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Abstract: We study a susceptible–exposed–infected–recovered (SEIR) reaction–diffusion epidemic
model that includes susceptible individuals with underlying diseases, focusing on how these comor-
bidities, diffusion coefficients, and spatial heterogeneity affect disease’s spread. The basic reproduction
number R0 is central to understanding and controlling infectious diseases’ spread. We define R0, analyze
its behavior under low diffusion rates, and investigate the persistence of infection in relation to R0. Our
results show that underlying health conditions increase the value of R0, enhancing the disease’s transmis-
sion potential and persistence. In a homogeneous environment, if R0 > 1, the system admits a constant
endemic equilibrium that is globally asymptotically stable; if R0 < 1, the disease-free equilibrium is
globally attractive, implying eventual disease eradication. Furthermore, we analyze the asymptotic
behavior of the endemic equilibrium as the diffusion rates approach zero. Our results indicate that
limiting the mobility of susceptible, exposed, and infectious individuals alone is insufficient to eliminate
the disease. By examining the influence of diffusion coefficients on the spatial dynamics and disease
persistence, we conclude that effective control strategies must extend beyond diffusion control and
incorporate interventions targeting additional transmission factors.

Keywords: SEIR reaction–diffusion epidemic model; spatially heterogeneous environment; basic
reproduction number; asymptotic profiles

1. Introduction

Infectious diseases have posed significant challenges to human health throughout history. To im-
prove our ability to prevent and control these diseases, a scientific understanding of their mechanisms
and transmission dynamics is essential. The development of dynamic models of infectious disease
serves as a powerful tool for understanding and managing these diseases. Such epidemic models are
vital for capturing the complex interactions among pathogens, hosts, and the environment. In 1927,
Kermack and McKendrick proposed the well-known susceptible–infected–recovered (SIR) compart-
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ment model [1] to describe the spread of the plague epidemic in Bombay. Later, they developed an
susceptible–infected–susceptible (SIS) epidemic model to describe infectious diseases that do not
confer immunity after recovery [2]. If an individual experiences an exposure period before becoming
infectious (e.g., malaria, West Nile virus, etc.), the disease dynamics can be described by the suscepti-
ble–exposed–infected–recovered (SEIR) compartment model (see, for example, [3–7]. When recovered
individuals lose immunity and return to the susceptible class, the SEIR–susceptible (SEIRS) model is
applicable (see, for example, [8, 9]). Various compartmental models are employed to make dynamic
models of infectious disease more accurate and applicable to real-world scenarios [10–18] and the
references therein. Each of these models incorporates different aspects of disease transmission and
progression to more accurately reflect the complexities of specific infectious diseases. In particular, the
SEIR model is especially effective for diseases with a well-defined incubation period, such as COVID-19,
as it provides a comprehensive framework for understanding and predicting disease progression.

In [3], the authors consider the following SEIR ordinary differential equation (ODE) model:
dS
dt = Λ − βIS − dS , t > 0,
dE
dt = βIS − (σ + d)E, t > 0,
dI
dt = σE − (γ + d)I, t > 0,
dR
dt = γI − dR, t > 0.

(1.1)

Here, S = S (t), E = E(t), I = I(t), and R = R(t) represent the densities of susceptible, exposed, infectious,
and recovered individuals at time t, respectively. The parameters Λ, d, β, σ, and γ are all positive
constants, representing the recruitment rate (including births and immigration), the natural death rate, the
transmission rate due to effective contact between susceptible and infectious individuals, the rate at which
exposed individuals become infectious, and the recovery rate of infectious individuals, respectively.

The term βIS in the SEIR epidemic model (1.1) corresponds to the incidence of mass–action (also
known as the density-dependent transmission mechanism). This form of incidence arises naturally from
the assumption of homogeneous mixing and was central to the foundational work of Kermack and
McKendrick in their 1927 trilogy on the mathematical theory of epidemics [1]. Their frame work laid the
groundwork for modern compartmental modeling and continues to influence epidemiological theory and
public health practice (see, for example, [11, 12, 17, 19–26], and the references therein). A more general
nonlinear incidence rate of the form βI pS q (p, q > 0) was investigated in [27] and further analyzed
in [28], providing a flexible framework for capturing complex transmission dynamics beyond standard
mass-action assumptions. It has since been widely adopted in epidemic modeling, with particular
attention to the global stability of equilibria in systems incorporating such nonlinearities [4,13]. Another
widely used transmission mechanism is the standard incidence, given by βS I

N with N = S +E+ I+R, also
referred to as frequency-dependent transmission [29]. This form has attracted significant attention in
mathematical epidemiology (see, e.g., [12, 14, 16, 30, 31] and references therein). McCallum et al. [32]
compared models employing standard incidence and mass-action mechanisms, concluding that the
appropriateness of each depends on the specific mode of disease transmission, with both having distinct
advantages in different biological contexts.

A survey conducted in [33] indicates that a significant proportion of COVID-19 patients who died
had pre-existing chronic diseases, highlighting the critical role of underlying health conditions in
influencing disease severity. Specifically, individuals with chronic conditions are more susceptible
to COVID-19 [34]. To better understand the dynamics of the disease, it is essential to consider the
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impact of underlying health conditions on susceptibility. The corresponding transmission mechanism
and model structure are illustrated in [34]. This leads to the following extended model:

dS 1
dt = Λ − β1S 1I − θS 1 − dS 1, t > 0,

dS 2
dt = θS 1 − β2S 2I − dS 2, t > 0,

dE
dt = β1S 1I + β2S 2I − (d + σ)E, t > 0,
dI
dt = σE − (γ + d + α)I, t > 0,
dR
dt = γI − dR, t > 0,

(1.2)

where S 1 = S 1(t), and S 2 = S 2(t) denote the densities of individuals who are susceptible without
underlying conditions and those with underlying conditions, respectively, at time t. The roles of the
positive constants Λ, d, σ, and γ are the same as those in (1.1). The parameter β1 > 0 denotes the
transmission rate for susceptible individuals without underlying conditions after effective contact with
infectious individuals. The positive constant β2(> β1) represents the transmission rate after effective
contact between susceptible individuals with underlying conditions and infectious individuals. The
parameter α > 0 is the disease-induced mortality rate, and the positive constant θ denotes the rate at
which healthy individuals develop underlying conditions. Subsequently, Yang et al. [35] incorporated
time delays into the system (1.2) to account for the effects of delays and underlying health conditions
on disease transmission.

Recently, Allen et al. [36] proposed a frequency-dependent SIS epidemic patch model and investi-
gated the effects of spatial heterogeneity, habitat connectivity, and movement rates on the persistence
and extinction of infectious diseases. Later on, they studied this epidemic model in a continuous-time
and continuous-space SIS model [30]. They focus on the existence, uniqueness, and particularly the
asymptotic profile of the steady states in a spatially heterogeneous environment. Their study suggests
that controlling the mobility of susceptible individuals may be more effective in limiting disease’s
spread than restricting the mobility of infectious individuals. Spatial heterogeneity plays a crucial role
in disease transmission, making its understanding essential for the development of effective public
health strategies. To more accurately capture the spatial characteristics and enhance the realism of
mathematical models, researchers have extended traditional ODE models by incorporating the Laplace
operator to represent population movement. This approach corresponds to Brownian motion and is
commonly referred to as local diffusion. For further details and related studies, see [9,15,16,37–43] and
the references therein. In addition to classical diffusion, nonlocal diffusion models incorporating integral
operators to account for long–range spatial correlations, have been introduced to describe population
movement more realistically [44]. Alternatively, in [45], the authors model population mobility using a
graph Laplacian operator to represent discrete movement networks.

In this paper, we propose a reaction–diffusion model that incorporates spatial heterogeneity, underly-
ing health conditions, and population mobility to capture the complex dynamics of infectious disease
transmission. The model is an extension of the system (1.2), given by:

∂S 1
∂t = d1∆S 1 + Λ(x) − β1(x)S 1I − θ(x)S 1 − d(x)S 1, x ∈ Ω, t > 0,
∂S 2
∂t = d2∆S 2 − β2(x)S 2I + θ(x)S 1 − d(x)S 2, x ∈ Ω, t > 0,
∂E
∂t = dE∆E + β1(x)S 1I + β2(x)S 2I − [d(x) + σ(x)]E, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + σ(x)E − [γ(x) + d(x) + α(x)]I, x ∈ Ω, t > 0,
∂R
∂t = dR∆R + γ(x)I − d(x)R, x ∈ Ω, t > 0,
∂S 1
∂n =

∂S 2
∂n =

∂E
∂n =

∂I
∂n =

∂R
∂n = 0, x ∈ ∂Ω, t > 0.

(1.3)
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Here, the spatial domain Ω ⊂ Rn (n ≥ 1) is a bounded region with a smooth boundary ∂Ω. The positive
diffusion coefficients d1, d2, dE, and dI , represent the movement rates of susceptible individuals without
underlying conditions, susceptible individuals with underlying conditions, exposed individuals, and
infectious individuals, respectively. The positive functions Λ(x), d(x), α(x), β1(x), β2(x), σ(x), θ(x), and
γ(x) are all Hölder continuous on Ω̄ and retain the same meanings as in the system (1.2). The initial
data are assumed to be nonnegative and sufficiently smooth, satisfying{

S 1(x, 0), S 2(x, 0), E(x, 0), I(x, 0),R(x, 0) ≥ 0 for any x ∈ Ω̄,∫
Ω

I(x, 0) dx > 0 or
∫
Ω

E(x, 0) dx > 0.
(1.4)

By the standard regularity theory for parabolic equations (see [46]) and under the assumption of (1.4),
we can establish the existence and uniqueness of a classical solution

(S 1, S 2, E, I,R) ∈
[
C2,1(Ω̄ × (0,∞))

]5

to the system (1.3). Furthermore, by the strong maximum principle for parabolic equations (see [47]), it
follows that

S 1 > 0, S 2 > 0, E > 0, I > 0 and R > 0

for any x ∈ Ω, t > 0.
Since S 1, S 2, E, and I are independent of R in the system (1.3), and thus R does not appear in the

equations governing the dynamics of the other compartments, and it does not influence the evolution of
S 1, S 2, E, and I. Therefore, we simplify the model by removing the equation for R and focus solely on
the dynamics of the system

∂S 1
∂t = d1∆S 1 + Λ(x) − β1(x)S 1I − θ(x)S 1 − d(x)S 1, x ∈ Ω, t > 0,
∂S 2
∂t = d2∆S 2 − β2(x)S 2I + θ(x)S 1 − d(x)S 2, x ∈ Ω, t > 0,
∂E
∂t = dE∆E + β1(x)S 1I + β2(x)S 2I − [d(x) + σ(x)]E, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + σ(x)E − [γ(x) + d(x) + α(x)]I, x ∈ Ω, t > 0,
∂S 1
∂n =

∂S 2
∂n =

∂E
∂n =

∂I
∂n = 0, x ∈ ∂Ω, t > 0,

S 1(x, 0) = S 1,0(x), S 2(x, 0) = S 2,0(x), x ∈ Ω,
E(x, 0) = E0(x), I(x, 0) = I0(x), x ∈ Ω.

(1.5)

If susceptible individuals with underlying conditions are not considered, then the model (1.5) reduces to
∂S 1
∂t = dS 1∆S 1 + Λ(x) − β1(x)S 1I − d(x)S 1, x ∈ Ω, t > 0,
∂E
∂t = dE∆E + β1(x)S 1I − [d(x) + σ(x)]E, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + σ(x)E − [γ(x) + d(x) + α(x)]I, x ∈ Ω, t > 0,
∂S 1
∂n =

∂E
∂n =

∂I
∂n = 0, x ∈ ∂Ω, t > 0.

(1.6)

This model was previously studied by the first author and collaborators in [15], where the effects of
spatial heterogeneity and individual movements on disease transmission were investigated.

In the present work, we analyze the role of susceptible individuals with underlying health conditions
in shaping the dynamics of infectious diseases, with particular emphasis on the mechanisms of disease’s
persistence and extinction. Additionally, we investigate the asymptotic behavior of positive steady states
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in spatially heterogeneous environments. The corresponding steady-state problem associated with the
reaction–diffusion system (1.5) is given by the following elliptic system:

d1∆S̃ 1 + Λ(x) − β1(x)S̃ 1 Ĩ − θ(x)S̃ 1 − d(x)S̃ 1 = 0, x ∈ Ω,
d2∆S̃ 2 − β2(x)S̃ 2 Ĩ + θ(x)S̃ 1 − d(x)S̃ 2 = 0, x ∈ Ω,
dE∆Ẽ + β1(x)S̃ 1 Ĩ + β2(x)S̃ 2 Ĩ − [d(x) + σ(x)]Ẽ = 0, x ∈ Ω,
dI∆Ĩ + σ(x)Ẽ − [γ(x) + d(x) + α(x)]Ĩ = 0, x ∈ Ω,
∂S̃ 1
∂n =

∂S̃ 2
∂n =

∂Ẽ
∂n =

∂Ĩ
∂n = 0, x ∈ ∂Ω.

(1.7)

The steady-state solution of the system (1.5), denoted by (S̃ 1, S̃ 2, Ẽ, Ĩ), satisfies the elliptic system (1.7).
For any x ∈ Ω, if Ĩ(x) ≡ 0, then the solution reduces to the form (Ŝ 1(x), Ŝ 2(x), 0, 0), which is referred
to as the disease-free equilibrium (DFE). Here, (Ŝ 1(x), Ŝ 2(x)) is the unique positive solution to the
following system: 

−d1∆S 1 = Λ(x) − (θ(x) + d(x))S 1, x ∈ Ω,
−d2∆S 2 = θ(x)S 1 − d(x)S 2, x ∈ Ω,
∂S 1
∂n =

∂S 2
∂n = 0, x ∈ ∂Ω.

(1.8)

If Ĩ(x) > 0 for some x ∈ Ω, then the solution (S̃ 1, S̃ 2, Ẽ, Ĩ) of the system (1.7) is referred to as the
endemic equilibrium (EE). In this case, the strong maximum principle for elliptic equations implies that

S̃ 1(x) > 0, S̃ 2(x) > 0, Ẽ(x) > 0, Ĩ(x) > 0,

for any x ∈ Ω̄.
The remainder of this paper is organized as follows. In Section 2, we define the basic reproduction

number R0 for the model described by the system (1.5) and analyze the influence of the diffusion
coefficients on R0, highlighting the role of spatial movements in disease transmission. In Section 3, we
establish the uniform boundedness and uniform persistence of solutions to the system (1.5). In Section
4, we construct a Lyapunov function to prove the global attractivity of both the DFE and the EE in the
spatially homogeneous case. In Section 5, we study the asymptotic behavior of the EE as the diffusion
coefficients d1, d2, dE, and dI approach zero, revealing how reduced mobility affects disease dynamics.
Section 6 concludes with a discussion of the results and their implications.

2. The basic reproduction number

Inspired by [9] and [48], this section defines the basic reproduction number R0 for the system (1.5)
and analyzes its dependence on the diffusion coefficients.

We linearize the system (1.5) about the DFE E0(Ŝ 1, Ŝ 2, 0, 0). The resulting linearized system is
governed by 

∂S̄ 1
∂t = d1∆S̄ 1 − β1(x)Ŝ 1 Ī − θ(x)S̄ 1 − d(x)S̄ 1, x ∈ Ω, t > 0,
∂S̄ 2
∂t = d2∆S̄ 2 − β2(x)Ŝ 2 Ī + θ(x)S̄ 1 − d(x)S̄ 2, x ∈ Ω, t > 0,
∂Ē
∂t = dE∆Ē + β1(x)Ŝ 1 Ī + β2(x)Ŝ 2 Ī − [d(x) + σ(x)]Ē, x ∈ Ω, t > 0,
∂Ī
∂t = dI∆Ī + σ(x)Ē − [γ(x) + d(x) + α(x)]Ī, x ∈ Ω, t > 0,
∂S̄ 1
∂n =

∂S̄ 2
∂n =

∂Ē
∂n =

∂Ī
∂n = 0, x ∈ ∂Ω, t > 0.

(2.1)
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Here, S̄ 1(x, t) = S 1(x, t) − Ŝ 1(x), S̄ 2(x, t) = S 2(x, t) − Ŝ 2(x), Ē(x, t) = E(x, t), and Ī(x, t) = I(x, t).
Following the framework in [48], we define the operators L, and the matrices F(x), V(x) as follows:

L = diag (−dE∆,−dI∆) ,

F(x) =
(

0 β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)
0 0

)
,

V(x) =
(

d(x) + σ(x) 0
−σ(x) γ(x) + d(x) + α(x)

)
.

We apply the theoretical framework developed in [49] and [48] to define the basic reproduction number
R0 for the system (1.5). This leads to the following result.

Lemma 2.1. The eigenvalue problem
−dE∆φE + [d(x) + σ(x)]φE = ω0(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))φI , x ∈ Ω,
−dI∆φI − σ(x)φE + [γ(x) + d(x) + α(x)]φI = 0, x ∈ Ω,
∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω

(2.2)

admits a unique positive eigenvalue, denoted by ω0, with a corresponding pair of positive eigenfunctions
(φE, φI). Moreover, the basic reproduction number R0 satisfies

R0 =
1
ω0
.

The proof of Lemma 2.1 is identical to those in [9, 15] and is therefore omitted.
We now consider the eigenvalue problem

−dE∆ϕE + [d(x) + σ(x)]ϕE − (β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))ϕI = λϕE, x ∈ Ω,
−dI∆ϕI − σ(x)ϕE + [γ(x) + d(x) + α(x)]ϕI = λϕI , x ∈ Ω,
∂ϕE
∂n =

∂ϕI
∂n = 0, x ∈ ∂Ω.

(2.3)

It follows from the Krein–Rutman theorem [50] that the principal eigenvalue λ1 is real and, algebraically
simple, and possesses a strictly positive eigenfunction. Specifically, the eigenfunction ϕ = (ϕE, ϕI)T ,
can be chosen such that ϕE(x) > 0 and ϕI(x) > 0 for all x ∈ Ω̄. Similar to [9, 15], we can then derive the
relationship between the basic reproduction number and the principal eigenvalue.

Lemma 2.2. (1−R0) has the same sign as λ1, where λ1 denotes the principal eigenvalue of the eigenvalue
problem (2.3).

Moreover, it follows that 1
R0

is the principal eigenvalue of the adjoint eigenvalue problem associated
with (2.2), namely

−dE∆φ
∗
E + [d(x) + σ(x)]φ∗E = σ(x)φ∗I , x ∈ Ω,

−dI∆φ
∗
I + [γ(x) + d(x) + α(x)]φ∗I =

1
R0

(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))φ∗E, x ∈ Ω,
∂φ∗E
∂n =

∂φ∗I
∂n = 0, x ∈ ∂Ω.

(2.4)

Let φ∗ = (φ∗E, φ
∗
I )

T denote the strictly positive eigenfunction corresponding to the principal eigenvalue
1

R0
. We now analyze the asymptotic behavior of the basic reproduction number R0 as the diffusion

coefficients d1, d2, dE, and dI approach zero or infinity.
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Theorem 2.3. The following statements about R0 := R0(d1, d2, dE, dI) hold:
(i) For a fixed d2, dE, and dI > 0, we have R0 → R̃0 as d1 → 0, where R̃0 is the principal eigenvalue

of the problem 
−dE∆φE + [d(x) + σ(x)]φE =

1
R̃0

(
β1(x)Λ(x)
θ(x)+d(x) + β2(x)S̃ 2(x)

)
φI , x ∈ Ω,

−dI∆φI − σ(x)φE + [γ(x) + d(x) + α(x)]φI = 0, x ∈ Ω,
∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω.

(2.5)

Here, S̃ 2 is the unique positive solution of{
d2∆S 2 +

θ(x)Λ(x)
θ(x)+d(x) − d(x)S 2 = 0, x ∈ Ω,

∂S 2
∂n = 0, x ∈ ∂Ω.

(2.6)

(ii) For a fixed d1, dE, and dI > 0, we have R0 → R̂0 as d2 → 0, where R̂0 is the principal eigenvalue
of the problem 

−dE∆φE + [d(x) + σ(x)]φE =
1

R̂0

(
β1(x) + β2(x)θ(x)

d(x)

)
Ŝ 1φI , x ∈ Ω,

−dI∆φI − σ(x)φE + [γ(x) + d(x) + α(x)]φI = 0, x ∈ Ω,
∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω.

Here, Ŝ 1 is the unique positive solution of{
d1∆S 1 + Λ(x) − (θ(x) + d(x))S 1 = 0, x ∈ Ω,
∂S 1
∂n = 0, x ∈ ∂Ω.

(2.7)

(iii) For a fixed d1, d2, and dI > 0, we have R0 → R̄0 := 1
ω1

as dE → 0, where ω1 is the principal
eigenvalue of the problem −dI∆φ̄I + [γ(x) + d(x) + α(x)]φ̄I =

ωσ(x)(β1(x)Ŝ 1(x)+β2(x)Ŝ 2(x))
d(x)+σ(x) φ̄I , x ∈ Ω,

∂φ̄I
∂n = 0, x ∈ ∂Ω.

(2.8)

Furthermore, R̄0 is a monotone decreasing function of dI and satisfies

R̄0 → max

 σ(x)
(
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

)
(d(x) + σ(x))(γ(x) + d(x) + α(x))

∣∣∣∣∣x ∈ Ω
 as dI → 0 (2.9)

and

R̄0 →

∫
Ω

σ(x)(β1(x)Ŝ 1(x)+β2(x)Ŝ 2(x))
d(x)+σ(x) dx∫

Ω
γ(x) + d(x) + α(x)dx

as dI → ∞. (2.10)

Here, (Ŝ 1, Ŝ 2) is the solution of (1.8).
(iv) For a fixed d1, d2, and dE > 0, we have R0 → R∗0 := 1

ω2
as dI → 0, where ω2 is the principal

eigenvalue of the problem −dE∆φ̄E + [d(x) + σ(x)]φ̄E =
ωσ(x)(β1(x)Ŝ 1(x)+β2(x)Ŝ 2(x))

γ(x)+d(x)+α(x) φ̄E, x ∈ Ω,
∂φ̄E
∂n = 0, x ∈ ∂Ω.
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Furthermore, R∗0 is a monotone decreasing function of dE and satisfies

R∗0 → max

 σ(x)
(
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

)
(d(x) + σ(x))(γ(x) + d(x) + α(x))

∣∣∣∣∣x ∈ Ω
 as dE → 0

and

R∗0 →

∫
Ω

σ(x)(β1(x)Ŝ 1(x)+β2(x)Ŝ 2(x))
γ(x)+d(x)+α(x) dx∫

Ω
d(x) + σ(x)dx

as dE → ∞.

Here, (Ŝ 1, Ŝ 2) is the solution of (1.8).

Proof. Since the solution (Ŝ 1(x), Ŝ 2(x)) of (1.8) depends on d1, we denote it by (Ŝ 1,d1(x), Ŝ 2,d1(x)). Then
it follows from (1.8) and [59, Lemma 2.4] that as d1 → 0, we have

Ŝ 1,d1(x)→
Λ(x)

θ(x) + d(x)
uniformly on Ω̄.

Moreover, by applying the Lp theory and the Sobolev embedding theorem, we deduce that

Ŝ 2,d1(x)→ S̃ 2(x) uniformly on Ω̄ as d1 → 0.

For any ϵ0 > 0, a sufficiently small σ0 > 0 exists such that, for all 0 < d1 < σ0, the solution
(Ŝ 1,d1(x), Ŝ 2,d1(x)) of (1.8) satisfies

0 < (1 − ϵ0)
Λ(x)

θ(x) + d(x)
< Ŝ 1,d1(x) < (1 + ϵ0)

Λ(x)
θ(x) + d(x)

(2.11)

and

0 < (1 − ϵ0) S̃ 2(x) < Ŝ 2,d1(x) < (1 + ϵ0) S̃ 2(x) (2.12)

on Ω̄.
As in the proof of Lemma 2.1, we deduce that (2.5) admits a principal eigenvalue ω̃0 =

1
R̃0

. Let
φ̃ := (φ̃E, φ̃I)T denote the corresponding eigenfunction. Then, by (2.11) and (2.12), we obtain

−dE∆φ̃E + [d(x) + σ(x)]φ̃E ≥
ω̃0

1+ϵ0

(
β1(x)Ŝ 1,d1(x) + β2(x)Ŝ 2,d1(x)

)
φ̃I , x ∈ Ω,

−dI∆φ̃I − σ(x)φ̃E + [γ(x) + d(x) + α(x)]φ̃I = 0, x ∈ Ω,
∂φ̃E
∂n =

∂φ̃I
∂n = 0, x ∈ ∂Ω.

(2.13)

Equation (2.13) can be rewritten as

Lφ̃ + Vφ̃ ≥
ω̃0

1 + ϵ0
Fφ̃, x ∈ Ω,

∂φ̃

∂n

∣∣∣∣∣
∂Ω

= 0. (2.14)

The equation in (2.4) can be rewritten as

Lφ∗ + VTφ∗ =
1
R0

FTφ∗, x ∈ Ω,
∂φ∗

∂n

∣∣∣∣∣
∂Ω

= 0. (2.15)
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We then multiply the inequality in (2.14) by (φ∗)T and the equation in (2.15) by (φ̃)T , subtract the
resulting expressions, and integrate over Ω to obtain(

1
R0
−

ω̃0

1 + ϵ0

) ∫
Ω

(
β1(x)Ŝ 1,d1(x) + β2(x)Ŝ 2,d1(x)

)
φ̃Iφ

∗
Edx ≥ 0,

which implies that R0 ≤
1+ϵ0
ω̃0

. Similarly, by interchanging the roles of (2.14) and (2.15), we obtain the
lower bound R0 ≥

1−ϵ0
ω̃0

. Letting ϵ0 → 0, it follows that R0 →
1
ω̃0
= R̃0. This completes the proof of (i).

Next, based on [59, Lemma 2.4], we have

Ŝ 2(x)→
θ(x)
d(x)

Ŝ 1(x) uniformly on Ω̄ as d2 → 0,

where Ŝ 1 is determined by (2.7). By applying an argument similar to that used in the proof of Part (i),
we can conclude that the assertion in Part (ii) holds.

Now, we proceed to show that the assertions (iii) and (iv) hold by employing an argument analogous
to that used in the proof of [9]. Since A =

{
u ∈ C2(Ω̄) | ∂u

∂n = 0 on ∂Ω
}

is dense in C(Ω̄), for any
ε ∈ (0, 1), we can choose the functions β∗i (x), β∗∗i (x) ∈ A for i = 1, 2, such that

βi(x)
(1 + ε)(d(x) + σ(x))

< β∗∗i (x) <
βi(x)

d(x) + σ(x)

and
βi(x)

d(x) + σ(x)
< β∗i (x) <

βi(x)
(1 − ε)(d(x) + σ(x))

.

Let φ̄I denote the eigenfunction corresponding to the principal eigenvalue ω1 of (2.8). Set

(φ̂E, φ̂I) =
(
ω1(β∗∗1 (x)Ŝ 1(x) + β∗∗2 (x)Ŝ 2(x))φ̄I , φ̄I

)
,

(φ̌E, φ̌I) =
(
ω1(β∗1(x)Ŝ 1(x) + β∗2(x)Ŝ 2(x))φ̄I , φ̄I

)
.

For the given ε ∈ (0, 1), δ > 0 exists such that, for 0 < dE < δ, −dE∆φ̂E ≥ −(d(x) + σ(x))
(
1 − f1(x)

1+ε

)
φ̂E, x ∈ Ω,

∂φ̂E
∂n = 0, x ∈ ∂Ω,

(2.16)

and  −dE∆φ̌E ≤ −(d(x) + σ(x))
(
1 − f2(x)

1−ε

)
φ̌E, x ∈ Ω,

∂φ̌E
∂n = 0, x ∈ ∂Ω,

where

f1(x) :=
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

(d(x) + σ(x))(β∗∗1 (x)Ŝ 1(x) + β∗∗2 (x)Ŝ 2(x))
,

and

f2(x) :=
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

(d(x) + σ(x))(β∗1(x)Ŝ 1(x) + β∗2(x)Ŝ 2(x))
.
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By virtue of (2.16), we have

−dE∆φ̂E + [d(x) + σ(x)]φ̂E ≥
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

(1 + ε)(β∗∗1 (x)Ŝ 1(x) + β∗∗2 (x)Ŝ 2(x))
φ̂E

=
ω1

1 + ε
(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))φ̂I , x ∈ Ω.

For x ∈ Ω, using (2.8), we have

−dI∆φ̂I + [γ(x) + d(x) + α(x)]φ̂I =
ω1σ(x)

(
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

)
ω1

(
β∗∗1 (x)Ŝ 1(x) + β∗∗2 (x)Ŝ 2(x)

)
(d(x) + σ(x))

φ̂E.

Since
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

d(x) + σ(x)
> β∗∗1 (x)Ŝ 1(x) + β∗∗2 (x)Ŝ 2(x),

and noting that ω = ω1, it follows that

−dI∆φ̂I + [γ(x) + d(x) + α(x)]φ̂I − σ(x)φ̂E ≥ 0, x ∈ Ω.

Therefore, the following inequality system holds:
−dE∆φ̂E + [d(x) + σ(x)]φ̂E ≥

ω1
1+ε

(
β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x)

)
φ̂I , x ∈ Ω,

−dI∆φ̂I + [γ(x) + d(x) + α(x)]φ̂I − σ(x)φ̂E ≥ 0, x ∈ Ω,
∂φ̂E
∂n =

∂φ̂I
∂n = 0, x ∈ ∂Ω.

(2.17)

As in the proof of (i), we have
1 − ε
ω1
≤ R0 ≤

1 + ε
ω1

.

Letting ε→ 0, we have R0 → R̄0. Consequently, (2.9) and (2.10) follow from [30, Lemma 2.1].
For the proof of (iv), we can use a similar argument as in (iii), and thus we omit the details here. □

By the proof of Theorem 2.3 (i), for a fixed dE, dI > 0, the principal eigenvalue R̃0 of (2.5) approaches
R̃∗0 as d2 → 0, where R̃∗0 is the principal eigenvalue of

−dE∆φE + (d(x) + σ)φE =
1

R̃∗0

(
β1(x)Λ(x)
θ(x)+d(x) +

β2(x)θ(x)Λ(x)
d(x)(θ(x)+d(x)

)
φI , x ∈ Ω,

−dI∆φI − σφE + [γ(x) + d(x) + α(x)]φI = 0, x ∈ Ω,
∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω.

(2.18)

For the system (1.6), the basic reproduction number R0 is characterized by the following eigenvalue
problem: 

−dE∆ψE + [d(x) + σ(x)]ψE =
1
R0
β1(x)Ŝ (x)ψI , x ∈ Ω,

−dI∆ψI − σ(x)ψE + [γ(x) + d(x) + α(x)]ψI = 0, x ∈ Ω,
∂ψE
∂n =

∂ψI
∂n = 0, x ∈ ∂Ω,

where Ŝ (x) is the unique positive solution to{
−d∆S = Λ(x) − d(x)S , x ∈ Ω,
∂S
∂n = 0, x ∈ ∂Ω.
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As the diffusion rate d of the susceptible population tends to zero, it follows from [15, Theorem 2.3]
that R0 → R̃0, where R̃0 is the principal eigenvalue of the problem.

−dE∆ψE + (d(x) + σ)ψE =
1
R̃0
β1(x)Λ(x)

d(x)ψI , x ∈ Ω,
−dI∆ψI − σψE + [γ(x) + d(x) + α(x)]ψI = 0, x ∈ Ω,
∂ψE
∂n =

∂ψI
∂n = 0, x ∈ ∂Ω.

(2.19)

Lemma 2.4. If β1Λ

d and σ are positive constants, then R̃∗0 > R̃0.

Proof. Let β1(x)Λ(x)
d(x) := C > 0 be a constant. Multiplying the first equation of (2.18) by ψE and the first

equation of (2.19) by φE, subtracting the resulting equations and integrating over Ω, we obtain

C
R̃0

∫
Ω

ψI(x)φE(x)dx =
1
R̃∗0

∫
Ω

(
β1(x)Λ(x)
d(x) + θ(x)

+
β2(x)θ(x)Λ(x)

d(x)(θ(x) + d(x))

)
φI(x)ψE(x)dx. (2.20)

Next, multiplying the second equation in (2.18) by ψI and the second equation in (2.19) by φI , subtracting
the resulting equations and integrating over Ω, we obtain∫

Ω

ψI(x)φE(x)dx =
∫
Ω

φI(x)ψE(x)dx.

Noting that β2(x) > β1(x) and using (2.20), we conclude that 1
R̃0
−

1
R̃∗0

 ∫
Ω

φI(x)ψE(x)dx > 0.

Since ψI(x) and φE(x) are both positive, this implies that R̃∗0 > R̃0. Therefore, the inclusion of susceptible
individuals with underlying conditions can enlarge the basic reproduction number. □

Remark 2.5. The inequality R̃∗0 > R̃0 reflects that accounting for underlying health conditions increases
the basic reproduction number. This arises because individuals with pre-existing comorbidities are
generally more susceptible to infection and may experience prolonged or more severe infectious periods,
thereby amplifying the overall transmission potential of the disease in the population.

3. Uniform bounds and the persistence of solutions to (1.5)

In this section, we establish uniform bounds and demonstrate the uniform persistence property of the
solutions to the system (1.5). We begin by deriving the uniform bounds for these solutions as follows.

Lemma 3.1. There is a positive constant C, independent of the initial data, and a time T > 0, such that
the solution (S 1, S 2, E, I) ∈

[
C2,1(Ω̄ × (0,∞))

]4
to (1.5) satisfies

∥S 1(·, t)∥L∞(Ω) + ∥S 2(·, t)∥L∞(Ω) + ∥E(·, t)∥L∞(Ω) + ∥I(·, t)∥L∞(Ω) ≤ C for t ≥ T. (3.1)

Proof. From the first equation of the system (1.5), we have
∂S 1
∂t − d1∆S 1 ≤ max

x∈Ω̄
Λ(x) −min

x∈Ω̄
(d(x) + θ(x))S 1, x ∈ Ω, t > 0,

∂S 1
∂n = 0, x ∈ ∂Ω, t > 0,

S 1(x, 0) = S 1,0(x) ≥ 0, x ∈ Ω.
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By the parabolic comparison principle, it follows that

S 1(x, t) ≤ u(x, t) for x ∈ Ω̄, t > 0,

where u is the unique solution to
∂u
∂t − d1∆u = max

x∈Ω̄
Λ(x) − u min

x∈Ω̄
(d(x) + θ(x)), x ∈ Ω, t > 0,

∂u
∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = max

x∈Ω̄
S 1,0(x) ≥ 0, x ∈ Ω.

(3.2)

It is clear that the positive constant

C1 = max


max
x∈Ω̄
Λ(x)

min
x∈Ω̄

(d(x) + θ(x))
,max

x∈Ω̄
S 1,0(x)


serves as an upper solution of (3.2).

Next, we consider the following parabolic initial value problem:
∂v
∂t − d2∆v = C1 max

x∈Ω̄
θ(x) − v min

x∈Ω̄
d(x), x ∈ Ω, t > 0,

∂v
∂n = 0, x ∈ ∂Ω, t > 0,
v(x, 0) = max

x∈Ω̄
S 2,0(x) ≥ 0, x ∈ Ω.

(3.3)

It is evident that the constants

C2 = max


C1 max

x∈Ω̄
θ(x)

min
x∈Ω̄

d(x)
,max

x∈Ω̄
S 2,0(x)


and 0 are the upper and lower solutions of (3.3), respectively. Thus, by the theory of parabolic equations,
the system (3.3) admits a unique positive solution, denoted by v. Now, consider

∂S 2
∂t − d2∆S 2 ≤ θ(x)C1 − d(x)S 2, x ∈ Ω, t > 0,
∂S 2
∂n = 0, x ∈ ∂Ω, t > 0,

S 2(x, 0) = S 2,0(x) ≥ 0, x ∈ Ω,

and apply the parabolic comparison principle to obtain

S 2(x, t) ≤ v(x, t), x ∈ Ω̄, t > 0.

Therefore, it follows that

S 1(x, t) ≤ u(x, t) ≤ C1, S 2(x, t) ≤ v(x, t) ≤ C2, x ∈ Ω̄, t ≥ 0.

Since

U(t) =
max
x∈Ω̄
Λ(x)

min
x∈Ω̄

(d(x) + θ(x))
−

max
x∈Ω̄
Λ(x) −max

x∈Ω̄
S 1,0(x) min

x∈Ω̄
(d(x) + θ(x))

min
x∈Ω̄

(d(x) + θ(x))
e
−t min

x∈Ω̄
(d(x)+θ(x))
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is an upper solution of (3.2), we have

lim
t→∞

u(x, t) ≤
max
x∈Ω̄
Λ(x)

min
x∈Ω̄

(d(x) + θ(x))

uniformly on Ω̄. Therefore, we obtain the following uniform bounds:

lim sup
t→∞

S 1(x, t) ≤
max
x∈Ω̄
Λ(x)

min
x∈Ω̄

(d(x) + θ(x))
uniformly on Ω̄. (3.4)

Similarly, we deduce

lim sup
t→∞

S 2(x, t) ≤
C1 max

x∈Ω̄
θ(x)

min
x∈Ω̄

d(x)
uniformly on Ω̄. (3.5)

We apply a similar approach as in the proof of [15] to find that

∥S 1(·, t)∥L1(Ω), ∥S 2(·, t)∥L1(Ω), ∥E(·, t)∥L1(Ω), ∥I(·, t)∥L1(Ω)

are uniformly bounded for t > T . According to [51, Lemma 2.1], by choosing p0 = 1 and combining
this with the bounds established in (3.4) and (3.5), we conclude that the uniform bound (3.1) holds. This
completes the proof. □

We now recall the Agmon–Douglas–Nirenberg theorem from [52] to present the Schauder theory for
second-order elliptic boundary value problems of the form{

Lu = f (x) x ∈ Ω ⊂ R,
a(x)∂u

∂n + b(x)u = φ(x), x ∈ ∂Ω.
(3.6)

where the operator L is given by

Lu = −
n∑
i, j

ai, j(x)Di, ju +
n∑
i

bi(x)Diu + c(x)u.

We propose the following hypothesis:
(H): L is elliptic in Ω with the coefficients ai, j, bi, c ∈ Cα(Ω̄) for some α ∈ (0, 1). Moreover, the

constants Λ ≥ λ > 0 and Λα > 0 exist such that

λ|ξ|2 ≤ ai, j(x)ξiξ j ≤ Λ|ξ|
2, for all x ∈ Ω̄, ξ ∈ Rn

and
1
λ

(
|ai, j|α + |bi|α + |c|α

)
≤ Λα.

Theorem 3.2. (Agmon–Douglas–Nirenberg [52] or [53, Theorem A.5] )Assume that Condition (H)
holds, ∂Ω ∈ C2+α, b ∈ C1+α(∂Ω), and c ≥ 0, with at least one of c or b being not identical to zero.
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Furthermore, suppose that φ ∈ C2+α(∂Ω) when a = 0, and φ ∈ C1+α(∂Ω) when a = 1. Then the boundary
value problem (3.6) admits a unique classical solution u ∈ C2+α(Ω̄), satisfying the the estimates

|u|2+α,Ω̄ ≤ C
(
1
λ
| f |α,Ω̄ + |φ|2+α,∂Ω

)
when a = 0,

|u|2+α,Ω̄ ≤ C∗
(
1
λ
| f |α,Ω̄ + |φ|1+α,∂Ω

)
when a = 1,

where the positive constants C and C∗ depend on Ω, α, λ, and Λα; moreover, C∗ also depends on
|b|1+α,∂Ω.

We now utilize the uniform bounds established in Lemma 3.1 and the Agmon–Douglas–Nirenberg
theorem to prove the uniform persistence of solutions to the system (1.5).

Theorem 3.3. The following two statements hold:
(i) If R0 < 1, then the DFE (Ŝ 1, Ŝ 2, 0, 0) is linearly stable.
(ii) If R0 > 1, then the system (1.5) is uniformly persistent: There is a constant ε0 > 0, independent of
the initial data (S 1,0, S 2,0, E0, I0), such that

lim inf
t→∞

∥∥∥∥(S 1(·, t), S 2(·, t), E(·, t), I(·, t)) −
(
Ŝ 1, Ŝ 2, 0, 0

)∥∥∥∥
L∞(Ω)

> ε0. (3.7)

Furthermore, system (1.5) admits at least one EE. Here, (Ŝ 1, Ŝ 2) is given by (1.8).

Proof. (i) By substituting (S̄ 1, S̄ 2, Ē, Ī) = (e−λtφS 1(x), e−λtφS 2(x), e−λtφE(x), e−λtφI(x)) into the linearized
system (2.1) and dividing through by e−λt, we obtain the following eigenvalue problem:

d1∆φS 1 − (θ + d)φS 1 − β1Ŝ 1φI + λφS 1 = 0, x ∈ Ω,
d2∆φS 2 + θφS 1 − dφS 2 − β2Ŝ 2φI + λφS 2 = 0, x ∈ Ω,
dE∆φE + β1Ŝ 1φI + β2Ŝ 2φI − (d + σ)φE + λφE = 0, x ∈ Ω,
dI∆φI + σφE − (γ + d + α)φI + λφI = 0, x ∈ Ω,
∂φS 1
∂n =

∂φS 2
∂n =

∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω.

(3.8)

Assume that R0 < 1. We will show that the DFE is linearly stable. That is, for any solution

(λ, φS 1 , φS 2 , φE, φI)

of the eigenvalue problem (3.8), if at least one of the components φS 1 , φS 2 , φE, φI is not identically
zero, then the real part of the eigenvalue must satisfy Re(λ) > 0. Suppose, for contradiction, that
(λ, φS 1 , φS 2 , φE, φI) is a solution of (3.8), with at least one of φS 1 , φS 2 , φE, φI being non-zero, and assume
that Re(λ) ≤ 0.

We first show that φI . 0 in Ω. Otherwise, φI ≡ 0 in Ω. Then, by the fourth equation of (3.8), we
immediately have φE ≡ 0 in Ω. It follows from the first two equations of (3.8) that φS 2 is not identical
to zero. Therefore, we consider two possible cases: (a) φS 2 . 0, φS 1 ≡ 0; (b) φS 1 . 0, φS 2 . 0.

In Case (a), the eigenvalue problem (3.8) reduces to{
d2∆φS 2 − dφS 2 + λφS 2 = 0, x ∈ Ω,
∂φS 2
∂n = 0, x ∈ ∂Ω.

(3.9)
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Let λ∗2 denote the principal eigenvalue of the problem (3.9). By the eigenvalue comparison principle
and the fact that d(x) > 0 on Ω̄, we have λ∗2 ≥ min

Ω

d(x) > 0. Moreover, since the operator d2∆ − d

is self-adjoint under Neumann boundary conditions, all eigenvalues are real. From the assumption
Re(λ) ≤ 0, we have λ∗2 ≤ λ ≤ 0. This contradiction implies that Case (a) cannot occur.

For Case (b), we consider the equation for φS 1 , which reduces to the following eigenvalue problem:{
d1∆φS 1 − (θ + d)φS 1 + λφS 1 = 0, x ∈ Ω,
∂φS 1
∂n = 0, x ∈ ∂Ω.

(3.10)

An argument analogous to that in the proof of Case (a) shows that this case cannot occur.
The contradictions derived above imply that φI . 0. Therefore, (λ, φI , φE) corresponds to a nontrivial

solution of the system (2.3). Since φI(x) > 0 and φE(x) > 0 in Ω by the maximum principle, λ = λ1

is the principal eigenvalue, and (φI , φE) is the corresponding positive eigenfunction of (2.3). Next, we
consider the following two elliptic boundary value problems:{

d1∆φS 1 − (θ + d)φS 1 + λ1φS 1 = β1Ŝ 1φI , x ∈ Ω,
∂φS 1
∂n = 0, x ∈ ∂Ω

(3.11)

and {
d2∆φS 2 − dφS 2 + λ1φS 2 = β2Ŝ 2φI − θφS 1 , x ∈ Ω,
∂φS 2
∂n = 0, x ∈ ∂Ω.

(3.12)

Since β1Ŝ 1φI ∈ Cα, the Agmon–Douglas–Nirenberg theorem (Theorem 3.2) guarantees the existence
and uniqueness of a classical solution φS 1 to (3.11). Similarly, the right-hand side of (3.12) also belongs
to Cα, so there is a unique solution φS 2 to (3.12). Therefore, we conclude that (λ1, φS 1 , φS 2 , φE, φI) solves
the full eigenvalue problem (3.8). Since λ1 is the principal eigenvalue of (2.3), it is real and satisfies
λ1 ≤ λ ≤ 0. However, by Lemma 2.2, we know that R0 ≥ 1 if and only if λ1 ≤ 0. This contradicts the
assumption R0 < 1. Thus, the DFE is linearly stable.

(ii) We now establish the uniform persistence of the system (1.5) by applying the theory of abstract
dynamic systems developed in [54, 55]. Let X = C(Ω̄,R4

+). Define

W0 :=
{(

S 1,0, S 2,0, E0, I0
)
| E0 . 0 , I0 . 0}

and
∂W0 := X \W0 =

{(
S 1,0, S 2,0, E0, I0

)
| E0 = 0 or I0 = 0} .

It is easy to verify that W0 and ∂W0 are relatively open and closed subsets of X, respectively,
and that W0 is convex. By the regularity theory for parabolic equations, for each initial condition
(S 1,0, S 2,0, E0, I0) ∈ X, the system (1.5) generates a semiflow Φt : X 7−→ X:

Φt
(
S 1,0, S 2,0, E0, I0

)
= (S 1(·, t), S 2(·, t), E(·, t), I(·, t)),

where (S 1(·, t), S 2(·, t), E(·, t), I(·, t)) ∈ X is the unique classical solution of the system (1.5) correspond-
ing to the given initial data. Furthermore, the standard Lp theory for parabolic equations, together with
Sobolev embedding theorems, ensures that for each fixed t > 0, the map Φt is compact. In addition, by
Lemma 3.1, the semiflow Φt is point-dissipative.
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As in the proof of [15, Theorem 3.2], we deduce that Φt(W0) ⊂ W0 for all t > 0, and that the maximal
positively invariant set of Φt in ∂W0, i.e.,

A∂ : =
{(

S 1,0, S 2,0, E0, I0
)
∈ ∂W0 | Φt

(
S 1,0, S 2,0, E0, I0

)
∈ ∂W0, t ≥ 0

}
=

{(
S 1,0, S 2,0, E0, I0

)
∈ X | E0 = 0, I0 = 0

}
.

Furthermore, we conclude that the DFE (Ŝ 1, Ŝ 2, 0, 0) is a compact and isolated invariant set for the
semiflow Φt restricted to A∂.

Denote the stable set of (Ŝ 1, Ŝ 2, 0, 0) by W s((Ŝ 1, Ŝ 2, 0, 0)). According to [54], it remains to verify
that W s((Ŝ 1, Ŝ 2, 0, 0)) does not intersect W0, i.e., W s((Ŝ 1, Ŝ 2, 0, 0)) ∩W0 = ∅. Suppose, for the sake of
contradiction, that there is a point (S 1,0, S 2,0, E0, I0) ∈ W0 lying in the stable set of (Ŝ 1, Ŝ 2, 0, 0). Then
the unique solution (S 1, S 2, E, I) satisfies

lim
t→∞

S 1(x, t) = Ŝ 1(x), lim
t→∞

S 2(x, t) = Ŝ 2(x) uniformly on Ω̄.

For any small 0 < ε < 1, a time T1 > 0, exists such that

0 < Ŝ 1(x) − ε < S 1(t, x) and 0 < Ŝ 2(x) − ε < S 2(t, x) for (x, t) ∈ Ω × [T1,∞).

Since R0 > 1, Lemma 2.2 implies that λ1 < 0, where λ1 is the principal eigenvalue of (2.3). Therefore,
a sufficiently small ε exists such that the principal eigenvalue

−dE∆φE + [d(x) + σ(x)]φE − [β1(x)(Ŝ 1(x) − ε) + β2(x)(Ŝ 2(x) − ε)]φI = λ1(ε)φE, x ∈ Ω,
−dI∆φI − σ(x)φE + [γ(x) + d(x) + α(x)]φI = λ1(ε)φI , x ∈ Ω,
∂φE
∂n =

∂φI
∂n = 0, x ∈ ∂Ω

remains negative. Let (φεE, φ
ε
I ) be the corresponding positive eigenfunction associated with λ1(ε).

Next, we enlarge T1 if necessary and consider the parabolic system

∂ω(x,t)
∂t − dE∆ω(x, t) = [β1(x)(Ŝ 1(x) − ε) + β2(x)(Ŝ 2(x) − ε)]ν(x, t)

− [d(x) + σ(x)]ω(x, t), x ∈ Ω, t > T1,
∂ν(x,t)
∂t − dI∆ν(x, t) = σ(x)ω(x, t) − [γ(x) + d(x) + α(x)]ν(x, t), x ∈ Ω, t > T1,

∂ω(x,t)
∂n =

∂ν(x,t)
∂n = 0, x ∈ ∂Ω, t > T1,

ω(x,T1) = E(x,T1) > 0, ν(x,T1) = I(x,T1) > 0, x ∈ Ω.

(3.13)

We now choose a sufficiently small constant ϱ > 0 such that

E(x,T1) ≥ ϱe−λ(ε)T1φεE(x), I(x,T1) ≥ ϱe−λ(ε)T1φεI (x) on Ω̄.

By the comparison principle, the pair (ϱe−λ(ε)tφεE(x), ϱe−λ(ε)tφεI (x)) is a subsolution of the system (3.13)
for t ≥ T1. It is clear that (E(x, t), I(x, t)) is a supersolution of (3.13). Hence, we obtain

E(x, t) ≥ ϱe−λ(ε)tφεE(x) and I(x, t) ≥ ϱe−λ(ε)tφεI (x),

for all x ∈ Ω̄, t ≥ T1. Since λ1(ε) < 0, we deduce that

ϱe−λ(ε)tφεE(x)→ ∞ and ϱe−λ(ε)tφεI (x)→ ∞,
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uniformly on Ω̄, as t → ∞. Therefore,

E(x, t), I(x, t)→ ∞ uniformly on Ω̄ as t → ∞,

which contradicts the uniform boundedness of the solutions established in Lemma 3.1. This contradiction
implies that E0 is isolated in X, and that W s(E0) ∩W0 = ∅.

In summary, it follows from [54, Theorem 4.5] or [55, Theorem 1.3.1] that (3.7) holds. Furthermore,
by [54, Theorem 4.7] or [55, Theorem 1.3.7], uniform persistence implies the existence of an EE. This
completes the proof. □

4. Global stability of the DFE and EE

In this section, we assume that the parameters Λ, β1, β2, γ, d, α, σ, and θ are all positive constants.
Under this assumption, the basic reproduction number R0 can be expressed as

R0 =
σΛ(β1d + β2θ)

d(d + σ)(d + θ)(γ + d + α)

=
σΛβ1

(d + σ)(d + θ)(γ + d + α)
+

σΛθβ2

d(d + σ)(d + θ)(γ + d + α)
.

(4.1)

If R0 ≤ 1, there is a unique constant DFE

E0 = (
Λ

θ + d
,

θΛ

d(θ + d)
, 0, 0).

If R0 > 1, the unique constant EE Ẽ(S ∗1, S
∗
2, E

∗, I∗) satisfies the following system of equations:
Λ − β1S 1I − θS 1 − dS 1 = 0,
θS 1 − β2S 2I − dS 2 = 0,
β1S 1I + β2S 2I − (d + σ)E = 0,
σE − (γ + d + α)I = 0.

(4.2)

By direct calculation from (4.2), the unique positive solution is given by

I∗ =
b +

√
b2 + 4(d + σ)(γ + d + α)β1β2[d(d + θ)(d + σ)(γ + d + α)(R0 − 1)]

2(d + σ)(γ + d + α)β1β2
,

where b = σΛβ1β2 − (d + σ)(γ + d + α)(β1d + β2θ + β2d). It is straightforward to verify that

S ∗1 =
Λ

β1I∗ + θ + d
, S ∗2 =

θΛ

(β1I∗ + θ + d)(β2I∗ + d)
, E∗ =

γ + d + α
σ

I∗.

To investigate the global stability of the DFE and the EE, we construct an appropriate Lyapunov
function.

Theorem 4.1. Assume that R0 < 1. Then the DFE (Ŝ 1, Ŝ 2, 0, 0) is the global attractor of the system
(1.5).

Electronic Research Archive Volume 33, Issue 12, 7385–7427.



7402

Proof. Define the Lyapunov functional

W(t) =
∫
Ω

[L(S 1(x, t), S 2(x, t), E(x, t), I(x, t))] dx for t > 0,

where

L(S 1, S 2, E, I) =
1
2

(
S 1 − Ŝ 1

)2
+

1
2

a
(
S 2 − Ŝ 2

)2
+ bE + cI,

and a, b, c are positive constants to be determined.
For simplicity, we define the following functions:

f1(S 1, S 2, E, I) = Λ − β1S 1I − θS 1 − dS 1,

f2(S 1, S 2, E, I) = −β2S 2I + θS 1 − dS 2,

f3(S 1, S 2, E, I) = β1S 1I + β2S 2I − (d + σ)E,

f4(S 1, S 2, E, I) = σE − (γ + d + α)I.

By direct computation, we obtain

dW
dt
=

∫
Ω

[
LS 1

∂S 1

∂t
+ LS 2

∂S 2

∂t
+ LE

∂E
∂t
+ LI

∂I
∂t

]
dx

=

∫
Ω

(
d1LS 1∆S 1 + d2LS 2∆S 2 + dELE∆E + dILI∆I

)
dx

+

∫
Ω

(
LS 1 f1 + LS 2 f2 + LE f3 + LI f4

)
dx

=H1 + H2,

where

H1 =

∫
Ω

(
d1LS 1∆S 1 + d2LS 2∆S 2 + dELE∆E + dILI∆I

)
dx

=d1

∫
Ω

(
S 1 − Ŝ 1

)
∆S 1dx + ad2

∫
Ω

(
S 2 − Ŝ 2

)
∆S 2dx

+ bdE

∫
Ω

∆Edx + cdI

∫
Ω

∆Idx

= − d1

∫
Ω

|∇S 1|
2dx − d2a

∫
Ω

|∇S 2|
2dx

≤0

and

H2 =

∫
Ω

(
LS 1 f1 + LS 2 f2 + LE f3 + LI f4

)
dx

= −

∫
Ω

(θ + d + β1I)
(
S 1 − Ŝ 1

)2
dx −

∫
Ω

a(d + β2I)
(
S 2 − Ŝ 2

)2
dx

+

∫
Ω

aθ
(
S 1 − Ŝ 1

) (
S 2 − Ŝ 2

)
dx +

∫
Ω

β1

(
b − Ŝ 1

) (
S 1 − Ŝ 1

)
Idx
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+

∫
Ω

β2

(
b − aŜ 2

) (
S 2 − Ŝ 2

)
Idx +

∫
Ω

b
(
β1Ŝ 1 + β2Ŝ 2

)
Idx

−

∫
Ω

c(d + γ + α)Idx +
∫
Ω

[σc − (d + σ)b]Edx

≤ −

∫
Ω

(θ + d)
(
S 1 − Ŝ 1

)2
dx −

∫
Ω

ad
(
S 2 − Ŝ 2

)2
dx +

∫
Ω

aθ
(
S 1 − Ŝ 1

) (
S 2 − Ŝ 2

)
dx

+

∫
Ω

β1

(
b − Ŝ 1

) (
S 1 − Ŝ 1

)
Idx +

∫
Ω

β2

(
b − aŜ 2

) (
S 2 − Ŝ 2

)
Idx

+

∫
Ω

[
b
(
β1Ŝ 1 + β2Ŝ 2

)
− c(d + γ + α)

]
Idx +

∫
Ω

[σc − (d + σ)b]Edx.

Set

a =
Ŝ 1

Ŝ 2
=

d
θ
, b = Ŝ 1.

Therefore

H2 ≤ −

∫
Ω

(θ + d)
(
S 1 − Ŝ 1

)2
dx −

∫
Ω

d2

θ

(
S 2 − Ŝ 2

)2
dx +

∫
Ω

d
(
S 1 − Ŝ 1

) (
S 2 − Ŝ 2

)
dx

+

∫
Ω

[
b
(
β1Ŝ 1 + β2Ŝ 2

)
− c(d + γ + α)

]
Idx +

∫
Ω

[σc − (d + σ)b]Edx.

Let

F(S 1, S 2, E, I) ≜ −(θ + d)
(
S 1 − Ŝ 1

)2
−

d2

θ

(
S 2 − Ŝ 2

)2
+ d

(
S 1 − Ŝ 1

) (
S 2 − Ŝ 2

)
+

[
b
(
β1Ŝ 1 + β2Ŝ 2

)
− c(d + γ + α)

]
I + [cσ − b(d + σ)]E.

Consider the quadratic form in the variables S 1 − Ŝ 1 and S 2 − Ŝ 2 given by

−(θ + d)
(
S 1 − Ŝ 1

)2
−

d2

θ

(
S 2 − Ŝ 2

)2
+ d

(
S 1 − Ŝ 1

) (
S 2 − Ŝ 2

)
. (4.3)

The discriminant of this quadratic form is ∆ = −3θd2−4d3

θ
< 0. Therefore, the quadratic form (4.3) is

negative definite. Recall that R0 < 1 (i.e., R0 =
σ(β1Ŝ 1+β2Ŝ 2)
(d+σ)(d+γ+α) < 1), it then follows that β1Ŝ 1+β2Ŝ 2

d+γ+α < d+σ
σ

. If
c satisfies

Ŝ 1(β1Ŝ 1 + β2Ŝ 2)
d + γ + α

< c <
Ŝ 1(d + σ)

σ
,

then we can see that H2 ≤ 0. Therefore, dW
dt ≤ 0. It is evident that dW

dt = 0 if and only if (S 1, S 2, E, I) =
(Ŝ 1, Ŝ 2, 0, 0). Thus, W is a Lyapunov functional of the system (1.5). Furthermore,

(S 1(x, t), S 2(x, t), E(x, t), I(x, t))→ (Ŝ 1, Ŝ 2, 0, 0),

uniformly in [L∞(Ω)]4 as t → ∞. This implies that (Ŝ 1, Ŝ 2, 0, 0) is the global attractor of (1.5). □

Theorem 4.2. If R0 > 1, then the endemic equilibrium Ẽ(S ∗1, S
∗
2, E

∗, I∗) is the global attractor of (1.5).
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Proof. We define

W(t) =
∫
Ω

[L(S 1(x, t), S 2(x, t), E(x, t), I(x, t))] dx, ∀t > 0,

where

L(S 1, S 2, E, I) =
(
S 1 − S ∗1 − S ∗1 ln

S 1

S ∗1

)
+

(
S 2 − S ∗2 − S ∗2 ln

S 2

S ∗2

)
+

(
E − E∗ − E∗ ln

E
E∗

)
+

d + σ
σ

(
I − I∗ − I∗ ln

I
I∗

)
.

By some calculations, we have

dW(t)
dt
=

∫
Ω

[
LS 1

∂S 1

∂t
+ LS 2

∂S 2

∂t
+ LE

∂E
∂t
+ LI

∂I
∂t

]
dx

=

∫
Ω

(
d1LS 1∆S 1 + d2LS 2∆S 2 + dELE∆E + dILI∆I

)
dx

+

∫
Ω

(
LS 1 f1 + LS 2 f2 + LE f3 + LI f4

)
dx

=V1 + V2,

where
f1(S 1, S 2, E, I), f2(S 1, S 2, E, I), f3(S 1, S 2, E, I) and f4(S 1, S 2, E, I)

is given by Theorem 4.1. By direct calculation, we obtain

V1 =

∫
Ω

(
d1LS 1∆S 1 + d2LS 2∆S 2 + dELE∆E + dILI∆I

)
dx

=d1

∫
Ω

(
1 −

S ∗1
S 1

)
∆S 1dx + d2

∫
Ω

(
1 −

S ∗2
S 2

)
∆S 2dx

+ dE

∫
Ω

(
1 −

E∗

E

)
∆Edx + dI

d + σ
σ

∫
Ω

(
1 −

I∗

I

)
∆Idx

= − d1S ∗1

∫
Ω

(
|∇S 1|

2

S 2
1

)
dx − d2S ∗2

∫
Ω

(
|∇S 2|

2

S 2
2

)
dx

− dEE∗
∫
Ω

(
|∇E|2

E2

)
dx − dI I∗

d + σ
σ

∫
Ω

(
|∇I|2

I2

)
dx

≤0,

and

V2 =

∫
Ω

(
LS 1 f1 + LS 2 f2 + LE f3 + LI f4

)
dx

=

∫
Ω

(
S 1 − S ∗1

) ( Λ
S 1
− β1I − θ − d

)
dx +

d + σ
σ

∫
Ω

(I − I∗)
[
σE

I
− (γ + d + α)

]
dx

+

∫
Ω

(
S 2 − S ∗2

) (θS 1

S 2
− β2I − d

)
dx +

∫
Ω

(E − E∗)
[
β1S 1I + β2S 2I

E
− (d + σ)

]
dx.
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Given that (S ∗1, S
∗
2, E

∗, I∗) is a solution to (4.2), we obtain

V2 =

∫
Ω

(
S 1 − S ∗1

) [
Λ

(
1

S 1
−

1
S ∗1

)
− β1 (I − I∗)

]
dx +

∫
Ω

(
S 2 − S ∗2

) [
θ

(
S 1

S 2
−

S ∗1
S ∗2

)
− β2 (I − I∗)

]
dx

+

∫
Ω

(E − E∗)
[
β1

(
S 1I
E
−

S ∗1I∗

E∗

)
+ β2

(
S 2I
E
−

S ∗2I∗

E∗

)]
dx + (d + σ)

∫
Ω

(I − I∗)
[
E
I
−

E∗

I∗

]
dx

=

∫
Ω

β1S ∗1I∗
(
3 −

S ∗1
S 1
−

S 1E∗I
S ∗1EI∗

−
EI∗

E∗I

)
dx +

∫
Ω

dS ∗2

(
3 −

S ∗1
S 1
−

S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

)
dx

+

∫
Ω

dS ∗1

(
2 −

S ∗1
S 1
−

S 1

S ∗1

)
dx +

∫
Ω

β2S ∗2I∗
(
4 −

S ∗1
S 1
−

S 1S ∗2
S ∗1S 2

−
S 2E∗I
S ∗2EI∗

−
EI∗

E∗I

)
dx.

For any S 1, S 2, E, and I > 0, by the inequality between the geometric mean and the arithmetic mean,
we have

2 −
S ∗1
S 1
−

S 1

S ∗1
≤ 0, 3 −

S ∗1
S 1
−

S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

≤ 0,

3 −
S ∗1
S 1
−

S 1E∗I
S ∗1EI∗

−
EI∗

E∗I
≤ 0, 4 −

S ∗1
S 1
−

S 1S ∗2
S ∗1S 2

−
S 2E∗I
S ∗2EI∗

−
EI∗

E∗I
≤ 0.

Therefore, V2 ≤ 0. It follows that dW
dt ≤ 0, and equality holds if and only if

(S 1, S 2, E, I) = (S ∗1, S
∗
2, E

∗, I∗).

Hence, W is a Lyapunov functional for the system (1.5). Furthermore

(S 1(x, t), S 2(x, t), E(x, t), I(x, t))→ (S ∗1, S
∗
2, E

∗, I∗)

uniformly in [L∞(Ω)]4 as t → ∞, which implies that (S ∗1, S
∗
2, E

∗, I∗) is the global attractor of (1.5).
□

5. Asymptotic profiles of the EE

To simplify the notation, we write

f ∗ = max
x∈Ω̄

f (x) and f∗ = min
x∈Ω̄

f (x),

where f = Λ, β1, β2, σ, d, θ, α, γ. We now present a useful lemma that will be employed in this section.

Lemma 5.1. ( [56] or [57, Lemma 3.1]) Assume that ω ∈ C2(Ω) and satisfies ∂ω
∂n = 0, x ∈ ∂Ω. Then the

following properties hold:

(i) If w has a local maximum at x0 ∈ Ω̄, then ∇ω(x0) = 0 and ∆ω(x0) ≤ 0.

(ii) If w has a local minimum at y0 ∈ Ω̄, then ∇ω(y0) = 0 and ∆ω(y0) ≥ 0.

Recall that the system defined by (1.5) admits at least one positive equilibrium when R0 > 1, as
established in Theorem 3.3(ii). We now investigate the behavior of the EE in the limit as the diffusion
parameters tend to zero. The results presented in this section may offer some insight into how spatial
heterogeneity influences the disease’s dynamics and could inform the development of control strategies
under certain conditions.
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5.1. The case of d1 → 0

We first examine the asymptotic behavior of the EE to in the system (1.5) as d1 → 0, while d2 > 0,
dE > 0, and dI > 0 are fixed. By Theorem 2.3(i) and Theorem 3.3(ii), if R̃0 > 1, then the system (1.5)
admits at least one EE. The main result in this case is stated below.

Theorem 5.2. Assume that R̃0 > 1. For fixed d2 > 0, dE > 0, and dI > 0, and let d1 → 0. Then every
positive solution (S 1, S 2, E, I) of (1.7) (up to a subsequence as d1 → 0) satisfies

(S 1, S 2, E, I)→ (S̃ 1, S̃ 2, Ẽ, Ĩ) uniformly on Ω̄

where
S̃ 1(x) =

Λ(x)
θ(x) + d(x) + β1(x)Ĩ(x)

,

and (S̃ 2, Ẽ, Ĩ) is a positive solution of the following problem:
−d2∆S̃ 2 = θ(x)S̃ 1 − β2(x)S̃ 2 Ĩ − d(x)S̃ 2, x ∈ Ω,
−dE∆Ẽ = β1(x)S̃ 1 Ĩ + β2(x)S̃ 2 Ĩ − [d(x) + σ(x)]Ẽ, x ∈ Ω,
−dI∆Ĩ = σ(x)Ẽ − [γ(x) + d(x) + α(x)]Ĩ, x ∈ Ω,
∂S̃ 2
∂n =

∂Ẽ
∂n =

∂Ĩ
∂n = 0, x ∈ ∂Ω.

(5.1)

Proof. Step 1. Estimates of the upper and lower bounds.
Assume that S 1(x0) = max

x∈Ω̄
S 1(x), x0 ∈ Ω̄. Applying Lemma 5.1 to the first equation of (1.7), we

obtain
Λ (x0) ≥ [θ(x0) + d(x0)]S 1(x0) + β1(x0)S 1(x0)I(x0) ≥ [θ(x0) + d(x0)]S 1(x0),

which implies that

S 1(x) ≤ S 1 (x0) ≤
Λ∗

θ∗ + d∗
for all x ∈ Ω̄.

Let S 2(x1) = max
x∈Ω̄

S 2(x) for some x1 ∈ Ω̄. It follows from the second equation of (1.7) and Lemma

5.1 that
θ(x1)S 1(x1) ≥ β2(x1)S 2(x1)I(x1) + d(x1)S 2(x1) ≥ d(x1)S 2(x1).

Combining this with (5.1), we obtain

S 2(x) ≤ S 2(x1) ≤
θ∗

d∗
S 1(x1) ≤

θ∗Λ∗

d∗(θ∗ + d∗)
for all x ∈ Ω̄.

We now set V(x) = d1S 1 + d2S 2 + dEE + dI I. Adding the equations in (1.7) yields

− ∆ (d1S 1 + d2S 2 + dEE + dI I)

=Λ(x) − d(x)S 1 − d(x)S 2 − d(x)E − (γ(x) + d(x) + α(x))I.

Assume that V (x2) = max
x∈Ω̄

V(x), x2 ∈ Ω̄. By Lemma 5.1, we have

Λ(x2) ≥ d(x2)S 1(x2) + d(x2)S 2(x2) + d(x2)E(x2) + (γ(x2) + d(x2) + α(x2))I(x2).
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This implies that

S 1(x2) + S 2(x2) + E(x2) + I(x2) ≤
Λ(x2)
d(x2)

≤
Λ∗

d∗
.

Without loss of generality, assume that 0 < d1 < 1. In this case,

max
x∈Ω

(d1S 1(x) + d2S 2(x) + dEE(x) + dI I(x)) ≤ max
x∈Ω

V(x) = V(x2) ≤ M
Λ∗

d∗
,

where M = max{1, d2, dE, dI}. Therefore, for all x ∈ Ω̄, we obtain

E(x) ≤
1
dE

max
x∈Ω̄

V(x) ≤
M
dE

Λ∗

d∗
,

and
I(x) ≤

1
dI

max
x∈Ω̄

V(x) ≤
M
dI

Λ∗

d∗
.

Then there is a positive constant C, independent of d1, such that

E(x), I(x) ≤ C for all x ∈ Ω̄.

Assume that S 1 (x3) = min
x∈Ω̄

S 1(x), x3 ∈ Ω̄. Applying Lemma 5.1 to the first equation of (1.7), we

obtain
S 1(x) ≥ S 1(x3) ≥

Λ∗

β∗1C + θ
∗ + d∗

for all x ∈ Ω̄.

We can then find a positive constant C, independent of d1, such that

S 1(x) ≥ min
x∈Ω̄

S 1(x) = S 1 (x3) ≥ C > 0 for all x ∈ Ω̄.

Next, we estimate the lower bound of S 2. Let S 2(x4) = min
x∈Ω̄

S 2(x) for some x4 ∈ Ω̄. We apply Lemma

5.1 to the second equation of (1.7) to conclude that

S 2(x) ≥ S 2(x4) ≥
θ(x4)S 1(x4)

β2(x4)I(x4) + d(x4)
.

Since S 1(x) has a positive lower bound and I(x) has a positive upper bound, it follows that θ(x4)S 1(x4)
β2(x4)I(x4)+d(x4)

is also bounded below by a positive constant. Therefore, there is a constant C > 0, independent of d1,
such that

S 2(x) ≥ min
x∈Ω̄

S 2(x) = S 2(x4) ≥ C > 0 for all x ∈ Ω̄.

From the analysis above, a constant C > 0 independent of d1 exists such that

1
C
≤ S 1(x), S 2(x) ≤ C and I(x), E(x) ≤ C for all x ∈ Ω̄. (5.2)

Next, we claim that E also has a positive lower bound. We argue by contradiction. Suppose, to the
contrary, that no such lower bound exists. Then there is a sequence dn := d1,n → 0 as n → ∞, and a
corresponding positive solution(

S 1,n, S 2,n, En, In
)
=

(
S 1,dn , S 2,dn , Edn , Idn

)
,
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of system (1.7), such that min
x∈Ω̄

En → 0 as n→ ∞. From the third equation of (1.7), we observe that

−dE∆En + [d(x) + σ(x)]En ≥ 0, x ∈ Ω;
∂En

∂n
= 0, x ∈ ∂Ω.

Therefore, by applying [58, Lemma 2.1] with p = 1, we obtain

∥En∥L1(Ω) ≤ C inf
Ω

En.

This implies
∥En∥L1(Ω) → 0 as n→ ∞.

We now integrate the third equation of (1.7) over Ω, using (5.2) to obtain

β1,∗ + β2,∗

C

∫
Ω

Indx ≤
∫
Ω

(β1(x)S 1,n + β2(x)S 2,n)Indx =
∫
Ω

[d(x) + σ(x)]Endx.

It follows that ∥In∥L1(Ω) → 0 as n→ ∞.
We examine the following equation satisfied by In:{

−dI∆In + [γ(x) + d(x) + α(x)]In = σ(x)En, x ∈ Ω,
∂In
∂n = 0, x ∈ ∂Ω.

(5.3)

From (5.2), we know that
∥σ(x)En∥Lp(Ω) ≤ C for p ≥ 1.

By standard elliptic Lp theory and the Sobolev embedding theorem, we deduce that

∥In∥C1+α(Ω̄) ≤ C ∥In∥W2,p(Ω) ≤ C ∥σ(x)En∥Lp(Ω) ≤ C

for some α ∈ (0, 1), where C is independent of n. Therefore, the sequence {In}0<d1,n≤1 is precompact in
C1(Ω̄). Thus, there is a subsequence of d1,n → 0, still denoted by dn, and a corresponding sequence of
positive solutions

(
S 1,n, S 2,n, En, In

)
to (1.7), such that

In → Ī in C1(Ω̄) as n→ ∞.

Consequently, Ī ≡ 0. Indeed, if Ī . 0, then
∫
Ω

Indx →
∫
Ω

Īdx > 0, which contradicts the fact that
∥In∥L1(Ω) → 0 as n→ ∞. Therefore, we conclude that

In → 0 in C1(Ω̄), as n→ ∞. (5.4)

In the following, we focus on the first equation of the system (1.7) as follows:

−dn∆S 1,n = Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n, x ∈ Ω;
∂S 1,n

∂n
= 0, x ∈ ∂Ω.

In view of (5.4), for any ε > 0, a positive integer N, exists such that, for all n > N,

0 < In < ε, x ∈ Ω̄. (5.5)
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Consequently, for all n ≥ N, it follows that

Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n ≤ Λ(x) − θ(x)S 1,n − d(x)S 1,n,

and
Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n ≥ Λ(x) − θ(x)S 1,n − d(x)S 1,n − εβ1(x)S 1,n.

By the comparison principle, we know that S 1,n is an upper solution of the problem

−dn∆Z = Λ(x) − (εβ1(x) + θ(x) + d(x))Z, x ∈ Ω;
∂Z
∂n
= 0, x ∈ ∂Ω. (5.6)

Here, Zn denotes the unique positive solution of (5.6). Using an argument analogous to the proof
of [59, Lemma 2.4], we deduce that

Zn →
Λ(x)

εβ1(x) + θ(x) + d(x)
uniformly on Ω̄ as n→ ∞.

Therefore, S 1,n satisfies

lim inf
n→∞

S 1,n ≥ lim
n→∞

Zn =
Λ(x)

εβ1(x) + θ(x) + d(x)
on Ω̄. (5.7)

Similarly, we consider the problem

−dn∆Z = Λ(x) − (θ(x) + d(x))Z, x ∈ Ω;
∂Z
∂n
= 0, x ∈ ∂Ω,

which admits a unique positive solution, denoted by Zn. In fact, by the comparison principle, S 1,n serves
as a lower solution to this elliptic problem. Furthermore, we use [59, Lemma 2.4] to conclude that

lim sup
n→∞

S 1,n ≤ lim
n→∞

Zn =
Λ(x)

θ(x) + d(x)
. (5.8)

By the arbitrariness of ε, together with (5.7) and (5.8), we obtain

S 1,n(x)→ Ŝ 1(x) :=
Λ(x)

θ(x) + d(x)
uniformly on Ω̄ as n→ ∞. (5.9)

Next, we focus on the following equation satisfied by S 2,n:

−d2∆S 2,n = θ(x)S 1,n − β2(x)S 2,nIn − d(x)S 2,n, x ∈ Ω;
∂S 2,n

∂n
= 0, x ∈ ∂Ω.

Thanks to (5.4) and (5.9), the method of upper and lower solutions can be applied to show that

S 2,n → S̃ 2 uniformly on Ω̄, as n→ ∞,

where S̃ 2 is determined by (2.6).
Define

∥En∥L∞ + ∥In∥L∞ = N, Ên =
En

N
, În =

In

N
. (5.10)
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It then follows that
∥Ên∥L∞ + ∥În∥L∞ = 1, Ên, În > 0 (5.11)

and (Ên, În) satisfies the system
−dE∆Ên = β1(x)S 1,n În + β2(x)S 2,n În − [σ(x) + d(x)]Ên, x ∈ Ω,
−dI∆În = σ(x)Ên − [γ(x) + d(x) + α(x)]În, x ∈ Ω,
∂Ên
∂n =

∂În
∂n = 0, x ∈ ∂Ω.

(5.12)

By a standard compactness argument for elliptic equations, and after passing to a subsequence if
necessary, we obtain

Ên → Ê and În → Î as dn → 0 in C1(Ω̄),

where (Ê, Î) satisfies
−dE∆Ê = β1(x)Ŝ 1 Î + β2(x)S̃ 2 Î − [θ(x) + d(x)]Ê, x ∈ Ω,
−dI∆Î = σ(x)Ê − [γ(x) + d(x) + α(x)]Î, x ∈ Ω,
∂Ê
∂n =

∂Î
∂n = 0, x ∈ ∂Ω.

Applying the strong maximum principle, we conclude that either

Ê(x) > 0, Î(x) > 0 or Ê(x) ≡ 0, Î(x) ≡ 0 on Ω.

However, it follows from (5.11) that Ê(x), Î(x) > 0 for all x ∈ Ω, which implies that R̃0 = 1, contradicting
our assumption. Hence, there is a positive constant C, independent of dn, such that

E(x) ≥ C for all x ∈ Ω. (5.13)

Let I (x1) = min
x∈Ω̄

I(x), x1 ∈ Ω̄. From the third equation in (1.7) and by applying [57, Lemma 3.1], we

obtain
[γ(x1) + d(x1) + α(x1)]I(x1) ≥ σ(x1)E(x1).

In view of (5.13), it follows that

I(x) ≥ I (x1) ≥
Cσ∗

γ∗ + d∗ + α∗
for all x ∈ Ω̄. (5.14)

Hence, by (5.2), (5.13), and (5.14), one can conclude that there is a positive constant C, independent of
0 < d1 < 1, such that

1
C
< S 1(x), S 2(x), E(x), I(x) < C for all x ∈ Ω̄. (5.15)

Step 2. Convergence of S 2, E, and I.
We now consider the following problem:{

−dE∆En + [d(x) + σ(x)]En = β1(x)S 1,nIn + β2(x)S 2,nIn, x ∈ Ω,
∂En
∂n = 0, x ∈ ∂Ω.

(5.16)
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By virtue of (5.15), we can get

∥(β1(x)S 1,n + β2(x)S 2,n)In∥Lp(Ω) ≤ C for all p ≥ 1.

Applying standard elliptic Lp theory and the Sobolev embedding theorem, we obtain

∥En∥C1+α(Ω̄) ≤ C ∥En∥W2,p(Ω) ≤ C, 0 < α < 1.

Therefore, the sequence {En}0<d1≤1 is precompact in C1(Ω̄). Consequently, there is a subsequence
of dn, still denoted by dn := d1,n with dn → 0 as n → ∞, and a corresponding positive solution(
S 1,n, S 2,n, En, In

)
of (1.7), such that

En → Ẽ in C1(Ω̄) as n→ ∞.

Since (5.13) holds, we deduce that Ẽ > 0.
Next, recalling that I satisfies (5.3), and S 2,n{

−d2∆S 2,n + β2(x)S 2,nIn + d(x)S 2,n = θ(x)S 1,n, x ∈ Ω,
∂S 2,n

∂n = 0, x ∈ ∂Ω.
(5.17)

By (5.15), we have
∥σ(x)En∥Lp(Ω) ≤ C, ∥θ(x)S 1,n∥Lp(Ω) ≤ C for all p ≥ 1.

We then apply a similar argument as above to conclude that

∥In∥C1+α(Ω̄) ≤ C,
∥∥∥S 2,n

∥∥∥
C1+α(Ω̄)

≤ C for some 0 < α < 1.

Thus, the sequences
{
S 2,n

}
0<d1,n≤1 {In}0<d1,n≤1 are precompact in C1(Ω̄). Hence, possibly after passing to a

further subsequence (still denoted by dn := d1,n), a corresponding positive solution
(
S 1,n, S 2,n, En, In

)
of

(1.7) exists such that
S 2,n → S̃ 2, In → Ĩ > 0 in C1(Ω̄) as n→ ∞, (5.18)

thanks to the lower bound provided in (5.15).
Step 3. The convergence of S 1.
For each n ≥ 1, S 1,n satisfies the following problem:{

−dn∆S 1,n = Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n, x ∈ Ω,
∂S 1,n

∂n = 0, x ∈ ∂Ω.
(5.19)

In view of (5.18), for any 0 < ε < min
Ω̄

Ĩ, a constant N, exists such that, for all n > N, we have

0 < Ĩ − ε ≤ In(x) ≤ Ĩ + ε for all x ∈ Ω̄.

Thus, for a sufficiently large n, it follows that

Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n ≥ Λ(x) − θ(x)S 1,n − d(x)S 1,n − β1(x)S 1,n(Ĩ + ε)
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and

Λ(x) − β1(x)S 1,nIn − θ(x)S 1,n − d(x)S 1,n ≤ Λ(x) − θ(x)S 1,n − d(x)S 1,n − β1(x)S 1,n(Ĩ − ε).

Now, consider the following auxiliary problem for a fixed large n:{
−dn∆W = Λ(x) − (β1(x)(Ĩ + ε) + θ(x) + d(x))W, x ∈ Ω,
∂W
∂n = 0, x ∈ ∂Ω,

(5.20)

which admits a unique positive solution, denoted by Wn. Furthermore, by [59, Lemma 2.4], one can
show that

Wn →
Λ(x)

β1(x)(Ĩ + ε) + θ(x) + d(x)
uniformly on Ω̄ as n→ ∞.

One can easily verify that S 1,n satisfies the conditions of an upper solution for (5.20) in the sense of the
maximum principle. Therefore

lim inf
n→∞

S 1,n ≥ lim
n→∞

Wn =
Λ(x)

β1(x)(Ĩ + ε) + θ(x) + d(x)
on Ω̄. (5.21)

Let Wn be the unique positive solution to the following problem: −dn∆W = Λ(x) − (β1(x)(Ĩ − ε) + θ(x) + d(x))W, x ∈ Ω,
∂W
∂n = 0, x ∈ ∂Ω,

which is an upper solution to (5.19) by the maximum principle. Applying [59, Lemma 2.4] again yields

lim sup
n→∞

S 1,n(x) ≤ lim
n→∞

Wn =
Λ(x)

β1(x)(Ĩ − ε) + θ(x) + d(x)
on Ω̄. (5.22)

By the arbitrariness of ε > 0 and combining (5.21) and (5.22), we conclude that

S 1,n(x)→ S̃ 1(x) :=
Λ(x)

β1(x)Ĩ + θ(x) + d(x)
uniformly on Ω̄ as n→ ∞. (5.23)

It is evident that (S̃ 2, Ẽ, Ĩ) satisfies (5.1). This completes the proof. □

5.2. The case of d2 → 0

In this subsection, we investigate the asymptotic behavior of the EE as d2 → 0, while keeping
d1 > 0, dE > 0, and dI > 0 fixed. By Theorem 2.3(ii) and Theorem 3.3(ii), if R̂0 > 1, then the system
(1.7) admits at least one EE. The corresponding result in this limiting regime is stated below.

Theorem 5.3. Suppose that R̂0 > 1 and fix d1 > 0, dE > 0, and dI > 0. Then, for any positive solution
(S 1, S 2, E, I) of (1.7), a subsequence (still denoted by (S 1, S 2, E, I) for simplicity) exists such that, as
d2 → 0, we have

(S 1, S 2, E, I)→ (S̃ 1, S̃ 2, Ẽ, Ĩ) uniformly on Ω̄,

where

S̃ 2(x) =
θ(x)S̃ 1(x)

d(x) + β2(x)Ĩ(x)
,

Electronic Research Archive Volume 33, Issue 12, 7385–7427.



7413

and (S̃ 1, Ẽ, Ĩ) is a positive solution of the following problem:
−d1∆S̃ 1 = Λ(x) − β1(x)S̃ 1 Ĩ − θ(x)S̃ 1 − d(x)S̃ 1, x ∈ Ω,
−dE∆Ẽ = β1(x)S̃ 1 Ĩ + β2(x)S̃ 2 Ĩ − [d(x) + σ(x)]Ẽ, x ∈ Ω,
−dI∆Ĩ = σ(x)Ẽ − [γ(x) + d(x) + α(x)]Ĩ, x ∈ Ω,
∂S̃ 1
∂n =

∂Ẽ
∂n =

∂Ĩ
∂n = 0, x ∈ ∂Ω.

(5.24)

Proof. Step 1. Estimates of the upper and lower bounds.
The upper and lower bound estimates for S 1, and S 2, and the upper bounds for E and I established

in Theorem 5.2 still hold. Therefore, there is a positive constant C, independent of d2, such that

E(x), I(x) ≤ C and
1
C
≤ S 1(x), S 2(x) ≤ C for x ∈ Ω.

Next, we estimate the lower bound of E. Arguing by contradiction, suppose that E does not admit a
positive lower bound. Then a sequence dn := d2,n → 0 as n→ ∞, exists along which a corresponding
positive solution

(
S 1,n, S 2,n, En, In

)
=

(
S 1,d2,n , S 2,d2,n , Ed2,n , Id2,n

)
of the system (1.7) satisfies min

x∈Ω̄
En → 0.

Using similar arguments as in the first step of the proof of Theorem 5.2, we conclude that (5.4) holds.
We now consider the elliptic equation{

−d1∆S 1,n + (β1(x)In + θ + d)S 1,n = Λ(x), x ∈ Ω,
∂S 1,n

∂n = 0, x ∈ ∂Ω,
(5.25)

It follows from the method of the upper and lower solutions to deduce that

S 1,n → Ŝ 1 uniformly on Ω̄ as d2 → 0. (5.26)

Here, Ŝ 1 is determined by (2.7).
Given any ε > 0, it follows from (5.4) and (5.26) that N > 0 exists such that for all n ≥ N,

0 < Ŝ 1(x) − ε ≤ S 1,n(x) ≤ Ŝ 1(x) + ε, 0 ≤ In(x) ≤ ε in Ω.

For all n ≥ N, it then follows that

θ(x)S 1,n − β2(x)S 2,nIn − d(x)S 2,n ≥ θ(x)(Ŝ 1(x) − ε) − [εβ2(x) + d(x)]S 2,n

and
θ(x)S 1,n − β2(x)S 2,nIn − d(x)S 2,n ≤ θ(x)(Ŝ 1(x) + ε) − d(x)S 2,n.

For fixed a sufficiently large n, S 2,n serves as an upper solution to{
−dn∆U = θ(x)(Ŝ 1(x) − ε) − [εβ2(x) + d(x)]U, x ∈ Ω,
∂U
∂n = 0, x ∈ ∂Ω,

(5.27)

and a lower solution to  −dn∆U = θ(x)(Ŝ 1(x) + ε) − d(x)U, x ∈ Ω,
∂U
∂n = 0, x ∈ ∂Ω,

(5.28)
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respectively. It is known that both (5.27) and (5.28) admit unique positive solutions, denoted Un and
Un, respectively. Moreover, by a similar argument as in [59, Lemma 2.4], we have

Un(x)→
θ(x)(Ŝ 1(x) − ε)
εβ2(x) + d(x)

uniformly on Ω̄ as n→ ∞,

and

Un →
θ(x)(Ŝ 1(x) + ε)

d(x)
uniformly on Ω̄ as n→ ∞.

Therefore, we conclude that

θ(x)(Ŝ 1(x) − ε)
εβ2(x) + d(x)

≤ lim inf
n→∞

S 2,n(x) ≤ lim sup
n→∞

S 2,n(x) ≤
θ(x)(Ŝ 1(x) + ε)

d(x)
. (5.29)

Since ε > 0 is arbitrary, it follows from (5.29) that

S 2,n(x)→ Ŝ 2(x) :=
θ(x)Ŝ 1(x)

d(x)
uniformly on Ω̄ as n→ ∞.

By the definition of (5.10), we know that (Ên, În) satisfies (5.12). By a standard compactness
argument for elliptic equations, after passing to a subsequence if necessary, we obtain

Ên → Ê and În → Î in C1(Ω) as dn → 0,

where (Ê, Î) satisfies the following elliptic system:
−dE∆Ê = β1(x)Ŝ 1 Î + β2(x)Ŝ 2 Î − [θ(x) + d(x)]Ê, x ∈ Ω,
−dI∆Î = σ(x)Ê − [γ(x) + d(x) + α(x)]Î, x ∈ Ω,
∂Ê
∂n =

∂Î
∂n = 0, x ∈ ∂Ω.

Applying the strong maximum principle, we conclude that either

Ê(x) > 0, Î(x) > 0 or Ê(x) ≡ 0, Î(x) ≡ 0 in Ω.

It follows from (5.11) that Ê(x), Î(x) > 0, which implies R̂0 = 1, leading to a contradiction. Hence, a
positive constant C independent of d2 exists such that

E(x) ≥ C for all x ∈ Ω. (5.30)

Let I (x2) = min
x∈Ω̄

I(x) for some x2 ∈ Ω̄. By the fourth equation of (1.7), we obtain

[γ(x2) + d(x2) + α(x2)]I(x2) ≥ σ(x2)E(x2).

In view of (5.30), this yields

I(x) ≥ I (x2) ≥
Cσ∗

γ∗ + d∗ + α∗
for all x ∈ Ω̄.
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Therefore, we can find a positive constant C, independent of 0 < d2 < 1, such that

1
C
< S 1(x), S 2(x), E(x), I(x) < C for all x ∈ Ω̄. (5.31)

Step 2. Convergence of S 1, S 2, E, and I.
Since ∥Λ(x)∥Lp(Ω) ≤ C for any p ≥ 1, we apply the Lp theory and the Sobolev embedding theorem to

(5.25) to deduce that ∥S 1,n∥C1+α(Ω̄) ≤ C, for some 0 < α < 1. Hence, S 1,n is precompact in C1(Ω̄), so a
subsequence dn := d2,n → 0 as n→ ∞ exists, and a corresponding positive solution

(
S 1,n, S 2,n, En, In

)
of

(1.7), such that
S 1,n → S̃ 1 in C1(Ω̄) as n→ ∞. (5.32)

By virtue of (5.31), we find that S̃ 1 > 0 in C1(Ω̄).
In light of (5.31), we apply a standard compactness argument to the elliptic equations (5.3) and

(5.16); after passing to a subsequence if necessary, it follows that

∥En∥C1+α(Ω̄) ≤ C, ∥In∥C1+α(Ω̄) ≤ C, 0 < α < 1.

Thus, {En}0<dn≤1 and {In}0<d2,n≤1 are precompact in C1(Ω̄). Therefore, passing to a subsequence if
necessary (still denoted by dn := d2,n → 0 as n→ ∞), a corresponding sequence of positive solutions(
S 1,n, S 2,n, En, In

)
to (1.7) exists, such that

En → Ẽ > 0, In → Ĩ > 0 in C1(Ω̄), as n→ ∞, (5.33)

and by (5.31).
For any ε > 0, by (5.32) and (5.33), N > 0 exists such that for all n ≥ N,

0 < S̃ 1 − ε ≤ S 1,n ≤ S̃ 1 + ε and 0 < Ĩ − ε ≤ In ≤ Ĩ + ε.

For all n ≥ N, it then follows that

θ(x)S 1,n − β2(x)S 2,nIn − d(x)S 2,n ≥ θ(x)(S̃ 1 − ε) − [β2(x)(Ĩ + ε) + d(x)]S 2,n,

and
θ(x)S 1,n − β2(x)S 2,nIn − d(x)S 2,n ≤ θ(x)(S̃ 1 + ε) − [β2(x)(Ĩ − ε) + d(x)]S 2,n.

Let Q
n

and Qn be the unique positive solutions of −dn∆Q = θ(x)(S̃ 1 − ε) − [β2(x)(Ĩ + ε) + d(x)]Q, x ∈ Ω,
∂Q
∂n = 0, x ∈ ∂Ω,

(5.34)

and  −dn∆Q = θ(x)(S̃ 1 + ε) − [β2(x)(Ĩ − ε) + d(x)]Q, x ∈ Ω,
∂Q
∂n = 0, x ∈ ∂Ω,

(5.35)

respectively. For a sufficiently large n, it follows from the comparison principle that

Q
n
(x) ≤ S 2,n(x) ≤ Qn(x) for all x ∈ Ω.
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Moreover, by [59, Lemma 2.4], we obtain

Q
n
(x)→

θ(x)(S̃ 1(x) − ε)
β2(x)(Ĩ(x) + ε) + d(x)

uniformly on Ω̄ as n→ ∞

and

Qn(x)→
θ(x)(S̃ 1(x) + ε)

β2(x)(Ĩ(x) − ε) + d(x)
uniformly on Ω̄ as n→ ∞.

Hence

θ(x)(S̃ 1(x) − ε)
β2(x)(Ĩ(x) + ε) + d(x)

≤ lim inf
n→∞

S 2,n(x) ≤ lim sup
n→∞

S 2,n(x) ≤
θ(x)(S̃ 1(x) + ε)

β2(x)(Ĩ(x) − ε) + d(x)
.

By the arbitrariness of ε > 0, we conclude that

S 2,n(x)→ S̃ 2(x) :=
θ(x)S̃ 1(x)

β2(x)Ĩ(x) + d(x)
uniformly on Ω̄ as n→ ∞.

It is now clear that (S̃ 1, Ẽ, Ĩ) satisfies (5.24). The proof is complete. □

5.3. The case of dE → 0

Assume that ∫
Ω

σ(x)(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))
d(x) + σ(x)

dx >
∫
Ω

(γ(x) + d(x) + α(x))dx, (5.36)

where, (Ŝ 1, Ŝ 2) is uniquely determined by (1.8). By Theorem 2.3(iii), we then have R̄0 > 1 for any fixed
d1, d2, and dI > 0 as dE → 0. Consequently, Theorem 3.3 guarantees the existence of an EE for the
system (1.7).

In this subsection, we investigate the asymptotic behavior of this EE as the diffusion rate dE tends to
zero. Our main result is stated below.

Theorem 5.4. Suppose that (5.36) holds and fix d1 > 0, d2 > 0, and dI > 0. Then for any positive
solution (S 1, S 2, E, I) of (1.7), there is a subsequence (still denoted by (S 1, S 2, E, I) for simplicity ) such
that, as dE → 0, we have

(S 1, S 2, E, I)→ (S̃ 1, S̃ 2, Ẽ, Ĩ) uniformly on Ω̄,

where

Ẽ(x) =
β1(x)S̃ 1(x)Ĩ(x) + β2(x)S̃ 2(x)Ĩ(x)

d(x) + σ(x)
,

and (S̃ 1, S̃ 2, Ĩ) is a positive solution of the following problem:
−d1∆S̃ 1 = Λ(x) − β1(x)S̃ 1 Ĩ − θ(x)S̃ 1 − d(x)S̃ 1, x ∈ Ω,
−d2∆S̃ 2 = θ(x)S̃ 1 − β2(x)S̃ 2 Ĩ − d(x)S̃ 2, x ∈ Ω,
−dI∆Ĩ = σ(x)Ẽ − [γ(x) + d(x) + α(x)]Ĩ, x ∈ Ω,
∂S̃ 1
∂n =

∂S̃ 2
∂n =

∂Ĩ
∂n = 0, x ∈ ∂Ω.

(5.37)
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Proof. In the following, C is a positive constant independent of dE > 0.
Step 1. Estimates of the upper and lower bounds.
Recalling the estimates of S 1, S 2, and I in Theorem 5.2, we can find a constant C > 0, independent

of dE, such that

I(x) ≤ C,
1
C
≤ S 1(x), S 2(x) ≤ C for all x ∈ Ω̄. (5.38)

Let E (x1) = max
Ω̄

E(x) for some x1 ∈ Ω̄. Applying Lemma 5.1 to the third equation in the system

(1.7), we obtain

(d(x1) + σ(x1))E(x1) ≤ [β1(x1)S 1(x1) + β2(x1)S 2(x1)]I(x1) ≤ C.

Thus, we derive the upper bound

E(x) ≤ E (x1) ≤
C

d∗ + σ∗
for all x ∈ Ω̄. (5.39)

We now proceed to prove the lower bound of I. Assume, for the sake of contradiction, that I does not
admit a positive lower bound. Then there is a sequence dn := dE,n → 0 as n→ ∞, and a corresponding
sequence of positive solutions (

S 1,n, S 2,n, En, In
)
=

(
S 1,dn , S 2,dn , Edn , Idn

)
to the system (1.7), such that min

x∈Ω̄
In → 0. From the fourth equation in (1.7), we have

−dI∆In + [γ(x) + d(x) + α(x)]In ≥ 0, x ∈ Ω;
∂In

∂n
= 0, x ∈ ∂Ω.

By [58, Lemma 2.1] with p = 1, it follows that

∥In∥L1(Ω) ≤ C inf
Ω

In.

Consequently, ∥In∥L1(Ω) → 0 as n→ ∞. Applying standard elliptic regularity theory to (5.3), we deduce
that (5.4) holds, following arguments analogous to those in the proof of Theorem 5.2. Recalling that S 1,n

satisfies (5.25), and S 2,n satisfies (5.17), we apply the method of upper and lower solutions to conclude
that

S 1,n → Ŝ 1 and S 2,n → Ŝ 2 uniformly on Ω̄ (5.40)

as dn → 0. Here, (Ŝ 1, Ŝ 2) is the unique solution determined by (1.8).
In view of the definition in (5.10) and the uniqueness of the non-negative solution În to (5.3) with En

replaced by Ên, standard compactness arguments for elliptic equations show, after passing to a further
subsequence if necessary, that

În → Î in C1(Ω), as dE → 0, (5.41)

where Î satisfies {
−dI∆Î + (γ(x) + d(x) + α(x))Î ≥ 0, x ∈ Ω,
∂Î
∂n = 0, x ∈ ∂Ω.
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By the strong maximum principle, we conclude that either Î ≡ 0 or Î > 0 in Ω̄. In view of (5.11), we
obtain Î > 0.

We now consider the following equation satisfied by Ên:{
−dn∆Ên = (β1(x)S 1,n + β2(x)S 2,n)În − [d(x) + σ(x)]Ên, x ∈ Ω,
∂Ên
∂n = 0, x ∈ ∂Ω.

In view of (5.40) and (5.41), we apply the method from [59, Lemma 2.4] to deduce that

Ên →
(β1Ŝ 1 + β2Ŝ 2)Î

d(x) + σ(x)
:= Ê uniformly on Ω̄ as n→ ∞.

Consequently, Î satisfies

−dI∆Î + [γ(x) + d(x) + α(x)]Î = σ(x)
(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))Î

d(x) + σ(x)
, x ∈ Ω;

∂Î
∂n
= 0, x ∈ ∂Ω.

This implies that the principal eigenvalueω1 = 1 of (2.8) satisfies ω1 = 1, with Î being the corresponding
positive eigenfunction.

However, by Theorem 2.3(iii), we have Rn
0 → R̄0 = 1 as dn → 0, where Rn

0 is the basic repro-
duction number associated with (2.2) when the diffusion coefficient is dn. On the other hand, the
assumption (5.36), together with Theorem 2.3(iii), implies that R̄0 > 1. This contradicts the previous
conclusion that R̄0 = 1. Hence, our initial assumption must be false. Consequently, a positive constant
C, independent of dE > 0 exists, such that

I(x) ≥ C for all x ∈ Ω. (5.42)

Let E (x2) = min
x∈Ω̄

E(x) with x2 ∈ Ω̄. From the third equation of (1.7) and Lemma 5.1, it follows that

E(x2) ≥
β1(x2)S 1(x2) + β2(x2)S 2(x2)

d(x2) + σ(x2)
I(x2).

Therefore, using (5.38), and (5.42), we deduce

E(x) ≥ E (x2) ≥
C(β1,∗ + β2,∗)

d∗ + σ∗
for all x ∈ Ω. (5.43)

Step 2. Convergence of S 1, S 2, and I.
First, observe that

∥β1(x)In + θ(x) − d(x)∥L∞(Ω), ∥Λ(x)∥Lp(Ω) ≤ C, for all p ≥ 1.

Applying the Lp theory for elliptic equations together with the Sobolev embedding theorem to (5.25)
yields ∥∥∥S 1,n

∥∥∥
C1+α(Ω̄)

≤ C, 0 < α < 1.

Hence, S 1,n is precompact in C1(Ω̄). Consequently, a subsequence dn := dE,n → 0 as n→ ∞ exists, and
a corresponding positive solution

(
S 1,n, S 2,n, En, In

)
of (1.7) such that

S 1,n → S̃ 1 in C1(Ω̄), as n→ ∞. (5.44)
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Because of (5.38), we have S̃ 1 > 0 on C1(Ω̄).
Next, consider Eq (5.17). By the standard Lp elliptic regularity theory and the Sobolev embedding

theorem, the sequence {S 2,n} is precompact in C1(Ω̄). Hence, upon passing to a further subsequence if
necessary (still denoted by S 2,n for simplicity), we can assume that

S 2,n → S̃ 2 > 0 in C1(Ω̄), as n→ ∞, (5.45)

where the positivity follows from (5.38). Since In satisfies (5.3) and, by (5.39), we have

∥σ(x)En∥Lp(Ω) ≤ C for p ≥ 1,

the Lp estimates and the Sobolev embedding theorem yield

∥In∥C1+α(Ω̄) ≤ C ∥In∥W2,p(Ω) ≤ C for 0 < α < 1.

Thus, along the subsequence
In → Ĩ in C1(Ω̄), as n→ ∞ (5.46)

and Ĩ > 0 by (5.42).
Step 3. The convergence of E.
In view of (5.44)–(5.46), for any ε > 0, a positive constant N exists, such that for all n > N, we have

0 < Ĩ(x) − ε ≤ In(x) ≤ Ĩ(x) + ε, x ∈ Ω̄,

0 < S̃ 1(x) − ε ≤ S 1,n(x) ≤ S̃ 1(x) + ε, x ∈ Ω̄,

0 < S̃ 2(x) − ε ≤ S 2,n(x) ≤ S̃ 2(x) + ε, x ∈ Ω̄.

Therefore, for a sufficiently large n, we obtain the following inequalities:

(β1S 1,n + β2S 2,n)In − [d(x) + σ(x)]En ≤ [β1(S̃ 1 + ε) + β2(S̃ 2 + ε)](Ĩ + ε) − [d(x) + σ(x)]En,

(β1S 1,n + β2S 2,n)In − [d(x) + σ(x)]En ≥ [β1(S̃ 1 − ε) + β2(S̃ 2 − ε)](Ĩ − ε) − [d(x) + σ(x)]En.

By applying the perturbation argument [59, Lemma 2.4] as in the proof of [15, Theorem 5.4], we then
conclude that

[β1(x)(S̃ 1(x) − ε) + β2(x)(S̃ 2(x) − ε)](Ĩ(x) − ε)
d(x) + σ(x)

≤ lim inf
n→∞

En(x) ≤

lim sup
n→∞

En(x) ≤
[β1(x)(S̃ 1(x) + ε) + β2(x)(S̃ 2(x) + ε)](Ĩ(x) + ε)

d(x) + σ(x)
.

Since ε is arbitrary, we obtain

En(x)→
(β1(x)S̃ 1(x) + β2(x)S̃ 2(x))Ĩ(x)

d(x) + σ(x)
uniformly on Ω̄ as n→ ∞.

It is evident that the triple (S̃ 1, S̃ 2, Ĩ) forms a positive solution to (5.37). □
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5.4. The case of dI → 0

Assume that ∫
Ω

σ(x)(β1(x)Ŝ 1(x) + β2(x)Ŝ 2(x))
γ(x) + d(x) + α(x)

dx >
∫
Ω

(d(x) + σ(x))dx, (5.47)

where (Ŝ 1, Ŝ 2) is the unique solution of (1.8). By Theorem 2.3(iv) and Theorem 3.3, the system (1.7)
admits a positive steady-state solution—that is, an EE.

In this subsection, we investigate the asymptotic behavior of this EE as the diffusion rate dI tends to
zero. The main result is stated as follows.

Theorem 5.5. Suppose that the condition (5.47) holds and fix d1 > 0, d2 > 0, and dE > 0. Then, for
any positive solution (S 1, S 2, E, I) of (1.7), a subsequence (still denoted by (S 1, S 2, E, I) for simplicity)
exists such that, as dI → 0

(S 1, S 2, E, I)→ (S̃ 1, S̃ 2, Ẽ, Ĩ) uniformly on Ω̄,

where

Ĩ(x) =
σ(x)Ẽ(x)

γ(x) + d(x) + α(x)

and (S̃ 1, S̃ 2, Ẽ) is a positive solution to the following problem
−d1∆S̃ 1 = Λ(x) − β1(x)S̃ 1 Ĩ − θ(x)S̃ 1 − d(x)S̃ 1, x ∈ Ω,
−d2∆S̃ 2 = θ(x)S̃ 1 − β2(x)S̃ 2 Ĩ − d(x)S̃ 2, x ∈ Ω,
−dE∆Ẽ = β1(x)S̃ 1 Ĩ + β2(x)S̃ 2 Ĩ − [d(x) + σ(x)]Ẽ, x ∈ Ω,
∂S̃ 1
∂n =

∂S̃ 2
∂n =

∂Ẽ
∂n = 0, x ∈ ∂Ω.

(5.48)

Proof. In the proof, C denotes a positive constant independent of dI . We begin by establishing the upper
and lower bounds. By the estimates for S 1, S 2, and E in Theorem 5.2, a constant C > 0, independent of
dI exists, such that

E(x), S 1(x), S 2(x) ≤ C for all x ∈ Ω̄.

Let I (x1) = max
Ω̄

I(x) for some x1 ∈ Ω̄. Applying Lemma 5.1 to the fourth equation of (1.7), we

obtain
σ(x1)E (x1) ≥ [γ(x1) + d(x1) + α(x1)]I (x1) .

Since E(x) is uniformly bounded above, we conclude that

I(x) ≤ I (x1) ≤
σ∗C

γ∗ + d∗ + α∗
for all x ∈ Ω̄.

Assume that S 1 (x2) = min
x∈Ω̄

S 1(x), x2 ∈ Ω̄, applying Lemma 5.1 to the first equation of (1.7), we have

S 1(x) ≥ S 1(x2) ≥
Λ∗

β∗1C + θ
∗ + d∗

for all x ∈ Ω̄.

This implies that a positive constant C, independent of dI exists, such that

S 1(x) ≥ min
x∈Ω̄

S 1(x) = S 1 (x2) ≥ C > 0 for all x ∈ Ω̄. (5.49)
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Now, we estimate the lower bound of S 2. Let S 2(x3) = min
x∈Ω̄

S 2(x), x3 ∈ Ω̄. We use Lemma 5.1 to the

second equation of (1.7) to derive

S 2(x) ≥ S 2(x3) ≥
θ(x3)S 1(x3)

β2(x3)I(x3) + d(x3)
for all x ∈ Ω̄.

Since S 1(x) has a positive lower bound and I(x) has a positive upper bound, there is a positive constant
C0 independent of dI such that

S 2(x) ≥ min
x∈Ω̄

S 2(x) = S 2(x3) ≥ C0 > 0 for all x ∈ Ω̄. (5.50)

We employ an argument similar to that in the proof of [15, Theorem 5.5] to show that there is a positive
constant C, independent of dI > 0, such that

E(x) ≥ C for all x ∈ Ω̄.

Set I (x4) = min
x∈Ω̄

I(x) for some x4 ∈ Ω̄. Applying Lemma 5.1( [57, Lemma 3.1]), we obtain

[γ(x4) + d(x4) + α(x4)]I(x4) ≥ σ(x4)E(x4).

It follows that
I(x) ≥ I (x4) ≥

Cσ∗
γ∗ + d∗ + α∗

for all x ∈ Ω̄.

Observe that S 1, S 2, and E satisfy the following system:
−d1∆S 1 + (θ(x) + d(x))S 1 + β1(x)S 1I = Λ(x), x ∈ Ω,
−d2∆S 2 + d(x)S 2 + β2(x)S 2I = θ(x)S 1, x ∈ Ω,
−dE∆E + [d(x) + σ(x)]E = β1(x)S 1I + β2(x)S 2I, x ∈ Ω,
∂S 1
∂n =

∂S 2
∂n =

∂E
∂n = 0, x ∈ ∂Ω.

Following arguments analogous to those in the proofs of Theorems 5.2–5.4, and considering a sequence
{dI,n} with dI,n → 0 as n→ ∞, we obtain

S 1,n → S̃ 1, S 2,n → S̃ 2, En → Ẽ in C1(Ω̄), as n→ ∞. (5.51)

Moreover, since S 1, S 2, and E are uniformly bounded below by positive constants (independent of n), it
follows that S̃ 1, S̃ 2, Ẽ > 0 in C1(Ω̄).

Now consider the following equation satisfied by In:{
−dn∆In = σ(x)En − [γ(x) + d(x) + α(x)]In, x ∈ Ω,
∂In
∂n = 0, x ∈ ∂Ω.

Applying the perturbation argument from [59, Lemma 2.4], we deduce that

In(x)→
σ(x)Ẽ(x)

γ(x) + d(x) + α(x)
uniformly on Ω̄ as n→ ∞.

It is now clear that (S̃ 1, S̃ 2, Ẽ) is a positive solution of the system (5.48). This completes the proof. □
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6. Conclusions and discussion

In this paper, we study an SEIR reaction–diffusion epidemic model (1.3) that incorporates susceptible
individuals with underlying health conditions. We investigate the effects of spatial heterogeneity,
individual movements, and underlying diseases on the persistence and extinction of infectious diseases.
Similar problems have been addressed in our previous study [15] on the classical SEIR model without
underlying diseases (1.6), and many of the results obtained here are consistent with those obtained
in [15]. However, our results indicate that the presence of susceptible individuals with underlying health
conditions can elevate the risk of disease transmission.

In what follows, we compare and discuss how factors such as environmental heterogeneity, diffusion
rates, and the presence of underlying diseases affect the basic reproduction number, and also examine
how these factors influence the disease’s persistence or extinction, as well as the asymptotic profiles of
the steady states.

• The effects of spatial heterogeneity and the mobility
In a heterogeneous environment, the basic reproduction number R0 is defined by the eigenvalue

problem (2.2), whereas in the homogeneous case, R0 is given explicitly by Eq (4.1). Compared
with (4.1), the expression (2.2) indicates that R0 depends not only on the spatial heterogeneity, such
as resource distribution, population density, and contact rates, but also on the diffusion rates of
various compartments, including susceptible individuals without underlying diseases (d1), those with
underlying diseases (d2), the exposed (dE), and the infectious (dI). The asymptotic behavior of R0 with
respect to these diffusion rates is analyzed in Theorem 2.3, revealing that the inclusion of susceptible
individuals with underlying diseases introduces additional complexity beyond that of the classical
model (1.6).

Both spatial heterogeneity and mobility play critical roles in shaping R0 by altering the transmis-
sion dynamics and disease spread patterns. The persistence results for the infectious population (see
Theorem 3.3) offer important insights into the conditions under which the disease can remain endemic,
emphasizing the central importance of controlling R0 for effective epidemic management. A primary
objective of this study is to examine how spatial heterogeneity and diffusion rates influence the
asymptotic profiles of EEs; see Theorems 5.2–5.5. Analogous results for the model (1.6) have been
established in [15, Theorems 5.3–5.5]. These findings highlight the complexity of infectious disease
dynamics in spatially structured populations and demonstrate the robustness of disease persistence
even as the mobility rates of various compartments tend to zero.

• The effects of underlying diseases
The basic reproduction number plays a fundamental role in determining how a disease spreads

within a population, and is also affected by the proportion of susceptible individuals (see [15, Theorem
2.3]). However, in our model (1.3), the basic reproduction number depends not only on the density
of susceptible individuals without underlying diseases, denoted by Ŝ 1(x), but also on that of those
with underlying diseases, Ŝ 2(x). Furthermore, the transmission coefficients differ between these
two groups: β1 for individuals without underlying diseases and β2(> β1) for those with underlying
diseases. This dual contribution highlights the added complexity of the basic reproduction number
introduced by underlying health conditions. According to Lemma 2.4, such conditions can, in certain
scenarios, lead to an increase in the basic reproduction number.
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