We study a susceptible–exposed–infected–recovered (SEIR) reaction–diffusion epidemic model that includes susceptible individuals with underlying diseases, focusing on how these comorbidities, diffusion coefficients, and spatial heterogeneity affect disease's spread. The basic reproduction number $ R_{0} $ is central to understanding and controlling infectious diseases' spread. We define $ R_{0} $, analyze its behavior under low diffusion rates, and investigate the persistence of infection in relation to $ R_{0} $. Our results show that underlying health conditions increase the value of $ R_{0} $, enhancing the disease's transmission potential and persistence. In a homogeneous environment, if $ R_{0} > 1 $, the system admits a constant endemic equilibrium that is globally asymptotically stable; if $ R_{0} < 1 $, the disease-free equilibrium is globally attractive, implying eventual disease eradication. Furthermore, we analyze the asymptotic behavior of the endemic equilibrium as the diffusion rates approach zero. Our results indicate that limiting the mobility of susceptible, exposed, and infectious individuals alone is insufficient to eliminate the disease. By examining the influence of diffusion coefficients on the spatial dynamics and disease persistence, we conclude that effective control strategies must extend beyond diffusion control and incorporate interventions targeting additional transmission factors.
Citation: Chengxia Lei, Bo Li, Xinyi Li. Asymptotic profiles of a diffusive SEIR epidemic model with underlying disease and mass action infection mechanism[J]. Electronic Research Archive, 2025, 33(12): 7385-7427. doi: 10.3934/era.2025326
We study a susceptible–exposed–infected–recovered (SEIR) reaction–diffusion epidemic model that includes susceptible individuals with underlying diseases, focusing on how these comorbidities, diffusion coefficients, and spatial heterogeneity affect disease's spread. The basic reproduction number $ R_{0} $ is central to understanding and controlling infectious diseases' spread. We define $ R_{0} $, analyze its behavior under low diffusion rates, and investigate the persistence of infection in relation to $ R_{0} $. Our results show that underlying health conditions increase the value of $ R_{0} $, enhancing the disease's transmission potential and persistence. In a homogeneous environment, if $ R_{0} > 1 $, the system admits a constant endemic equilibrium that is globally asymptotically stable; if $ R_{0} < 1 $, the disease-free equilibrium is globally attractive, implying eventual disease eradication. Furthermore, we analyze the asymptotic behavior of the endemic equilibrium as the diffusion rates approach zero. Our results indicate that limiting the mobility of susceptible, exposed, and infectious individuals alone is insufficient to eliminate the disease. By examining the influence of diffusion coefficients on the spatial dynamics and disease persistence, we conclude that effective control strategies must extend beyond diffusion control and incorporate interventions targeting additional transmission factors.
| [1] |
W. Kermack, $\grave{A}$. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [2] |
W. Kermack, $\grave{A}$. G. McKendrick, Contributions to the mathematical theory of epidemics: Ⅴ. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete immunity, J. Hyg., 39 (1939), 271–288. https://doi.org/10.1017/S0022172400011918 doi: 10.1017/S0022172400011918
|
| [3] |
S. Ansumali, S. Kaushal, A. Kumar, M. Prakash, M. Vidyasagar, Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2, Annu. Rev. Control, 50 (2020), 432–447. https://doi.org/10.1016/j.arcontrol.2020.10.003 doi: 10.1016/j.arcontrol.2020.10.003
|
| [4] |
S. Han, C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114–120. https://doi.org/10.1016/j.aml.2019.05.045 doi: 10.1016/j.aml.2019.05.045
|
| [5] |
M. Y. Li, H. L. Smith, L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58–69. https://doi.org/10.1137/S0036139999359860 doi: 10.1137/S0036139999359860
|
| [6] |
I. B. Schwartz, H. L. Smith, Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18 (1983), 233–253. https://doi.org/10.1007/BF00276090 doi: 10.1007/BF00276090
|
| [7] |
P. Wintachai, K. Prathom, Stability analysis of SEIR model related to efficiency of vaccines for COVID-19 situation, Heliyon, 7 (2021), e06812. https://doi.org/10.1016/j.heliyon.2021.e06812 doi: 10.1016/j.heliyon.2021.e06812
|
| [8] |
G. Lu, Z. Lu, Geometric approach to global asymptotic stability for the SEIRS models in epidemiology, Nonlinear Anal. Real World Appl., 36 (2017), 20–43. https://doi.org/10.1016/j.nonrwa.2016.12.005 doi: 10.1016/j.nonrwa.2016.12.005
|
| [9] |
P. Song, Y. Lou, Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equations, 267 (2019), 5084–5114. https://doi.org/10.1016/j.jde.2019.05.022 doi: 10.1016/j.jde.2019.05.022
|
| [10] | F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4614-1686-9 |
| [11] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley and Sons, Chichester West Sussex, 2003. https://doi.org/10.1002/0470871296 |
| [12] |
R. Cui, K. Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343–2373. https://doi.org/10.1016/j.jde.2017.03.045 doi: 10.1016/j.jde.2017.03.045
|
| [13] |
L. Dong, S. Hou, C. Lei, Global attractivity of the equilibria of the diffusive SIR and SEIR epidemic models with multiple parallel infectious stages and nonlinear incidence mechanism, Appl. Math. Lett., 134 (2022), 108352. https://doi.org/10.1016/j.aml.2022.108352 doi: 10.1016/j.aml.2022.108352
|
| [14] |
S. Han, C. Lei, X. Zhang, Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism, Z. Angew. Math. Phys., 71 (2020). https://doi.org/10.1007/s00033-020-01418-1 doi: 10.1007/s00033-020-01418-1
|
| [15] |
C. Lei, H. Li, Y. Zhao, Dynamical behavior of a reaction-diffusion SEIR epidemic model with mass action infection mechanism in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 29 (2024), 3163–3198. https://doi.org/10.3934/dcdsb.2023216 doi: 10.3934/dcdsb.2023216
|
| [16] |
C. Lei, X. Zhou, Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 3077–3100. https://doi.org/10.3934/dcdsb.2021174 doi: 10.3934/dcdsb.2021174
|
| [17] |
X. Wang, S. Liu, Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, Math. Biosci. Eng., 9 (2012), 685–695. https://doi.org/10.3934/mbe.2012.9.685 doi: 10.3934/mbe.2012.9.685
|
| [18] |
J. Zhou, Y. Zhao, Y. Ye, Complex dynamics and control strategies of SEIR heterogeneous network model with saturated treatment, Physica A, 608 (2022), 128287. https://doi.org/10.1016/j.physa.2022.128287 doi: 10.1016/j.physa.2022.128287
|
| [19] |
R. M. Anderson, R. M. May, Population biology of infectious diseases Part Ⅰ, Nature, 280 (1979), 361–367. https://doi.org/10.1038/280361a0 doi: 10.1038/280361a0
|
| [20] |
Y. Cai, X. Lian, Z. Peng, W. Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonlinear Anal. Real World Appl., 46 (2019), 178–194. https://doi.org/10.1016/j.nonrwa.2018.09.006 doi: 10.1016/j.nonrwa.2018.09.006
|
| [21] |
R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997–3022. https://doi.org/10.3934/dcdsb.2020217 doi: 10.3934/dcdsb.2020217
|
| [22] |
R. Cui, H. Li, R. Peng, M. Zhou, Concentration behavior of endemic equilibrium for a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism, Calc. Var. Partial Differ. Equations, 60 (2021), 184. https://doi.org/10.1007/s00526-021-01992-w doi: 10.1007/s00526-021-01992-w
|
| [23] | O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases in Model Building, Analysis and Interpretation, John Wiley & Sons, 2000. |
| [24] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [25] |
Z. Lu, X. Chi, L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Modell., 36 (2002), 1039–1057. https://doi.org/10.1016/S0895-7177(02)00257-1 doi: 10.1016/S0895-7177(02)00257-1
|
| [26] |
Y. Yang, Y. R. Yang, X. J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arch., 28 (2020), 1–13. https://doi.org/10.3934/era.2020001 doi: 10.3934/era.2020001
|
| [27] |
W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359–380. https://doi.org/10.1007/BF00277162 doi: 10.1007/BF00277162
|
| [28] |
A. Korobeinikov, P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57–60. https://doi.org/10.3934/mbe.2004.1.57 doi: 10.3934/mbe.2004.1.57
|
| [29] | M. C. M. de Jong, O. Diekmann, H. Heesterbeek, How does transmission of infection depend on population size? in Epidemic Models: Their Structure and Relation to Data, Cambridge University Press, (1996), 84–94. |
| [30] |
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., Ser. A, 21 (2008), 1–20. https://doi.org/10.3934/dcds.2008.21.1 doi: 10.3934/dcds.2008.21.1
|
| [31] |
H. Li, R. Peng, T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, Eur. J. Appl. Math., 31 (2020), 26–56. https://doi.org/10.1017/s0956792518000463 doi: 10.1017/s0956792518000463
|
| [32] | H. McCallum, N. Barlow, J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295–300. |
| [33] |
C. Russell, N. Lone, J. Baillie, Comorbidities, multimorbidity and COVID-19, Nat. Med., 29 (2023), 334–343. https://doi.org/10.1038/s41591-022-02156-9 doi: 10.1038/s41591-022-02156-9
|
| [34] |
Y. Zhai, X. Lin, J. Li, W. Liang, Research on the spread of COVID-19 based on the SEIR model for susceptible populations with basic medical history, Appl. Math. Mech., 42 (2021), 413–421. https://doi.org/10.21656/1000-0887.410313 doi: 10.21656/1000-0887.410313
|
| [35] |
H. Yang, X. L. Lin, J. Wu, Qualitative analysis of a time-delay transmission model for COVID-19 based on susceptible populations with basic medical history, Qeios, 2023 (2023). https://doi.org/10.32388/8a5osc.2 doi: 10.32388/8a5osc.2
|
| [36] |
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283–1309. https://doi.org/10.1137/060672522 doi: 10.1137/060672522
|
| [37] |
D. Gao, C. Lei, R. Peng, B. Zhang, A diffusive SIS epidemic model with saturated incidence function in a heterogeneous environment, Nonlinearity, 37 (2024), 025002. https://doi.org/10.1088/1361-6544/ad1495 doi: 10.1088/1361-6544/ad1495
|
| [38] |
C. Lei, J. Xiong, X. Zhou, Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 81–98. https://doi.org/10.3934/dcdsb.2019173 doi: 10.3934/dcdsb.2019173
|
| [39] |
H. Li, R. Peng, F. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equations, 262 (2017), 885–913. https://doi.org/10.1016/j.jde.2016.09.044 doi: 10.1016/j.jde.2016.09.044
|
| [40] |
H. Nie, Y. Shi, J. Wu, The effect of diffusion on the dynamics of a predator-prey chemostat model, SIAM J. Appl. Math., 82 (2022), 821–848. https://doi.org/10.1137/21M1432090 doi: 10.1137/21M1432090
|
| [41] |
R. Peng, X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451–1471. https://doi.org/10.1088/0951-7715/25/5/1451 doi: 10.1088/0951-7715/25/5/1451
|
| [42] |
N. Sun, C. Lei, Long-time behavior of a reaction-diffusion model with strong Allee effect and free boundary: effect of protection zone, J. Dyn. Differ. Equations, 35 (2023), 737–770. https://doi.org/10.1007/s10884-021-10027-z doi: 10.1007/s10884-021-10027-z
|
| [43] |
X. Yan, H. Nie, P. Zhou, On a competition-diffusion-advection system from river ecology: mathematical analysis and numerical study, SIAM J. Appl. Dyn. Syst., 21 (2022), 438–469. https://doi.org/10.1137/20m1387924 doi: 10.1137/20m1387924
|
| [44] |
Y. X. Feng, W. T. Li, S. Ruan, F. Y. Yang, Dynamics and asymptotic profiles of a nonlocal dispersal SIS epidemic model with bilinear incidence and Neumann boundary conditions, J. Differ. Equations, 335 (2022), 294–346. https://doi.org/10.1016/j.jde.2022.07.003 doi: 10.1016/j.jde.2022.07.003
|
| [45] |
R. Li, Y. Song, H. Wang, G. P. Jiang, M. Xiao, Reactive–diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China, Physica A, 609 (2023), 128337. https://doi.org/10.1016/j.physa.2022.128337 doi: 10.1016/j.physa.2022.128337
|
| [46] | D. Henry, Geometric theory of semilinear parabolic equations, in Lecture Notes in Mathematics, Springer-Verlag, 1981. |
| [47] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. |
| [48] |
W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942
|
| [49] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
|
| [50] | M. G. Krein, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk, 3 (1948), 3–95. |
| [51] |
Z. Du, R. Peng, A priori $L^{\infty}$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429–1439. https://doi.org/10.1007/s00285-015-0914-z doi: 10.1007/s00285-015-0914-z
|
| [52] | S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623–727. |
| [53] | M. Wang, Lecture of Reaction Diffusion Equations, Shanxi University Press, 2025. |
| [54] |
P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/s0036141003439173 doi: 10.1137/s0036141003439173
|
| [55] | X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, 2003. |
| [56] |
Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
|
| [57] |
R. Peng, Qualitative analysis on a diffusive and ratio-dependent predator-prey model, IMA J. Appl. Math., 78 (2013), 566–586. https://doi.org/10.1093/imamat/hxr066 doi: 10.1093/imamat/hxr066
|
| [58] |
R. Peng, J. Shi, M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471–1488. https://doi.org/10.1088/0951-7715/21/7/006 doi: 10.1088/0951-7715/21/7/006
|
| [59] |
Y. Du, R. Peng, M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differ. Equations, 246 (2009), 3932–3956. https://doi.org/10.1016/j.jde.2008.11.007 doi: 10.1016/j.jde.2008.11.007
|