defined by (2.17), with k = \frac{b}{M}\leq \frac{\overline{r}}{log 2}, \; |\chi({\bf{x}}, t)-\chi_{k}({\bf{x}}, t)|\leq \left(\|\chi_{0}\|+\|\hat{f}({\bf{x}}, t)\|_{\Sigma^{\eta}_{\beta}}\right)CQe^{\eta \tau}g(\rho_{r}M)e^{-\mu M}, for \mu = \frac{\overline{r}(1-\theta)}{b} , \rho_r = \frac{\theta \overline{r} \tau \sin(\delta-r)}{b} , g(x) = \mbox{max}(1, log(\frac{1}{x})) , \overline{r} = 2\pi r , r > 0 , C = C_{\delta, r, \beta} , and t_0\leq t \leq T. Thus the corresponding error estimate is of the order
\text{Error Estimate} = |\chi({\bf{x}},t)-\chi_{k}({\bf{x}},t)| = O(g(\rho_{r}M)e^{-\mu M}). |
In order to investigate the systems (2.2)–(2.3) stability, we represent the system in discrete form as
\begin{equation} Y{\bf{\hat{ \pmb{\mathsf{ χ}}}}} = {\bf{b}}, \end{equation} | (4.1) |
where Y is the sparse differentiation matrix of order N \times N obtained using local RBF method. For the system (4.1) the constant of stability is given by
\begin{equation} C = \sup\limits_{\hat{\chi}\neq0} \frac{\|\hat{\chi}\|}{\|Y\hat{\chi}\|}, \end{equation} | (4.2) |
where C is finite using any discrete norm \|.\| on R^{N} . From (4.2) we may write
\begin{equation} \|Y\|^{-1} \leq \frac{\|\hat{\chi}\|}{\|Y\hat{\chi}\| }\leq C, \end{equation} | (4.3) |
Similarly for the pseudoinverse Y^{†} of Y , we can write
\begin{equation} \|Y^{†}\| = \sup\limits_{v \neq 0} \frac{\|Y^{†} v\|}{\|v\|}. \end{equation} | (4.4) |
Thus we have
\begin{equation} \|Y^{†}\| \geq \sup\limits_{v = Y\hat{\chi}\neq 0}\frac{\|Y^{†}Y\hat{\chi}\| }{\|Y\hat{\chi}\| } = \sup\limits_{\hat{\chi} \neq 0} \frac{\|\hat{\chi}\| }{\|Y\hat{\chi}\| } = C. \end{equation} | (4.5) |
We can see that Eqs (4.3) and (4.5) confirms the bounds for the stability constant C . Calculating the pseudoinverse for approximating the system (4.1) numerically may be very expansive computationally, but it ensures the stability. The MATLAB's function condest can be used to estimate \|Y^{-1}\|_{\infty} in case of square systems, thus we have
\begin{equation} C = \frac{condest(Y')}{\|Y\|_{\infty}} \end{equation} | (4.6) |
This work well with less number of computations for our sparse differentiation matrix Y . Figures 1 and 2 show the bounds for the constant C of our system (2.2)–(2.3) for Problem 3. Selecting N = 50 , M = 80 , n = 15 , and \alpha = 0.8 at t = 1 , we have 1 \leq C \leq 1.1620. It is observed that the stability constant is bounded by very small numbers, which guarantees the stability of the proposed local RBF scheme.
This section is devoted to the numerical experiments. The proposed method is tested here for 1-D time fractional order Klein-Gordon equations. The multi-quadrics radial kernels \phi (r) = (1+(r c)^2)^{1/2} are used in all our numerical experiments. The Uncertainty principle [51] is used to optimize the shape parameter c . The accuracy of the method is measured using L_{\infty} error defined by
L_{\infty} = \|\chi({\bf{x}},t)-\chi_{k}({\bf{x}},t)\|_{\infty} = \max\limits_{1 \leq j \leq N}(|\chi({\bf{x}},t)-\chi_{k}({\bf{x}},t)|) |
is used. Here \chi_{k} and \chi are the numerical and exact solutions respectively.
If we use \beta = 1 , \kappa = 1 , and \eta = 0, Eq (1.1) takes the form
\begin{equation} \frac{\partial^{\alpha}\chi(x,t)}{\partial t^{\alpha}}+\chi(x,t)- \frac{\partial^{2}\chi(x,t)}{\partial x^{2}} = f(x,t), \end{equation} | (5.1) |
where \; 1\leq \alpha \leq2, \; t\geq 0, \; 0\leq x\leq1, with zero boundary and initial conditions. The domain [0, 1] is selected for the problem with exact solution
\chi(x,t) = t^{2}(e-e^{x})\sin(x), |
and non homogeneous term
\begin{eqnarray*} f(x,t)& = &\frac{2t^{2-\alpha}}{(2-\alpha)\Gamma(2-\alpha)}(e-e^{x})\sin(x)+t^{2}(2e-e^{x})\sin(x)\\&&+2t^{2}e^{x}\cos(x). \end{eqnarray*} |
The MATLAB's command \omega = -M:k:M is used to generate the quadrature points along the path of integration \Gamma . The parameters used in our computations are \alpha = 1.75, \eta = 2, \tau = \frac{t0}{T}, r = 0.1387, \theta = 0.1, \delta = 0.1541, t_0 = 0.5 \; \mbox{and}\; T = 5. Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path \Gamma . In our computations n = 6 in the sub domain \Omega_{i} and N = 40 in the global domain \Omega are selected. The error estimates and L_{\infty} errors are shown in Tables 1 and 2. The efficiency of the method can be seen in the results. The actual error and error estimates are shown in Figure 3 and the absolute errors for different values of \alpha are shown in Figure 4. The numerical and the exact solutions are shown in Figures 5 and 6 respectively.
N=60 , n=5 \alpha=1.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.145896 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.158580 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.169243 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.218606 | |
40 | 6.57 \times 10^{-6} | 0.1836 | 0.384568 | |
50 | 1.25 \times 10^{-5} | 0.0625 | 0.682311 | |
60 | 9.58 \times 10^{-6} | 0.0212 | 1.143210 | |
70 | 9.70 \times 10^{-6} | 0.0072 | 2.792846 | |
80 | 9.66 \times 10^{-6} | 0.0024 | 5.805704 | |
[25] 1.34 \times 10^{-6} |
N=60 , n=5 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.151320 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.190760 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.173974 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.275586 | |
40 | 6.35 \times 10^{-6} | 0.1836 | 0.483761 | |
50 | 1.19 \times 10^{-5} | 0.0625 | 0.732991 | |
60 | 8.99 \times 10^{-6} | 0.0212 | 1.269992 | |
70 | 9.11 \times 10^{-6} | 0.0072 | 3.328360 | |
80 | 9.07 \times 10^{-6} | 0.0024 | 5.789626 | |
[25] 4.45 \times 10^{-5} |
If we use \beta = 1 , \kappa = 1 , and \eta = 1, Eq (1.1) takes the form
\begin{equation} \frac{\partial^{\alpha}\chi(x,t)}{\partial t^{\alpha}}+\frac{\partial \chi(x,t)}{\partial t}+\chi(x,t) = \frac{\partial^{2}\chi(x,t)}{\partial x^{2}}+f(x,t), \end{equation} | (5.2) |
where \; 1\leq \alpha \leq2, \; t\geq 0, \; 0\leq x\leq1, with zero initial and boundary conditions, the exact solution of the problem is
\chi(x,t) = t^{2}x\sin(x-1), |
and non homogeneous term is
\begin{eqnarray*} &&f(x,t) = \frac{2t^{2-\alpha}}{(2-\alpha)\Gamma(2-\alpha)}x\sin(x-1)+2tx\sin(x-1)\\&&+t^{2}x\sin(x-1)-t^{2}(2\cos(x-1)-x\sin(x-1)). \end{eqnarray*} |
The MATLAB's command \omega = -M:k:M is used to generate the quadrature points along the path of integration \Gamma . The parameters used in our computations are \alpha = 1.75, r = 0.1387, \delta = 0.1541, \theta = 0.1, \tau = \frac{t0}{T}, \eta = 2, t_0 = 0.5 \; \mbox{and}\; T = 5. Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path \Gamma . In our computations n = 7 centers in the sub domain \Omega_{i} and N = 50 in the global domain \Omega are selected. The error estimates and L_{\infty} errors are shown in Tables 3 and 4. Also the maximum absolute errors for different values of \alpha are shown in Table 5, which shows the efficiency of the proposed method. The numerical and exact solutions of this problem are shown in Figures 7 and 8 respectively and plot of Actual error and Error Estimate corresponding to problem 2 are shown in Figure 9.
M=80 , n=5 \alpha=1.25 |
N | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 5.77 \times 10^{-5} | 0.0024 | 0.561563 | |
20 | 1.27 \times 10^{-5} | 0.0024 | 1.125699 | |
30 | 3.55 \times 10^{-6} | 0.0024 | 1.252799 | |
40 | 2.43 \times 10^{-6} | 0.0024 | 2.716533 | |
50 | 2.87 \times 10^{-6} | 0.0024 | 4.686349 | |
60 | 3.78 \times 10^{-6} | 0.0024 | 6.319554 | |
80 | 8.38 \times 10^{-6} | 0.0024 | 8.773851 | |
90 | 8.20 \times 10^{-7} | 0.0024 | 9.862299 | |
[25] 5.91 \times 10^{-7} |
N=50 , n=7 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 3.32 \times 10^{-4} | 4.4187 | 0.146540 | |
15 | 9.63 \times 10^{-4} | 2.6363 | 0.160951 | |
20 | 5.71 \times 10^{-4} | 1.5582 | 0.170815 | |
30 | 6.70 \times 10^{-5} | 0.5373 | 0.212776 | |
40 | 7.76 \times 10^{-6} | 0.1836 | 0.361477 | |
50 | 4.25 \times 10^{-6} | 0.0625 | 0.585600 | |
60 | 5.48 \times 10^{-6} | 0.0212 | 1.047157 | |
70 | 5.42 \times 10^{-6} | 0.0072 | 1.872323 | |
80 | 5.44 \times 10^{-6} | 0.0024 | 4.417500 | |
[25] 7.59 \times 10^{-6} |
x | \alpha=1.25 | \alpha=1.5 | \alpha=1.75 | \alpha=1.95 |
0 | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} |
0.1 | 1.353 \times 10^{-6} | 1.340 \times 10^{-6} | 1.326 \times 10^{-6} | 1.315 \times 10^{-6} |
0.2 | 1.155 \times 10^{-6} | 1.131 \times 10^{-6} | 1.104 \times 10^{-6} | 1.079 \times 10^{-6} |
0.3 | 9.710 \times 10^{-7} | 9.400 \times 10^{-7} | 9.010 \times 10^{-7} | 8.630 \times 10^{-7} |
0.4 | 8.170 \times 10^{-7} | 7.820 \times 10^{-7} | 7.360 \times 10^{-7} | 6.850 \times 10^{-7} |
0.5 | 6.760 \times 10^{-7} | 6.410 \times 10^{-7} | 5.910 \times 10^{-7} | 5.320 \times 10^{-7} |
0.6 | 5.180 \times 10^{-7} | 4.860 \times 10^{-7} | 4.370 \times 10^{-7} | 3.740 \times 10^{-7} |
0.7 | 3.510 \times 10^{-7} | 3.240 \times 10^{-7} | 2.830 \times 10^{-7} | 2.220 \times 10^{-7} |
0.8 | 1.620 \times 10^{-7} | 1.430 \times 10^{-7} | 1.130 \times 10^{-7} | 6.200 \times 10^{-8} |
0.9 | 1.300 \times 10^{-8} | 2.300 \times 10^{-8} | 3.900 \times 10^{-8} | 6.800 \times 10^{-8} |
1 | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} |
Here we consider the 1-D linear Klein-Gordon equation of the form [19]
\begin{equation} \frac{\partial^{\alpha}\chi(x,t)}{\partial t^{\alpha}} = \frac{\partial^{2}\chi(x,t)}{\partial x^{2}}+\chi(x,t), \; 0\leq \alpha \leq1,\; t\geq 0, \; x\in R, \end{equation} | (5.3) |
with initial condition \chi(x, 0) = 1+\sin(x) and exact solution \chi(x, t) = \sin(x)+E_{\alpha}(t^{\alpha}) , where E_{\alpha}(t) = \sum^{\infty}_{m = 0}\frac{t^{m}}{\Gamma(\alpha m+1)}. The domain [-4, 4] is selected for the given problem. The quadrature points are generated using the MATLAB's command \omega = -M:k:M along the path of integration \Gamma . The parameters used in our computations are \alpha = 0.8, r = 0.1387, \eta = 2, \tau = \frac{t0}{T}, \theta = 0.1, \delta = 0.1541, t_0 = 0.5 \; \mbox{and}\; T = 5. Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path \Gamma . In our computations we select n = 6 centers in the sub domain \Omega_{i} and N = 40 in the global domain \Omega are selected. The error estimates and L_{\infty} errors are shown in Tables 6 and 7. Similar behavior is observed as in the previous examples. The numerical and exact solutions for problem 3 are shown in Figures 10 and 11 and plot of Actual error and Error Estimate corresponding to problem 3 are shown in Figure 12.
N=70 , n=10 , \alpha=0.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.37 \times 10^{0} | 4.4187 | 0.168655 | |
20 | 4.14 \times 10^{-1} | 1.5582 | 0.216721 | |
30 | 3.13 \times 10^{-1} | 0.5373 | 0.268500 | |
40 | 9.80 \times 10^{-3} | 0.1836 | 0.352215 | |
50 | 1.49 \times 10^{-2} | 0.0625 | 0.480307 | |
60 | 2.60 \times 10^{-3} | 0.0212 | 0.899249 | |
70 | 8.67 \times 10^{-4} | 0.0072 | 2.037757 | |
80 | 8.90 \times 10^{-4} | 0.0024 | 3.956089 | |
90 | 8.12 \times 10^{-4} | 8.18 \times 10^{-4} | 6.517429 |
N=40 , n=6 , \alpha=0.8 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 2.68 \times 10^{0} | 4.4187 | 0.158384 | |
15 | 4.53 \times 10^{-1} | 2.6363 | 0.162534 | |
20 | 3.36 \times 10^{-1} | 1.5582 | 0.162535 | |
30 | 1.59 \times 10^{-1} | 0.5373 | 0.189903 | |
40 | 2.0 \times 10^{-3} | 0.1836 | 0.245566 | |
50 | 8.70 \times 10^{-3} | 0.0625 | 0.344221 | |
60 | 1.10 \times 10^{-3} | 0.0212 | 0.502084 | |
70 | 6.32 \times 10^{-4} | 0.0072 | 0.923548 | |
80 | 5.70 \times 10^{-4} | 0.0024 | 2.520403 |
In this article, we constructed a local RBF method based on Laplace transform proposed for the approximation of the solution of the linear time fractional Klein-Gordon equations. In time stepping procedure usually the time instability is encountered and for accuracy we need a very small time step size. Global RBF methods are efficient and accurate only for small amount of nodes. They become inefficient and the differentiation matrix becomes ill-conditioned for large amount of nodes. The main advantage of this method is that it avoids the time stepping procedure with the help of Laplace transform, and the local RBF method has been used to resolve the issue of ill-conditioning. The numerical results confirmed the stability and convergence of the method. The comparison of the results with other methods led us to conclude that the proposed local RBF method coupled with Laplace transform is an efficient method for approximation of the solution of the linear time fractional Klein-Gordon equations.
The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.This work was supported in part by the National Key Research and Development Program under Grant 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.
The authors declare that no competing interests exist.
[1] |
Partyka G, Gridley J, Lopez J (1999) Interpretational applications of spectral decomposition in reservoir characterization. Lead Edge 18: 353-360. doi: 10.1190/1.1438295
![]() |
[2] |
Marfurt KJ, Kirlin RL (2001) Narrow-band spectral analysis and thin-bed tuning. Geophysics 66: 1274-1283. doi: 10.1190/1.1487075
![]() |
[3] |
Castagna JP, Sun S, Siegfried RW (2003) Instantaneous spectral analysis; Detection of low-frequency shadows associated with hydrocarbons. Lead Edge 22: 120-127. doi: 10.1190/1.1559038
![]() |
[4] |
Sinha S, Routh PS, Anno PD, et al. (2005) Spectral Decomposition of Seismic Data with continuous wavelet transform. Geophysics 70: 19-25. doi: 10.1190/1.2127113
![]() |
[5] |
Tomasso M, Bouroullec R, Pyles DR (2010) The use of spectral recomposition in tailored forward seismic modelling of outcrop analogs. AAPG Bull 94: 457-474. doi: 10.1306/08240909051
![]() |
[6] | Telford WM, Geldart LP, Sheriff RE (1971) Applied Geophysics, Second Edition, 1-270. |
[7] |
Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis. Geophysics 44: 1041-1063. doi: 10.1190/1.1440994
![]() |
[8] |
Latimer RB, Davison R, Van Riel P (2000) An Interpreter's guide to understanding and working with seismic-derived acoustic impedance data. Lead Edge 19: 242-256. doi: 10.1190/1.1438580
![]() |
[9] |
Abdel-Fattah M, Gameel M, Awad S, et al. (2015) Seismic interpretation of the Aptian Alamein Dolomite in the Razzak Oil field, Western Desert, Egypt. Arabian J Geosci 8: 4669-4684. doi: 10.1007/s12517-014-1595-4
![]() |
[10] |
Fadul MF, El Dawi MG, Abdel-Fattah MI (2020) Seismic interpretation and the tectonic regime of Sudanese Rift System: Implications for hydrocarbon exploration in neem field (Muglad Basin). J Pet Sci Eng 2020: 107223. doi: 10.1016/j.petrol.2020.107223
![]() |
[11] | Sheriff RE (2002) Encyclopaedic Dictionary of Applied Geophysics, Fourth Edition, Society of exploration geophysicists. |
[12] | Cohen L (1995) Time Frequency Analysis, Prentice Hall, New Jersey. |
[13] | Castagna JP, Sun S (2006) Comparison of Spectral Decomposition methods. First Break 24: 3-24. |
[14] |
Chakraborty A, Okaya D (1995) Frequency-time Decomposition of seismic data suing wavelet based. Geophysics 60: 1906-1916. doi: 10.1190/1.1443922
![]() |
[15] | Weber KJ, Dakouru E (1975) Petroleum Geology of the Niger Delta. Proceedings of the Ninth World Petroleum Congress. Geology: London, Applied Science Publishers, Ltd, 2: 210-221. |
[16] | Burke K (1972) Long-shore drift, submarine canyons, and submarine fans in development of Niger Delta: AAPG Bull 56: 1975-1983. |
[17] | Doust H, Omatsola E (1990) Niger Delta, Divergent/Passive margin basins. AAPG Bull, 239-248. |
[18] | Short KC, Stauble AJ (1967) Outline of Geology of Niger Delta. AAPG Bull 51: 761-779. |
[19] | Avbovbo AA (1978) Tertiary litho-stratigraphy of Niger Delta. AAPG Bull 62: 295-300. |
[20] | Kulke H (1995) Regional Petroleum Geology of the World. Part Ⅱ: Africa, America, Australia and Antarctica. Berlin, Gebrüder Borntraeger, 143-172. |
[21] | SPDC (2005) Supply Chain Management Practice, Shell Petroleum Development Limited, Nigeria. Available from: http://www.ipsa.co.za/bola%20afolabi.ppt. |
[22] |
Abraham-A RM, Taoili F (2018) Hydrocarbon Viability Prediction of Some Selected Reservoirs in Osland Oil and Gas Field, Offshore Niger Delta, Nigeria. Mar Pet Geol 100: 195-203. doi: 10.1016/j.marpetgeo.2018.11.007
![]() |
[23] |
Pigott JD, Kang MH, Han HC (2013) First Order Seismic Attributes for clastic Seismic facies Interpretation: Examples from the East China Sea. J Asian Earth Sci 66: 34-54. doi: 10.1016/j.jseaes.2012.11.043
![]() |
[24] | Widess M (1973) How Thin is a Thin Bed? Geophysics 38: 1176-1180. |
[25] |
Zhu Y, Huang C (2012) An Improved Median Filtering Algorithm for Image Noise Reduction. Phys Procedia 25: 609-616. doi: 10.1016/j.phpro.2012.03.133
![]() |
[26] |
Naseer MT, Asim S (2017) Detection of cretaceous incised valley shale for resource play, Miano gas field, SW Pakistan: Spectral Decomposition using continuous wavelet transform. J Asian Earth Sci 147: 358-377. doi: 10.1016/j.jseaes.2017.07.031
![]() |
[27] | Neuendorf KKE, Mehl JP, Jackson JA (2005) Glossary of Geology, Fifth Edition. American Geological Institute, Alexandria, Virginia, 779. |
[28] | Hutton J (1788) Theory of the Earth; or An Investigation of the Laws Observable in the Composition, Dissolution, and Restoration of Land upon the Globe. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1: 209-304. |
[29] | Hutton J (1795) Theory of the Earth with Proofs and Illustrations. (Edinburgh)/London: Geological Society, I and Ⅱ: 1795-1899. |
[30] | Jameson R (1805) A mineralogical description of the County of Dumfries. Bell & Bradfute, 1-75. |
[31] | De la Beche HT (1830) Sections and Views Illustrative of Geological Phenomena. Treuttel & Wurtz, Cambridge University Press, London, 177. |
[32] | Lyell C, Deshayes GP (1830) Principles of geology: being an attempt to explain the former changes of the earth's surface, by reference to causes now in operation. J. Murray, 511. |
[33] | Uko ED, Emudianughe JE, Tamunobereton-ari I (2013) Page Overpressure Prediction in the North-West Niger Delta, using Porosity Data. J Appl Geol Geophys 1: 42-50. |
1. | Nehad Ali Shah, Ioannis Dassios, Jae Dong Chung, Numerical Investigation of Time-Fractional Equivalent Width Equations That Describe Hydromagnetic Waves, 2021, 13, 2073-8994, 418, 10.3390/sym13030418 | |
2. | Kamran Kamran, Zahir Shah, Poom Kumam, Nasser Aedh Alreshidi, A Meshless Method Based on the Laplace Transform for the 2D Multi-Term Time Fractional Partial Integro-Differential Equation, 2020, 8, 2227-7390, 1972, 10.3390/math8111972 | |
3. | Siraj Ahmad, Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla, On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods, 2023, 135, 1526-1506, 2743, 10.32604/cmes.2023.023705 | |
4. | Xiao Qin, Xiaozhong Yang, Peng Lyu, A class of explicit implicit alternating difference schemes for generalized time fractional Fisher equation, 2021, 6, 2473-6988, 11449, 10.3934/math.2021663 | |
5. | Saman Hosseinzadeh, Seyed Mahdi Emadi, Seyed Mostafa Mousavi, Davood Domairry Ganji, Mathematical modeling of fractional derivatives for magnetohydrodynamic fluid flow between two parallel plates by the radial basis function method, 2022, 12, 20950349, 100350, 10.1016/j.taml.2022.100350 | |
6. | Ahmad Qazza, Aliaa Burqan, Rania Saadeh, Fahd Jarad, Application of ARA-Residual Power Series Method in Solving Systems of Fractional Differential Equations, 2022, 2022, 1563-5147, 1, 10.1155/2022/6939045 | |
7. | Hitesh Bansu, Sushil Kumar, Numerical Solution of Space-Time Fractional Klein-Gordon Equation by Radial Basis Functions and Chebyshev Polynomials, 2021, 7, 2349-5103, 10.1007/s40819-021-01139-7 | |
8. | Aliaa Burqan, Rania Saadeh, Ahmad Qazza, Shaher Momani, ARA-residual power series method for solving partial fractional differential equations, 2023, 62, 11100168, 47, 10.1016/j.aej.2022.07.022 | |
9. | A.S.V. Ravi Kanth, K. Aruna, K. Raghavendar, Hadi Rezazadeh, Mustafa Inc, Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative Shehu transform method, 2021, 24680133, 10.1016/j.joes.2021.12.002 | |
10. | Saman Hosseinzadeh, Seyed M. Mousavi, Seyed M. Emadi, Davood D. Ganji, Analytical assessment of the time‐space fractional bioheat transfer equation by the radial basis function method for living tissues, 2022, 51, 2688-4534, 6139, 10.1002/htj.22583 | |
11. | Abdul Ghafoor, Muhammad Fiaz, Kamal Shah, Thabet Abdeljawad, Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative, 2024, 10, 24058440, e33842, 10.1016/j.heliyon.2024.e33842 | |
12. | Asmaa Baihi, Ahmed Kajouni, Khalid Hilal, Hamid Lmou, Laplace transform method for a coupled system of (p, q)-Caputo fractional differential equations, 2024, 1598-5865, 10.1007/s12190-024-02254-6 | |
13. | Aisha Subhan, Kamal Shah, Suhad Subhi Aiadi, Nabil Mlaiki, Fahad M. Alotaibi, Abdellatif Ben Makhlouf, Analysis of Volterra Integrodifferential Equations with the Fractal-Fractional Differential Operator, 2023, 2023, 1099-0526, 1, 10.1155/2023/7210126 |
N=60 , n=5 \alpha=1.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.145896 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.158580 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.169243 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.218606 | |
40 | 6.57 \times 10^{-6} | 0.1836 | 0.384568 | |
50 | 1.25 \times 10^{-5} | 0.0625 | 0.682311 | |
60 | 9.58 \times 10^{-6} | 0.0212 | 1.143210 | |
70 | 9.70 \times 10^{-6} | 0.0072 | 2.792846 | |
80 | 9.66 \times 10^{-6} | 0.0024 | 5.805704 | |
[25] 1.34 \times 10^{-6} |
N=60 , n=5 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.151320 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.190760 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.173974 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.275586 | |
40 | 6.35 \times 10^{-6} | 0.1836 | 0.483761 | |
50 | 1.19 \times 10^{-5} | 0.0625 | 0.732991 | |
60 | 8.99 \times 10^{-6} | 0.0212 | 1.269992 | |
70 | 9.11 \times 10^{-6} | 0.0072 | 3.328360 | |
80 | 9.07 \times 10^{-6} | 0.0024 | 5.789626 | |
[25] 4.45 \times 10^{-5} |
M=80 , n=5 \alpha=1.25 |
N | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 5.77 \times 10^{-5} | 0.0024 | 0.561563 | |
20 | 1.27 \times 10^{-5} | 0.0024 | 1.125699 | |
30 | 3.55 \times 10^{-6} | 0.0024 | 1.252799 | |
40 | 2.43 \times 10^{-6} | 0.0024 | 2.716533 | |
50 | 2.87 \times 10^{-6} | 0.0024 | 4.686349 | |
60 | 3.78 \times 10^{-6} | 0.0024 | 6.319554 | |
80 | 8.38 \times 10^{-6} | 0.0024 | 8.773851 | |
90 | 8.20 \times 10^{-7} | 0.0024 | 9.862299 | |
[25] 5.91 \times 10^{-7} |
N=50 , n=7 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 3.32 \times 10^{-4} | 4.4187 | 0.146540 | |
15 | 9.63 \times 10^{-4} | 2.6363 | 0.160951 | |
20 | 5.71 \times 10^{-4} | 1.5582 | 0.170815 | |
30 | 6.70 \times 10^{-5} | 0.5373 | 0.212776 | |
40 | 7.76 \times 10^{-6} | 0.1836 | 0.361477 | |
50 | 4.25 \times 10^{-6} | 0.0625 | 0.585600 | |
60 | 5.48 \times 10^{-6} | 0.0212 | 1.047157 | |
70 | 5.42 \times 10^{-6} | 0.0072 | 1.872323 | |
80 | 5.44 \times 10^{-6} | 0.0024 | 4.417500 | |
[25] 7.59 \times 10^{-6} |
x | \alpha=1.25 | \alpha=1.5 | \alpha=1.75 | \alpha=1.95 |
0 | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} |
0.1 | 1.353 \times 10^{-6} | 1.340 \times 10^{-6} | 1.326 \times 10^{-6} | 1.315 \times 10^{-6} |
0.2 | 1.155 \times 10^{-6} | 1.131 \times 10^{-6} | 1.104 \times 10^{-6} | 1.079 \times 10^{-6} |
0.3 | 9.710 \times 10^{-7} | 9.400 \times 10^{-7} | 9.010 \times 10^{-7} | 8.630 \times 10^{-7} |
0.4 | 8.170 \times 10^{-7} | 7.820 \times 10^{-7} | 7.360 \times 10^{-7} | 6.850 \times 10^{-7} |
0.5 | 6.760 \times 10^{-7} | 6.410 \times 10^{-7} | 5.910 \times 10^{-7} | 5.320 \times 10^{-7} |
0.6 | 5.180 \times 10^{-7} | 4.860 \times 10^{-7} | 4.370 \times 10^{-7} | 3.740 \times 10^{-7} |
0.7 | 3.510 \times 10^{-7} | 3.240 \times 10^{-7} | 2.830 \times 10^{-7} | 2.220 \times 10^{-7} |
0.8 | 1.620 \times 10^{-7} | 1.430 \times 10^{-7} | 1.130 \times 10^{-7} | 6.200 \times 10^{-8} |
0.9 | 1.300 \times 10^{-8} | 2.300 \times 10^{-8} | 3.900 \times 10^{-8} | 6.800 \times 10^{-8} |
1 | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} |
N=70 , n=10 , \alpha=0.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.37 \times 10^{0} | 4.4187 | 0.168655 | |
20 | 4.14 \times 10^{-1} | 1.5582 | 0.216721 | |
30 | 3.13 \times 10^{-1} | 0.5373 | 0.268500 | |
40 | 9.80 \times 10^{-3} | 0.1836 | 0.352215 | |
50 | 1.49 \times 10^{-2} | 0.0625 | 0.480307 | |
60 | 2.60 \times 10^{-3} | 0.0212 | 0.899249 | |
70 | 8.67 \times 10^{-4} | 0.0072 | 2.037757 | |
80 | 8.90 \times 10^{-4} | 0.0024 | 3.956089 | |
90 | 8.12 \times 10^{-4} | 8.18 \times 10^{-4} | 6.517429 |
N=40 , n=6 , \alpha=0.8 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 2.68 \times 10^{0} | 4.4187 | 0.158384 | |
15 | 4.53 \times 10^{-1} | 2.6363 | 0.162534 | |
20 | 3.36 \times 10^{-1} | 1.5582 | 0.162535 | |
30 | 1.59 \times 10^{-1} | 0.5373 | 0.189903 | |
40 | 2.0 \times 10^{-3} | 0.1836 | 0.245566 | |
50 | 8.70 \times 10^{-3} | 0.0625 | 0.344221 | |
60 | 1.10 \times 10^{-3} | 0.0212 | 0.502084 | |
70 | 6.32 \times 10^{-4} | 0.0072 | 0.923548 | |
80 | 5.70 \times 10^{-4} | 0.0024 | 2.520403 |
N=60 , n=5 \alpha=1.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.145896 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.158580 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.169243 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.218606 | |
40 | 6.57 \times 10^{-6} | 0.1836 | 0.384568 | |
50 | 1.25 \times 10^{-5} | 0.0625 | 0.682311 | |
60 | 9.58 \times 10^{-6} | 0.0212 | 1.143210 | |
70 | 9.70 \times 10^{-6} | 0.0072 | 2.792846 | |
80 | 9.66 \times 10^{-6} | 0.0024 | 5.805704 | |
[25] 1.34 \times 10^{-6} |
N=60 , n=5 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.65 \times 10^{-4} | 4.4187 | 0.151320 | |
15 | 2.30 \times 10^{-3} | 2.6363 | 0.190760 | |
20 | 1.30 \times 10^{-3} | 1.5582 | 0.173974 | |
30 | 1.38 \times 10^{-4} | 0.5373 | 0.275586 | |
40 | 6.35 \times 10^{-6} | 0.1836 | 0.483761 | |
50 | 1.19 \times 10^{-5} | 0.0625 | 0.732991 | |
60 | 8.99 \times 10^{-6} | 0.0212 | 1.269992 | |
70 | 9.11 \times 10^{-6} | 0.0072 | 3.328360 | |
80 | 9.07 \times 10^{-6} | 0.0024 | 5.789626 | |
[25] 4.45 \times 10^{-5} |
M=80 , n=5 \alpha=1.25 |
N | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 5.77 \times 10^{-5} | 0.0024 | 0.561563 | |
20 | 1.27 \times 10^{-5} | 0.0024 | 1.125699 | |
30 | 3.55 \times 10^{-6} | 0.0024 | 1.252799 | |
40 | 2.43 \times 10^{-6} | 0.0024 | 2.716533 | |
50 | 2.87 \times 10^{-6} | 0.0024 | 4.686349 | |
60 | 3.78 \times 10^{-6} | 0.0024 | 6.319554 | |
80 | 8.38 \times 10^{-6} | 0.0024 | 8.773851 | |
90 | 8.20 \times 10^{-7} | 0.0024 | 9.862299 | |
[25] 5.91 \times 10^{-7} |
N=50 , n=7 \alpha=1.75 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 3.32 \times 10^{-4} | 4.4187 | 0.146540 | |
15 | 9.63 \times 10^{-4} | 2.6363 | 0.160951 | |
20 | 5.71 \times 10^{-4} | 1.5582 | 0.170815 | |
30 | 6.70 \times 10^{-5} | 0.5373 | 0.212776 | |
40 | 7.76 \times 10^{-6} | 0.1836 | 0.361477 | |
50 | 4.25 \times 10^{-6} | 0.0625 | 0.585600 | |
60 | 5.48 \times 10^{-6} | 0.0212 | 1.047157 | |
70 | 5.42 \times 10^{-6} | 0.0072 | 1.872323 | |
80 | 5.44 \times 10^{-6} | 0.0024 | 4.417500 | |
[25] 7.59 \times 10^{-6} |
x | \alpha=1.25 | \alpha=1.5 | \alpha=1.75 | \alpha=1.95 |
0 | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} | 1.463 \times 10^{-6} |
0.1 | 1.353 \times 10^{-6} | 1.340 \times 10^{-6} | 1.326 \times 10^{-6} | 1.315 \times 10^{-6} |
0.2 | 1.155 \times 10^{-6} | 1.131 \times 10^{-6} | 1.104 \times 10^{-6} | 1.079 \times 10^{-6} |
0.3 | 9.710 \times 10^{-7} | 9.400 \times 10^{-7} | 9.010 \times 10^{-7} | 8.630 \times 10^{-7} |
0.4 | 8.170 \times 10^{-7} | 7.820 \times 10^{-7} | 7.360 \times 10^{-7} | 6.850 \times 10^{-7} |
0.5 | 6.760 \times 10^{-7} | 6.410 \times 10^{-7} | 5.910 \times 10^{-7} | 5.320 \times 10^{-7} |
0.6 | 5.180 \times 10^{-7} | 4.860 \times 10^{-7} | 4.370 \times 10^{-7} | 3.740 \times 10^{-7} |
0.7 | 3.510 \times 10^{-7} | 3.240 \times 10^{-7} | 2.830 \times 10^{-7} | 2.220 \times 10^{-7} |
0.8 | 1.620 \times 10^{-7} | 1.430 \times 10^{-7} | 1.130 \times 10^{-7} | 6.200 \times 10^{-8} |
0.9 | 1.300 \times 10^{-8} | 2.300 \times 10^{-8} | 3.900 \times 10^{-8} | 6.800 \times 10^{-8} |
1 | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} | 3.590 \times 10^{-7} |
N=70 , n=10 , \alpha=0.25 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 7.37 \times 10^{0} | 4.4187 | 0.168655 | |
20 | 4.14 \times 10^{-1} | 1.5582 | 0.216721 | |
30 | 3.13 \times 10^{-1} | 0.5373 | 0.268500 | |
40 | 9.80 \times 10^{-3} | 0.1836 | 0.352215 | |
50 | 1.49 \times 10^{-2} | 0.0625 | 0.480307 | |
60 | 2.60 \times 10^{-3} | 0.0212 | 0.899249 | |
70 | 8.67 \times 10^{-4} | 0.0072 | 2.037757 | |
80 | 8.90 \times 10^{-4} | 0.0024 | 3.956089 | |
90 | 8.12 \times 10^{-4} | 8.18 \times 10^{-4} | 6.517429 |
N=40 , n=6 , \alpha=0.8 |
M | L_{\infty} Error (\Gamma) | Error Estimate (\Gamma) | CPU time(s) |
10 | 2.68 \times 10^{0} | 4.4187 | 0.158384 | |
15 | 4.53 \times 10^{-1} | 2.6363 | 0.162534 | |
20 | 3.36 \times 10^{-1} | 1.5582 | 0.162535 | |
30 | 1.59 \times 10^{-1} | 0.5373 | 0.189903 | |
40 | 2.0 \times 10^{-3} | 0.1836 | 0.245566 | |
50 | 8.70 \times 10^{-3} | 0.0625 | 0.344221 | |
60 | 1.10 \times 10^{-3} | 0.0212 | 0.502084 | |
70 | 6.32 \times 10^{-4} | 0.0072 | 0.923548 | |
80 | 5.70 \times 10^{-4} | 0.0024 | 2.520403 |