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Abstract: We study a susceptible—exposed—infected-recovered (SEIR) reaction—diffusion epidemic
model that includes susceptible individuals with underlying diseases, focusing on how these comor-
bidities, diffusion coefficients, and spatial heterogeneity affect disease’s spread. The basic reproduction
number R, is central to understanding and controlling infectious diseases’ spread. We define R, analyze
its behavior under low diffusion rates, and investigate the persistence of infection in relation to Ry. Our
results show that underlying health conditions increase the value of R, enhancing the disease’s transmis-
sion potential and persistence. In a homogeneous environment, if Ry > 1, the system admits a constant
endemic equilibrium that is globally asymptotically stable; if Ry < 1, the disease-free equilibrium is
globally attractive, implying eventual disease eradication. Furthermore, we analyze the asymptotic
behavior of the endemic equilibrium as the diffusion rates approach zero. Our results indicate that
limiting the mobility of susceptible, exposed, and infectious individuals alone is insufficient to eliminate
the disease. By examining the influence of diffusion coefficients on the spatial dynamics and disease
persistence, we conclude that effective control strategies must extend beyond diffusion control and
incorporate interventions targeting additional transmission factors.

Keywords: SEIR reaction—diffusion epidemic model; spatially heterogeneous environment; basic
reproduction number; asymptotic profiles

1. Introduction

Infectious diseases have posed significant challenges to human health throughout history. To im-
prove our ability to prevent and control these diseases, a scientific understanding of their mechanisms
and transmission dynamics is essential. The development of dynamic models of infectious disease
serves as a powerful tool for understanding and managing these diseases. Such epidemic models are
vital for capturing the complex interactions among pathogens, hosts, and the environment. In 1927,
Kermack and McKendrick proposed the well-known susceptible—infected—recovered (SIR) compart-
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ment model [1] to describe the spread of the plague epidemic in Bombay. Later, they developed an
susceptible—infected—susceptible (SIS) epidemic model to describe infectious diseases that do not
confer immunity after recovery [2]. If an individual experiences an exposure period before becoming
infectious (e.g., malaria, West Nile virus, etc.), the disease dynamics can be described by the suscepti-
ble—exposed—infected-recovered (SEIR) compartment model (see, for example, [3—7]. When recovered
individuals lose immunity and return to the susceptible class, the SEIR—susceptible (SEIRS) model is
applicable (see, for example, [8,9]). Various compartmental models are employed to make dynamic
models of infectious disease more accurate and applicable to real-world scenarios [10-18] and the
references therein. Each of these models incorporates different aspects of disease transmission and
progression to more accurately reflect the complexities of specific infectious diseases. In particular, the
SEIR model is especially effective for diseases with a well-defined incubation period, such as COVID-19,
as it provides a comprehensive framework for understanding and predicting disease progression.
In [3], the authors consider the following SEIR ordinary differential equation (ODE) model:

S —A-pBIS —dS, >0,
dE — BIS — (0 +d)E, t>0,
'~ cE-(y+dI, >0,
dR — yI — dR, t> 0.

(1.1)

Here, S = S(7), E = E(¢), I = I(t), and R = R(¢) represent the densities of susceptible, exposed, infectious,
and recovered individuals at time ¢, respectively. The parameters A, d, 5, o, and 7y are all positive
constants, representing the recruitment rate (including births and immigration), the natural death rate, the
transmission rate due to effective contact between susceptible and infectious individuals, the rate at which
exposed individuals become infectious, and the recovery rate of infectious individuals, respectively.

The term BIS in the SEIR epidemic model (1.1) corresponds to the incidence of mass—action (also
known as the density-dependent transmission mechanism). This form of incidence arises naturally from
the assumption of homogeneous mixing and was central to the foundational work of Kermack and
McKendrick in their 1927 trilogy on the mathematical theory of epidemics [1]. Their frame work laid the
groundwork for modern compartmental modeling and continues to influence epidemiological theory and
public health practice (see, for example, [11,12,17,19-26], and the references therein). A more general
nonlinear incidence rate of the form SIS (p,q > 0) was investigated in [27] and further analyzed
in [28], providing a flexible framework for capturing complex transmission dynamics beyond standard
mass-action assumptions. It has since been widely adopted in epidemic modeling, with particular
attention to the global stability of equilibria in systems incorporating such nonlinearities [4,13]. Another
widely used transmission mechanism is the standard incidence, given by '4% with N =S +E+1+R, also
referred to as frequency-dependent transmission [29]. This form has attracted significant attention in
mathematical epidemiology (see, e.g., [12,14,16,30,31] and references therein). McCallum et al. [32]
compared models employing standard incidence and mass-action mechanisms, concluding that the
appropriateness of each depends on the specific mode of disease transmission, with both having distinct
advantages in different biological contexts.

A survey conducted in [33] indicates that a significant proportion of COVID-19 patients who died
had pre-existing chronic diseases, highlighting the critical role of underlying health conditions in
influencing disease severity. Specifically, individuals with chronic conditions are more susceptible
to COVID-19 [34]. To better understand the dynamics of the disease, it is essential to consider the
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impact of underlying health conditions on susceptibility. The corresponding transmission mechanism
and model structure are illustrated in [34]. This leads to the following extended model:

B A-BiS1I-6S,-dS,, t>0,

£2 = 05| - BoSoI - dS, t>0,
&L = B1S1I+BS2l —(d+0)E, >0, (1.2)
=0E-(y+d+a)l, t>0,
& = yI-dR, t>0,
where S| = S(¢), and S, = §,(¢) denote the densities of individuals who are susceptible without

underlying conditions and those with underlying conditions, respectively, at time z. The roles of the
positive constants A, d, o, and y are the same as those in (1.1). The parameter 8; > 0 denotes the
transmission rate for susceptible individuals without underlying conditions after effective contact with
infectious individuals. The positive constant 8,(> ;) represents the transmission rate after effective
contact between susceptible individuals with underlying conditions and infectious individuals. The
parameter a > 0 is the disease-induced mortality rate, and the positive constant 6 denotes the rate at
which healthy individuals develop underlying conditions. Subsequently, Yang et al. [35] incorporated
time delays into the system (1.2) to account for the effects of delays and underlying health conditions
on disease transmission.

Recently, Allen et al. [36] proposed a frequency-dependent SIS epidemic patch model and investi-
gated the effects of spatial heterogeneity, habitat connectivity, and movement rates on the persistence
and extinction of infectious diseases. Later on, they studied this epidemic model in a continuous-time
and continuous-space SIS model [30]. They focus on the existence, uniqueness, and particularly the
asymptotic profile of the steady states in a spatially heterogeneous environment. Their study suggests
that controlling the mobility of susceptible individuals may be more effective in limiting disease’s
spread than restricting the mobility of infectious individuals. Spatial heterogeneity plays a crucial role
in disease transmission, making its understanding essential for the development of effective public
health strategies. To more accurately capture the spatial characteristics and enhance the realism of
mathematical models, researchers have extended traditional ODE models by incorporating the Laplace
operator to represent population movement. This approach corresponds to Brownian motion and is
commonly referred to as local diffusion. For further details and related studies, see [9, 15, 16,37-43] and
the references therein. In addition to classical diffusion, nonlocal diffusion models incorporating integral
operators to account for long—range spatial correlations, have been introduced to describe population
movement more realistically [44]. Alternatively, in [45], the authors model population mobility using a
graph Laplacian operator to represent discrete movement networks.

In this paper, we propose a reaction—diffusion model that incorporates spatial heterogeneity, underly-
ing health conditions, and population mobility to capture the complex dynamics of infectious disease
transmission. The model is an extension of the system (1.2), given by:

Bg—t‘ =d|AS1 + Ax) =B1(x)S I -0x)S| —d(x)S1, xeQ,t>0,

B2 = dhAS > — Bo(X)S 2] +0(x)S | — d(%)S 5, xeQ, t>0,
8L = dgAE + B1(x)S 1] + Bo(0)S ol — [d(x) + T(D)]E, x€Q, >0, 3
9 = d;AI + T(XE — [y(x) + d(x) + a(0)]], xeQ, >0, :

% = dgAR + y(x)I — d(X)R, xeQ, t>0,
By _ sy _ 0E _ ol _ ok _ x€dQ, t> 0.

on — on ~ dn ~ on "~ on T~
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Here, the spatial domain Q Cc R” (n > 1) is a bounded region with a smooth boundary 9. The positive
diffusion coefficients d,, d», dg, and d;, represent the movement rates of susceptible individuals without
underlying conditions, susceptible individuals with underlying conditions, exposed individuals, and
infectious individuals, respectively. The positive functions A(x), d(x), a(x), B1(x), B2(x), o(x), 6(x), and
y(x) are all Holder continuous on Q and retain the same meanings as in the system (1.2). The initial
data are assumed to be nonnegative and sufficiently smooth, satisfying

{ S1(x,0),8,(x,0), E(x,0), I(x,0), R(x,0) > 0 for any x € Q, (1.4)

J, 1(x,0) dx > 0 or [ E(x,0) dx > 0.

By the standard regularity theory for parabolic equations (see [46]) and under the assumption of (1.4),
we can establish the existence and uniqueness of a classical solution

(81,82, E.LR) € [C*H(@x (0, 00)]

to the system (1.3). Furthermore, by the strong maximum principle for parabolic equations (see [47]), it
follows that
$1>0,8S,>0,E>0,/>0 and R>0

for any x € Q, ¢t > 0.

Since S, §», E, and I are independent of R in the system (1.3), and thus R does not appear in the
equations governing the dynamics of the other compartments, and it does not influence the evolution of
S1,S82, E, and I. Therefore, we simplify the model by removing the equation for R and focus solely on
the dynamics of the system

BL=diAS |+ AX) = Bi(0)S 1] - 0(x)S 1 —d(x)S1, xe€Qt>0,

22 = doAS > = Bo(0)SH] +0(0S) — d(0)S, xeQ, 1> 0,

& = deAE + B1(0)S 1] + Ba(0)S o] — [d(x) + o(0)]E, x€Q, 1>0,

o= diAl + 0(DE ~ [y(x) + d(x) + a1, xeQ, >0, (1.5)
%:%:%:%:0, x€oQ, t>0,

$1(x,0) = §10(x),S2(x,0) = §20(x), x €9,

E(x,0) = Ey(x), [(x,0) = Iy(x), x e

If susceptible individuals with underlying conditions are not considered, then the model (1.5) reduces to

B1 = ds, AS| + AX) - B1(0)S T —d(0)S), x€Q, 1>0,
GL — g AE + (S - [d(x) + 7(0]E, x€Q, 1>0,
9 — Al + c(OE — [y(x) + d(x) + a0, x€Q, 1>0,

081 _ OE _ I _
an—an—an—O, x€eo, t>0.

(1.6)

This model was previously studied by the first author and collaborators in [15], where the effects of
spatial heterogeneity and individual movements on disease transmission were investigated.

In the present work, we analyze the role of susceptible individuals with underlying health conditions
in shaping the dynamics of infectious diseases, with particular emphasis on the mechanisms of disease’s
persistence and extinction. Additionally, we investigate the asymptotic behavior of positive steady states
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in spatially heterogeneous environments. The corresponding steady-state problem associated with the
reaction—diffusion system (1.5) is given by the following elliptic system:

d]AS] + A(X) —Bl(X)Sli— Q(X)Sl — d(X)Sl =0, xeQ,

drAS 5 — Br(X)S I + 0(x)S | — d(x)S, =0, xeQ,

dpgAE + By (x)S T + Bo(x)SI — [d(x) + o(x)]E =0, xeQ, (1.7)
d;AT + o (x)E - [y(x) + d(x) + a(x)]] = 0, xeQ,

B8 0k _d_ x € 0Q.

on on on — on

The steady-state solution of the system (1.5), denoted by (51.8,, E, ), satisfies the elliptic system (1.7).
For any x € Q, if I(x) = 0, then the solution reduces to the form (S’ 1(x), S 2(x),0,0), which is referred
to as the disease-free equilibrium (DFE). Here, (S 1(x),8,(x)) is the unique positive solution to the
following system:

—diAS | = A(x) — (B(x) +d(x))S1, xe€Q,

—d,AS, = 0(x)S 1 — d(x)S », xe€Q, (1.8)
a(;g_nl = E)(:js—nz = O, X € OQ

If I(x) > O for some x € Q, then the solution (S, S5, E, I) of the system (1.7) is referred to as the
endemic equilibrium (EE). In this case, the strong maximum principle for elliptic equations implies that

S1x) >0, S,(x) >0, E(x) >0, I(x) >0,

for any x € Q.

The remainder of this paper is organized as follows. In Section 2, we define the basic reproduction
number R, for the model described by the system (1.5) and analyze the influence of the diffusion
coeflicients on Ry, highlighting the role of spatial movements in disease transmission. In Section 3, we
establish the uniform boundedness and uniform persistence of solutions to the system (1.5). In Section
4, we construct a Lyapunov function to prove the global attractivity of both the DFE and the EE in the
spatially homogeneous case. In Section 5, we study the asymptotic behavior of the EE as the diffusion
coeflicients dy, d», dg, and d; approach zero, revealing how reduced mobility affects disease dynamics.
Section 6 concludes with a discussion of the results and their implications.

2. The basic reproduction number

Inspired by [9] and [48], this section defines the basic reproduction number Ry, for the system (1.5)
and analyzes its dependence on the diffusion coeflicients.
We linearize the system (1.5) about the DFE Ey(S1,5,,0,0). The resulting linearized system is
governed by

Bi= dAS| - Bi(0)S T - 008 - d(x)S 1, xeQ, t>0,
B2 = hAS, - B (08T + 003 — d(x)S5, xeQ, 150,
% = dpgAE + B1(0)S 1] + Bo(0)S2] — [d(x) + T(0)]E, x€Q, t>0, 2.1)
o = diAT + (D)E - [y(x) + d(x) + a1, xeQ, >0,
B0z -y, x€dQ, t>0.
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Here, §1(x,0) = S1(x6,0) = 81(x), S2(x,0) = Sy(x,0) = 82(x), E(x,1) = E(x,1), and I(x,1) = I(x,1).
Following the framework in [48], we define the operators L, and the matrices F(x), V(x) as follows:

L = diag (—dzA, -d;A)

o) - ( 0 B98I0 + B9 )

d(x) + o(x) 0 )

V(x) :( —o(x) () +dx) + alx)

We apply the theoretical framework developed in [49] and [48] to define the basic reproduction number
Ry for the system (1.5). This leads to the following result.

Lemma 2.1. The eigenvalue problem

—dpAgr + [d(x) + 0(X)]pe = wWo(B1(x)S 1(x) + Ba(X)S2(xX))p1, X € Q,

—diAp; — o(X)pE + [y(x) + d(x) + a(x)]er = 0, xeQ, (2.2)
% = % =0, X € 0Q

admits a unique positive eigenvalue, denoted by wy, with a corresponding pair of positive eigenfunctions
(¢E,¢1). Moreover, the basic reproduction number R satisfies

R() = .
wo
The proof of Lemma 2.1 is identical to those in [9, 15] and is therefore omitted.
We now consider the eigenvalue problem

—dpAgr + [d(x) + o (x)]pr — (B1(X)S 1(X) + B2 (0)S2(x))p; = Apr, x € Q,

—diA¢; — o (X)pE + [y(x) + d(x) + a(x)]d; = Ay, x€Q, (2.3)
%LHE = % = 0’ X € QQ

It follows from the Krein—Rutman theorem [50] that the principal eigenvalue A, is real and, algebraically
simple, and possesses a strictly positive eigenfunction. Specifically, the eigenfunction ¢ = (¢, ¢;)7,
can be chosen such that ¢z(x) > 0 and ¢;(x) > 0 for all x € Q. Similar to [9, 15], we can then derive the
relationship between the basic reproduction number and the principal eigenvalue.

Lemma 2.2. (1—Ry) has the same sign as A, where A; denotes the principal eigenvalue of the eigenvalue
problem (2.3).

Moreover, it follows that Rio is the principal eigenvalue of the adjoint eigenvalue problem associated
with (2.2), namely

—dpAgy + [d(x) + o ()¢ = o(0)¢], X ) xeQ,
~d;AQ; + [y(x) + d(x) + a(0)]g; = 3 (B1()S1(X) + Bo(0)S2(x)gp, x € Q, (2.4)
‘%E = ‘% =0, x € 0Q.

Let ¢* = (¢}, ¢;)" denote the strictly positive eigenfunction corresponding to the principal eigenvalue
RLO. We now analyze the asymptotic behavior of the basic reproduction number R, as the diffusion
coeflicients dy, d», dg, and d; approach zero or infinity.
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Theorem 2.3. The following statements about Ry := Ry(d,, d>, dg, d;) hold:
(i) For a fixed d,, dg, and d; > 0, we have Ry — Ry as d, — 0, where Ry, is the principal eigenvalue
of the problem

—dp Ay + [d(x) + o (D)]pr = & (5250 1 ﬁz(X)Sz(X)) o x€Q,

—diAp; — o (X)pE + [y(x) + d(x) + a(x)]e; =0, x € Q, (2.5
% = % =0, x € 0Q.

Here, S, is the unique positive solution of

0(x)+d(x)

%2 =, X € 0Q.

d>AS 5 + Z9MD _ gnS, =0, Q,
{ 2 + (X) 2 X € (26)

(1) For a fixed d,, dg, and d; > 0, we have Ry — Ry as dy — 0, where Ry is the principal eigenvalue
of the problem

—dpAgr + [d(x) + o (D)]pr = & (B1(x) + ﬁz;?@;”) Sipr, x€Q,

—diAgp; — o (X)pe + [y(x) + d(x) + a(x)]er = x€Q,
aainE = % =0, x € 0Q.

Here, S| is the unique positive solution of

{ diAS 1+ A(x)—(0(x) +d(x))S1 =0, xeQ, 2.7

B =, x € 0Q.

(iii) For a fixed d,,d», and d; > 0, we have Ry — Ry := wil as dg — 0, where w is the principal
eigenvalue of the problem

_ _ wo(x) 081 (x (x $H(x)) _
~diAp; + [Y(x) +d(2) + (), = OIS0, e 08)
% =0, X € 0Q.

Furthermore, Ry is a monotone decreasing function of d; and satisfies

- o(x) (,Bl(x)S 1(0) + Ba(0)S 2(x)) eQ d;— 0 (2.9)
— max o wam .
0 (d(x) + (D)) (¥(x) + d(x) + (x)) I
and @(B1©DS 104205 2()
a(x)(B1(x)5 1(x)+L2(x)5 2(x dx
]_{'0 . fQ d(x)+o(x) as d; — . (2.10)

() + d(x) + a(x)dx

Here, (S1,S,) is the solution of (1.8).
(iv) For a fixed d,,d>, and dg > 0, we have Ry — R, := wiz as d; — 0, where w, is the principal
eigenvalue of the problem

- - wr()(B1()S 1 () +B2(0)S2(x)) _
_dEA()DE + [d(x) + O-(x)](pE = (,),l(x)+[;(x)+a(2x) - )QDE’ X € Q,
%L: =0, x € 0Q.
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Furthermore, Ry is a monotone decreasing function of dg and satisfies

() (B1(0)S1(x) + Ba(1)8 ()
(d(x) + () (y(x) + d(x) + a(x))

er} asdgp — 0

Ry, — max{

and X X
f () (B1)S 1()+2(0)82(x)) dx
N Q y(x)+d(x)+a(x)

0 fQ d(x) + o(x)dx

as dg — oo.

Here, (S1,8,) is the solution of (1.8).

Proof. Since the solution (S (x), S5(x)) of (1.8) depends on d,, we denote it by (S| 4,(x), S 2.4, (x)). Then
it follows from (1.8) and [59, Lemma 2.4] that as d; — 0, we have

A(x)

———— uniforml Q.
000 + d) uniformly on

S 1,d; (.X) -

Moreover, by applying the L? theory and the Sobolev embedding theorem, we deduce that
S 2.4,(x) = SH(x) uniformly on Qasd, — 0.

For any ¢ > 0, a sufficiently small oy > 0 exists such that, for all 0 < d; < 0, the solution
(S 1.4, (%), $2.4,(x)) of (1.8) satisfies

A(x) A A(x)
0<(l-¢g)————<3S§ <(l+g)——— 2.11
(1-e) 000 + d0) 1, (0) < (1 + &) 000 + d() (2.11)
and
0<(1—e)Srx) <874 x) < +e)Sax) (2.12)
on Q.
As in the proof of Lemma 2.1, we deduce that (2.5) admits a principal eigenvalue &, = RLO' Let
@ := (@g, 31" denote the corresponding eigenfunction. Then, by (2.11) and (2.12), we obtain
—dpAgE + [d(x) + o ()]Pr 2 12 (B1(0)S 1.4, (x) + B2 (0)S 2.4, (%)) 1, X € Q,
—d;|Ap; — o(X)PE + [y(x) +d(x) + a(x)]@; =0, xeQ, (2.13)
0gr _ 0¢
% — % =0, x € 0Q.
Equation (2.13) can be rewritten as
L 0¢
Lp+Vp> Fp, xeQ, —| =0. (2.14)
1+¢ on lpa
The equation in (2.4) can be rewritten as
1 oyp”
Lo+ Vg = —Flo', xeq, 22| -o. (2.15)
Ry on lsa
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We then multiply the inequality in (2.14) by (¢*)” and the equation in (2.15) by (¢)”, subtract the
resulting expressions, and integrate over € to obtain

1 . q A
( @0 ) f (ﬁl(X)S 1,4, (X) + B2(x0)S 2.4, (x)) Frppdx > 0,
Q

R_0_1+€0

which implies that Ry < 1;—5“ Similarly, by interchanging the roles of (2.14) and (2.15), we obtain the
lower bound Ry > 1;—060 Letting €y — 0, it follows that Ry — u%o = Ry. This completes the proof of (i).
Next, based on [59, Lemma 2.4], we have
0(x)

S,(x) - —=8(x) uniformly on Q as d, — 0,
d(x)

where S, is determined by (2.7). By applying an argument similar to that used in the proof of Part (i),
we can conclude that the assertion in Part (ii) holds.
Now, we proceed to show that the assertions (iii) and (iv) hold by employing an argument analogous

to that used in the proof of [9]. Since A = {u € CX(Q)| % =0 on dQ} is dense in C(Q), for any
€ € (0, 1), we can choose the functions §;(x), B:*(x) € A for i = 1,2, such that

Bi(x) - Bi(x)
Trodm oo P <+ om
and Bi(x) Bi(x)
i(X " i(X
i+ om PO T odm o)

Let §; denote the eigenfunction corresponding to the principal eigenvalue w; of (2.8). Set
@6 @) = (@B (0)S1(x) + 5" (0)S 2(x))@r, @)

@e: 1) = (1B ()8 1(x) + B3 (DS 2(x)Er, P1)
For the given € € (0, 1), 6 > 0 exists such that, for 0 < dg < 9,

—dpAdp > —(d(x) + () (1 - 42) oy, x€Q, 2.16)
%~ 0, x € 0Q, ‘
and _
—dpApr < —(d(x) + o () (1 - 22) gr, x€Q,
%~ 0, x € 0Q,
where A .
Fx) = Bi(x0)S 1(x) + B2(x)S2(x)
(d(x) + o ())(B;* (D)8 1(x) + B3 (1) 2(x))’
and . .
F) = Bi(x0)S 1(x) + 2(x)S2(x)

(d(x) + () B}(0)S 1(x) + B30 2(x))
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By virtue of (2.16), we have

Bi(0)S 1(x) + Ba(0)S5(x) R

—drAG d / S S
e O+ T > (08 1)+ B (08 20

w1
1+¢

B1(0)S 1(x) + Bo(x)S 2(x))@r, x € Q.

For x € Q, using (2.8), we have

() (B8 1(0) + Fr(082(0)
- - PE-
w1 (B (08 1(x) + By (DS 2(0) () + ()

—diAQ; + [y(x) +d(x) + a(0)]@; =

Since R R
Bi1(x)S 1(x) + B2(x)S 2(x)
d(x) + o(x)

and noting that w = w;, it follows that

> B (0S8 1(x) + 85 (0)S 2(x),

—diAQ; + [y(x) +d(x) + a(x)]p; — o(x)@g > 0, x € Q.
Therefore, the following inequality system holds:

—~dpAs + [d(x) + o (N)]PE > 12 (B1(N)S1(x) + 208 2(0)) ¢1, x € Q,

—diAQ; + [y(x) + d(x) + a(X)]@; — o(X)@E > 0, xeQ, (2.17)
ag% = % =0, x € 0Q).

As in the proof of (i), we have
1-¢ l1+&
<Ry <
wi w)
Letting £ — 0, we have Ry — R,. Consequently, (2.9) and (2.10) follow from [30, Lemma 2.1].

For the proof of (iv), we can use a similar argument as in (iii), and thus we omit the details here. O

By the proof of Theorem 2.3 (i), for a fixed dg, d; > 0, the principal eigenvalue R, of (2.5) approaches
Ry as d, — 0, where Ry is the principal eigenvalue of

_ 1 (BWAW | BWiAR)
—deApr + (d(X) + 0)pE = 7 (s + sty ) o1 ¥€Q,

—diAp; — o + [Y(x) + d(x) + a(x)]¢; = 0, x€Q, (2.18)
6@% = % =0, x € 0Q.

For the system (1.6), the basic reproduction number R, is characterized by the following eigenvalue
problem:
—dp Ay + [d(x) + 0 (OWe = B (DS, xeQ,
—diAY; — o (e + [y(x) +dx) + a0y, =0, xe€Q,
B = 2=, x € 0Q,

on on

where S (x) is the unique positive solution to

{ —dAS = A(x) —d(x)S, xe€Q,

g =0, x € 0Q.
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As the diffusion rate d of the susceptible population tends to zero, it follows from [15, Theorem 2.3]
that Ry — Ry, where R, is the principal eigenvalue of the problem.

~dpAy + () + OWe = B DGV, xEQ,

—diAY; — og + [y(x) +d(x) + a(x)]y; =0, xe€Q, (2.19)
Pr ==, x € 0Q.

Lemma 2.4. If ﬂ]TA and o are positive constants, then ﬁ; > Ro.

Proof. Let % := C > 0 be a constant. Multiplying the first equation of (2.18) by ¢ and the first

equation of (2.19) by ¢g, subtracting the resulting equations and integrating over €, we obtain

< _ 1 [(BWAW | B
Ro fgw’(x)%(x)dx "R, L (d(x) F000 T A + d(x))) erPE(Idx.  (2.20)

Next, multiplying the second equation in (2.18) by ¢; and the second equation in (2.19) by ¢,, subtracting
the resulting equations and integrating over €2, we obtain

fllll(X)SOE(x)dx=stI(x)v,l/E(x)dx.
Q Q

Noting that 8,(x) > B;(x) and using (2.20), we conclude that

1 1
('R_o - 1?8) fg e e(x)dx > 0.

Since ¢/;(x) and @g(x) are both positive, this implies that f(’(’; > Ry. Therefore, the inclusion of susceptible
individuals with underlying conditions can enlarge the basic reproduction number. O

Remark 2.5. The inequality ES > R, reflects that accounting for underlying health conditions increases
the basic reproduction number. This arises because individuals with pre-existing comorbidities are
generally more susceptible to infection and may experience prolonged or more severe infectious periods,
thereby amplifying the overall transmission potential of the disease in the population.

3. Uniform bounds and the persistence of solutions to (1.5)

In this section, we establish uniform bounds and demonstrate the uniform persistence property of the
solutions to the system (1.5). We begin by deriving the uniform bounds for these solutions as follows.
Lemma 3.1. There is a positive constant C, independent of the initial data, and a time T > 0, such that

- 4
the solution (S1,S, E, 1) € [02’1(9 x (0, oo))] to (1.5) satisfies
IS 1G5 Dllze@) + 1S 20, Dll=@) + IEC, Dlle=@) + I Dllze) < C for t 2 T. (3.1

Proof. From the first equation of the system (1.5), we have

&1 — djAS | < max A(x) - min(d(x) + 0(x))S1, x€Q, t>0,
xeQ xeQ

%:O, x€o0Q, t>0,
S1(x,0) =810(x) 20, xeQ.
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By the parabolic comparison principle, it follows that
Si(x,t) <u(x,t) forxeQ, t>0,
where u is the unique solution to

B _ gy Au = max A(x) — umin(d(x) + 6(x)), x€Q, 1 >0,

xeQ xeQ)

o, x€dQ, t>0, (3.2)
u(x,0) = max S p(x) >0, x e Q.

xeQ)

It is clear that the positive constant
max A(x)
C, = xeQ , S
L= M i) 1 000) e 1o
xeQ

serves as an upper solution of (3.2).
Next, we consider the following parabolic initial value problem:

& — dyAv = Cymax 6(x) - vmind(x), x€Q, >0,
xeQ

xeQ
&, x€eoQ, t>0, (3.3)
v(x,0) = max S,o(x) >0, x € Q.
xeQ

It is evident that the constants

C, max 6(x)
xeQ
C,=m _—, S
2 ax mind(x) r?e%x 20(%)

xeQ)

and 0O are the upper and lower solutions of (3.3), respectively. Thus, by the theory of parabolic equations,
the system (3.3) admits a unique positive solution, denoted by v. Now, consider

6372 —drhAS, < 0(x)C; —d(x)S,, x€Q, t>0,

2 =, x€0Q, >0,
Sz(x, 0) = Sz’()(x) > O, X € Q,

and apply the parabolic comparison principle to obtain
So(x, 1) < v(x, 1), xeQ,t>0.
Therefore, it follows that

S1(x,t) <u(x,t) < Cy, Sa(x,t) <v(x, 1) <Cy, x€Q, t>0.

Since
max A(x) max A(x) — max S o(x) min(d(x) + 6(x)) _
U(l) _ xeQ _xeQ xeQ xeQ e—”gg(d(x)‘*e(x))
min(d(x) + 6(x)) min(d(x) + 6(x))
xeQ xeQ
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1s an upper solution of (3.2), we have

max A(x)
li ot < xX€Q
Hmu(x 1) < 0 + 60)
xeQ

uniformly on Q. Therefore, we obtain the following uniform bounds:

max A(x)
li Si(x, 1) < —=2 iformly on Q. 3.4
H;riiouP 1(x, 1) < i) + 00) uniformly on (3.4)
x€Q
Similarly, we deduce
C| max 6(x)
lim sup §(x,1) < mmf; Gy uniformly on Q. (3.5)
xeQ)

We apply a similar approach as in the proof of [15] to find that

1S 1C5 Ol 1S 20, Dl IEC, Dl G, Dl @

are uniformly bounded for # > T. According to [51, Lemma 2.1], by choosing py = 1 and combining
this with the bounds established in (3.4) and (3.5), we conclude that the uniform bound (3.1) holds. This
completes the proof. O

We now recall the Agmon—Douglas—Nirenberg theorem from [52] to present the Schauder theory for
second-order elliptic boundary value problems of the form

{Luzf(x) xeQCR,

a(x)% + b(x)u = p(x), x € IQ. (3.6)

where the operator £ is given by

n n

Lu=- Z a; j(x)D; ju + Z b;(x)D;u + c(x)u.

i,j i

We propose the following hypothesis:
(H): L is elliptic in Q with the coefficients a; ;, b;, ¢ € C*(Q) for some « € (0, 1). Moreover, the
constants A > A > 0 and A, > 0 exist such that

AEP < ai j(x)éEE; < AJEP, forall x e Q, £ € R”

and |
~ (il + il + lela) < Ao

Theorem 3.2. (Agmon—Douglas—Nirenberg [52] or [53, Theorem A.5] )Assume that Condition (H)

holds, 0Q € C**%, b € C'**(8Q), and ¢ > 0, with at least one of c or b being not identical to zero.

Electronic Research Archive Volume 33, Issue 12, 7385-7427.



7398

Furthermore, suppose that ¢ € C***(0Q) when a = 0, and ¢ € C'**(0Q) when a = 1. Then the boundary
value problem (3.6) admits a unique classical solution u € C***(Q), satisfying the the estimates

1
|u|2+(l,Q <C (zlflw,f) + |()0|2+a,8§2) when a = 0,

L1
ltlr 100 < C (Z'f lo.o + |90|1+a,ag) when a = 1,

where the positive constants C and C* depend on Q, «a, A, and A,; moreover, C* also depends on
D11 +0,60-

We now utilize the uniform bounds established in Lemma 3.1 and the Agmon—Douglas—Nirenberg
theorem to prove the uniform persistence of solutions to the system (1.5).

Theorem 3.3. The following two statements hold:

() If Ry < 1, then the DFE (S8 1,S,0,0) is linearly stable.

(1) If Ry > 1, then the system (1.5) is uniformly persistent: There is a constant gy > 0, independent of
the initial data (S 1, S 2,0, Eo, lp), such that

> &. (3.7)

timinf ||(S1(, 0. 82,0, EC.0.16,0) = ($1.82,0.0)

Furthermore, system (1.5) admits at least one EE. Here, ($1,8,) is given by (1.8).

Proof. (i) By substituting (S, S5, E,I) = (e s, (x), e Vs, (x), e pp(x), eV (x)) into the linearized
system (2.1) and dividing through by e™", we obtain the following eigenvalue problem:

d\Aps, — @+ d)ps, = BiS 191 + Ags, =0, x€Q,

aAps, + Ops, = dps, = BaS 201 + Aps, = 0, xe€Q,

deApg + 1S 191 + PS¢0 — (d + o) + App =0, x €4, (3.8)
diAg; +opp — (y+d + a)p; + g =0, x € Q,

Ops Ops dor _ dor _

6n1:an2:(;‘;n_%_0’ x € 0Q.

Assume that Ry < 1. We will show that the DFE is linearly stable. That is, for any solution

(/L 50515‘10527 PE, ‘101)

of the eigenvalue problem (3.8), if at least one of the components ¢s,, ¢s,, ¥r, ¢; 1s not identically
zero, then the real part of the eigenvalue must satisfy Re(1) > 0. Suppose, for contradiction, that
(A, ¢s,,¢s,, e, ¢r) 1s a solution of (3.8), with at least one of ¢s,, ¢s,, ¢k, ¢; being non-zero, and assume
that Re(1) < 0.

We first show that ¢; # 0 in Q. Otherwise, ¢; = 0 in Q. Then, by the fourth equation of (3.8), we
immediately have ¢ = 0 in Q. It follows from the first two equations of (3.8) that ¢g, is not identical
to zero. Therefore, we consider two possible cases: (a) g5, Z 0,95, = 0; (b) g, £0,¢s, Z0.

In Case (a), the eigenvalue problem (3.8) reduces to

(3.9)

{ dryAps, — dps, + dps, =0, x€Q,

0
2 =0, x €0Q.
n
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Let A5 denote the principal eigenvalue of the problem (3.9). By the eigenvalue comparison principle
and the fact that d(x) > 0 on Q, we have A% > mind(x) > 0. Moreover, since the operator d,A — d
Q

is self-adjoint under Neumann boundary conditions, all eigenvalues are real. From the assumption
Re(1) < 0, we have A; < A < 0. This contradiction implies that Case (a) cannot occur.
For Case (b), we consider the equation for ¢g,, which reduces to the following eigenvalue problem:

diAps, — (0 +d)ps, + Aps, =0, x€Q, (3.10)
s, — x € 0Q. '

on

An argument analogous to that in the proof of Case (a) shows that this case cannot occur.

The contradictions derived above imply that ¢; # 0. Therefore, (4, ¢;, @) corresponds to a nontrivial
solution of the system (2.3). Since ¢;(x) > 0 and ¢g(x) > 0 in Q by the maximum principle, 4 = A,
is the principal eigenvalue, and (¢;, ¢f) is the corresponding positive eigenfunction of (2.3). Next, we
consider the following two elliptic boundary value problems:

, 311
% =, x €00 GAD

{ dlA()D.S'l _(9+d)¢51 +/119051 :ﬁISAISDI» X € -Q-,
on

and
{ dryAps, — dps, + Lips, = PaS2p1 — Ops,, x € Q,

Ops
2 =0, x € 0Q.
n

(3.12)

Since BS 11 € C?, the Agmon—Douglas—Nirenberg theorem (Theorem 3.2) guarantees the existence
and uniqueness of a classical solution ¢g, to (3.11). Similarly, the right-hand side of (3.12) also belongs
to C?, so there is a unique solution g, to (3.12). Therefore, we conclude that (4;, ¢s,, ¢s,, ¢k, ¢r) solves
the full eigenvalue problem (3.8). Since A, is the principal eigenvalue of (2.3), it is real and satisfies
A1 £ 4 < 0. However, by Lemma 2.2, we know that Ry > 1 if and only if 4; < 0. This contradicts the
assumption Ry < 1. Thus, the DFE is linearly stable.

(i1) We now establish the uniform persistence of the system (1.5) by applying the theory of abstract
dynamic systems developed in [54,55]. Let X = C(Q,R*). Define

Wo :=1{(S 10,520, Eo, o) | Eo # 0, I # 0}

and
oWy := X\ Wy ={(S10,520E0,1o) | Eo =0 or Iy =0}.

It is easy to verify that W, and 0W, are relatively open and closed subsets of X, respectively,
and that W, is convex. By the regularity theory for parabolic equations, for each initial condition
(810,520, Eo, Ip) € X, the system (1.5) generates a semiflow @, : X — X:

(Dl‘ (S 1,05 52,07 E07 IO) = (Sl(" Z)’ SZ(" t)’ E(’ t)’ I(a t))’

where (S (-, 1), S2(-, 1), E(-, 1), I(-, 1)) € X is the unique classical solution of the system (1.5) correspond-
ing to the given initial data. Furthermore, the standard L” theory for parabolic equations, together with
Sobolev embedding theorems, ensures that for each fixed ¢ > 0, the map @, is compact. In addition, by
Lemma 3.1, the semiflow @, is point-dissipative.

Electronic Research Archive Volume 33, Issue 12, 7385-7427.



7400

As in the proof of [15, Theorem 3.2], we deduce that ®,(W,) € W, for all # > 0, and that the maximal
positively invariant set of @, in W, i.e.,

Ay {(S1,0-S20, Eo, Ip) € Wy | ©, (S 10,820, Eo, Ip) € Wy, t > 0}

{(S10,820,E0,1p) € X | Eg = 0,1 = 0}.

Furthermore, we conclude that the DFE (§ " Sz, 0,0) is a compact and isolated invariant set for the
semiflow @, restricted to Ay.

Denote the stable set of (S, 55,0,0) by WH(($1,S$5,0,0)). According to [54], it remains to verify
that W‘V((S' L S 2, 0,0)) does not intersect Wy, i.e., W‘V((S I 5'2, 0,0)) N Wy = 0. Suppose, for the sake of
contradiction, that there is a point (S0, 520, Eo, lp) € Wy lying in the stable set of ($1,5,,0,0). Then
the unique solution (S, S ,, E, I) satisfies

lim S (x,7) = §1(x), limS,(x,7) = $,(x) uniformly on Q.
—o0 —o0
For any small 0 < € < 1, atime 7T > 0, exists such that
0<81(x)—e<Si(t,x)and 0 < S,(x) — & < (¢, x) for (x,1) € Q X [T}, ).

Since Ry > 1, Lemma 2.2 implies that A; < 0, where A, is the principal eigenvalue of (2.3). Therefore,
a sufficiently small € exists such that the principal eigenvalue

—dpAgr + [d(x) + 0(x)]@E — [BI(X)(S 1(x) = &) + Bo(X)(S2(x) — &)]r = Li(e)pr, x € Q,

—diAp; — o (X)@E + [y(x) + d(x) + a(x)]e; = 41(&)¢y, x€Q,
0 o
% = % =0, x € 0Q

remains negative. Let (¢7, ¢7) be the corresponding positive eigenfunction associated with 4, ().
Next, we enlarge T if necessary and consider the parabolic system

BD A (x, 1) = [Bi(0)(S 1 (x) = &) + Ba(x)(S2(x) — &)I(x, 1)

— [d(x) + o(0)]w(x, 1), xeQ, t>T,
% — diAv(x, 1) = o(x)w(x, 1) — [y(x) + d(x) + a(x)]v(x, 1), xeQ, t>Ty, (3.13)
T = 5t =0, x€0Q, t> T,
wx, T))=ExT))>0,v(x,Ty)=1(x,T,) >0, x € Q.

We now choose a sufficiently small constant o > 0 such that

E(x,T)) > Qe_A(S)T‘ o (x),I(x,Ty) > Qe_ﬂ(gm ¢;(x) on Q.

—A(e)t —A(e)t

By the comparison principle, the pair (oe ¢5(x), 0e ¢%(x)) is a subsolution of the system (3.13)
fort > T,. Itis clear that (E(x, t), I(x, 1)) is a supersolution of (3.13). Hence, we obtain

E(x,1) 2 0e™" @5 (x) and I(x, 1) = ge ™" (x),
for all x € Q, > T,. Since 1;(¢) < 0, we deduce that

0e @ pf (x) — oo and ge "W gf(x) — oo,
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uniformly on Q, as t — oo. Therefore,
E(x,1), I(x,t) — co uniformly on Qast— oo,

which contradicts the uniform boundedness of the solutions established in Lemma 3.1. This contradiction
implies that E is isolated in X, and that W*(Ey) N W, = 0.

In summary, it follows from [54, Theorem 4.5] or [55, Theorem 1.3.1] that (3.7) holds. Furthermore,
by [54, Theorem 4.7] or [55, Theorem 1.3.7], uniform persistence implies the existence of an EE. This
completes the proof. O

4. Global stability of the DFE and EE

In this section, we assume that the parameters A, B1, B2, v, d, a, o, and 6 are all positive constants.
Under this assumption, the basic reproduction number R, can be expressed as

R = oABid + 5,0)
T dd+o)d+0)(y +d +a) @1
_ oAB) N oA6B, :
S d+)d+O(y+d+a) dd+o)d+O)(y+d+a)
If Ry < 1, there is a unique constant DFE
A 6A
Ey=(——,——,0,0).
0= Gra d(6 + d) )
If Ry > 1, the unique constant EE E(S 1,83, E*, I") satisfies the following system of equations:
A-pB1S11-65,-dS, =0,
0S| —B,S,1 —dS, =0, 4.2)

ﬂ]S]I'FﬁzSzI—(d'FO')E:O,
oE - (y+d+a)l =0.

By direct calculation from (4.2), the unique positive solution is given by

b+ AP+ 4d+ o)y +d+a)BiBaldd +0)d + o)y +d + )Ry — 1)]
- 2(d+ o)y +d+a)pipa ’

where b = o AL, — (d + o)(y + d + @)(B1d + 5,0 + B,d). 1t is straightforward to verify that

*

. A . oA ., Y+td+a
Sl:—’ 52: - ,E =
Bil*+60+d B I*+ 60+ d)BI* +d) o

*

To investigate the global stability of the DFE and the EE, we construct an appropriate Lyapunov
function.

Theorem 4.1. Assume that Ry < 1. Then the DFE (S‘ L S 2,0,0) is the global attractor of the system
(1.5).
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Proof. Define the Lyapunov functional

W) = f [L(S1(x, 1), S2(x, 1), E(x,1),1(x,1))] dx for t > 0,
Q
where
_1 A2 1 A N2
L(Sl,Sz,E,I)_E(Sl—Sl) +§a(52—52) +bE + I,

and a, b, ¢ are positive constants to be determined.
For simplicity, we define the following functions:

fiS1,S8,L,E, ) =A-6,8S1-6S,-4dS,,
H(S1,82,E D) =651 +65S,—-4dS»,,
f3(81,82, E, 1) =111+ BoS2l — (d + 0)E,
fi(S1,82,E,I)=0E - (y+d+a)l.

By direct computation, we obtain

dw 0S8 0S, OE ol
i P22, % a
dt Q[s‘ ar e e T e |

= f (dlLSIASl + dzLSzASQ + dpLEAE + d]L]AI) dx
Q

+ f (Ls, fi + Ls, /> + Lgfs + L1 fy) dx
Q

:Hl + Hz,

where
H, = f (dlLSlASI + d2L52ASZ + dELEAE + d[L]AI) dx
Q
=d, f (S1-51)AS dx + ad, f (52— 55) ASdx
Q Q
+ bdg, f AEdx + cd; f Aldx
Q Q
=—d, f VS [Pdx — dra f VS, |2 dx
Q Q

<0

and

H, Zf(lefl +Ls, o+ Lefs + L f) dx
Q
A \2 A \2
:—f(8+d+ﬁ11)(S1—Sl) dx—fa(d+,321)(52—52) dx
Q Q

+fga@(Sl—S'l)(Sz—S'z)dx+fQ,BI(b—S'l)(Sl—S'l)ldx
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+Lﬁz(l)—agz)(s‘z—SAz)IdX+Lb(ﬁ1§1+ﬁ2§2)ldx
fc(d+y+a)ldx+f[O'c—(d+0')b]de
Q
f(0+d) Si-8.) dx—Lad(Sz—Sz)zdx+La9(Sl—.§'1)(Sg—.§’2)dx
+fg;ﬁ1 b—Sl Sl—§1)Idx+Lﬂz(b—aﬁz)(Sz—SAz)Idx

+f[b(ﬁls’]+ﬁ2§2)—c(d+y+a)]ldx+f[O'c—(d+0')b]de.
Q Q

Set
S, d .
a="2==p=3,
S, 0
Therefore
Hy<— | @+d)(S,-§ d— 52— dx+ d(s,-5,)(S,-S,)dx
Q 9 Q
+f[b(ﬁ1§1+,82S2)—c(d+y+a/) Idx+f[0'c—(d+0')b]de.
Q Q
Let

F(S1,S2E.D) % ~0+d)(S, —§1)2—§(52—§2)2+d(51 -$1)(52-52)

+[6(B181 +B282) - cd +y + )| I + [co - b(d + PE.
Consider the quadratic form in the variables S| — Syand S, - S, given by

S )2—d—z(Sz—S2)2+d(Sl—§1)(52—§2). (4.3)

—(9+d)(51— ;

The discriminant of this quadratic form is A = w

negative definite. Recall that Ry < 1 (i.e., Ry = % < 1), it then follows that 2 ‘sf’f 28 < L If
c satisfies

< 0. Therefore, the quadratic form (4.3) is

S](ﬂ1§1+ﬁggz) g](d+0')
<c<— 7
d+y+a o

then we can see that H, < 0. Therefore, d(;’tV < 0. It is evident that <% dW =0ifandonly if (§,5,,E,I) =

(S' 1s S 2,0,0). Thus, W is a Lyapunov functional of the system (1. 5) Furthermore,

(S1(x, 1), S2(x, 1), E(x, 1), I(x, 1)) = ($1,82,0,0),
uniformly in [L*(Q)]* as t — oco. This implies that ($1,5,,0,0) is the global attractor of (1.5). O
Theorem 4.2. If Ry > 1, then the endemic equilibrium E(S 1,83, E*, I") is the global attractor of (1.5).
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Proof. We define
W(t) = f [L(S 1(X, t)a SZ(xa t)a E(X, t)7 I(X, t))] dxa vt > 09
Q

where

S S
L(S1,82,E, D) :(Sl -8 —S’;ln—l)+(52—s;—sgln—f)
Sl SZ

. E d+o 1
+(E—E*—E*1n—)+ (I—I*—I*ln—).
E* o I*
By some calculations, we have
dW() f 08 oS- OE ol
= L +Ls, — +Lgp— + L;—|d
dr [S‘a 2 T T e |

= f (d] LS] AS| + dzLSzASQ + dpLgAE + d[L[AI) dx
Q

+ f (Ls, fi + Ls, o + Lefs + Ly f1) dx
Q
:Vl + Vz,

where
fl(SlaS29 E,I)’ f2(Sl’SZ9E’ I)a f3(Sl’SZa E9I) and f4(S19SZ,E9I)

is given by Theorem 4.1. By direct calculation, we obtain

V| = f (d]LSlAsl + dZLSzASZ + dgLEAE + d[L[AI) dx
Q

Sh S5
:dlf 1-— AS]dX-i-de 1-—=—= ASQd)C
Q S Q S»
+dEf(1—E)Ade d,d+a-f(l—l—)AIdx
Q E loa Q 1
VS, VS,
:_dISTf(| S1|) sz*f(l 2| )
ol §? Q
. |VE|2 Ld+o |VI|2
—dpE fg( = )dx—d,l — fg( - Jax

<0,

and
Vz = f (LS]fl + L52f2 + LEf3 + L]f4) dx
Q

:f(Sl—ST)(A—,Bll—Q—d)dx+d+0_f([—l*)[O-—E—(y+d+a)]dx
Q g Q 1

+f(52— 2)(@—[321 d)dx+f(E—E*)[M—(d+a)]dx.
Q Q

E
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Given that (§7, 57, E*,I") is a solution to (4.2), we obtain

1 1 S, St
szf(sl—s*;)[ (S—l—S—]) B =T dx+f(Sz—S§) (S—;—S—z) B (I - 1)]
f(E E)[,BI(SI SI)+ﬁ2(%—S—I) dx+(d+0')f(l I)[———]dx
~ . S* S\E*I ErI . St S, 8.8
_Lﬁlsll (3—S—l—m—E*I)dX'FLdSz(:;—S—I—S—;—STSz)dX

Si  $1S; S.E'I ErI
+de (2————)dx+f,8251(——1—*——i—— )dx
0 : S:S, S;EI*  E°l

For any S, S, E, and I > 0, by the inequality between the geometric mean and the arithmetic mean,
we have

ST A S187
L R LI A S R E RN ALE
S 8] S 85 SIS
3__1_@_2§0,4__1_¥_@_E’ <0.
S SIEI*  E*I Sy 818, SIEIF E*I

Therefore, V, < 0. It follows that ‘{1—‘:’ < 0, and equality holds if and only if
(S1,82,E, 1) =(S1,S5, E*, I").
Hence, W is a Lyapunov functional for the system (1.5). Furthermore
(S1(x,0),S2(x, 1), E(x, 1), [(x,1)) = (51,55, E*, I")
uniformly in [L*(Q)]* as t — oo, which implies that (S 1,85, E*, I) is the global attractor of (1.5).

5. Asymptotic profiles of the EE

To simplify the notation, we write
J*=max f(x) and f. = min f(x),
xeQ x€Q

where f = A, B1,5,,0,d, 0, a,y. We now present a useful lemma that will be employed in this section.

Lemma 5.1. ([56] or [57, Lemma 3.1]) Assume that w € Cz(ﬁ) and satisfies ‘;—‘rf =0,x € 0Q. Then the
following properties hold:
() If w has a local maximum at xy € Q, then Vw(xo) = 0 and Aw(xy) < 0.
(i) If w has a local minimum at y, € Q, then Vw(yy) = 0 and Aw(yy) > 0.
Recall that the system defined by (1.5) admits at least one positive equilibrium when Ry, > 1, as
established in Theorem 3.3(ii). We now investigate the behavior of the EE in the limit as the diffusion
parameters tend to zero. The results presented in this section may offer some insight into how spatial

heterogeneity influences the disease’s dynamics and could inform the development of control strategies
under certain conditions.
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5.1. The case of dy — 0

We first examine the asymptotic behavior of the EE to in the system (1.5) as d; — 0, while d, > 0,
dp > 0, and d; > 0 are fixed. By Theorem 2.3(i) and Theorem 3.3(ii), if Ry > 1, then the system (1.5)
admits at least one EE. The main result in this case is stated below.

Theorem 5.2. Assume that Ry > 1. For fixed d» > 0, dg > 0, and d; > 0, and let d; — 0. Then every
positive solution (S, S, E, I) of (1.7) (up to a subsequence as d; — 0) satisfies

(S1,S2,E, 1) > (51,5, E, D) uniformly on Q
where

A(x)
0(x) + d(x) + B1(0)I(x)’

Si(x) =

and (S,, E, I) is a positive solution of the following problem:

—d,AS 5 = 0(x)S | = Br(x)S .1 — d(x)S, xeqQ,

—deAE = B1(X)S T + Bo(x)S,T — [d(x) + o (0)E, xeQ, -
—d,AT = (0 — [y(x) + d(x) + ()], XeQ, .
= R0 x € Q.

on n T on
Proof. Step 1. Estimates of the upper and lower bounds.
Assume that S (xy) = max S ,(x), xo € Q. Applying Lemma 5.1 to the first equation of (1.7), we
xeQ)
obtain

A (xp) = [0(x0) + d(x0)]S 1(x0) + B1(x0)S 1(x0)(x0) = [6(x0) + d(x0)]S 1(x0),
which implies that

*

for all x € Q.

A
Sl(x)ﬁsl(xo)ﬁg

Let S,(x1) = max S,(x) for some x; € Q. It follows from the second equation of (1.7) and Lemma
5.1 that -
0(x1)S 1(x1) = Bo(x1)S2(x1)I(x1) + d(x1)S 2(x1) = d(x1)S 2(x1).
Combining this with (5.1), we obtain

0
S2(_X) S SZ(XI) = d*Sl(xl) - d*(H* + d*)

for all x € Q.
We now set V(x) = dS| + d»S, + dgE + d;1. Adding the equations in (1.7) yields

- A(d]S] + ngz + dEE + d]I)
=A(x) —d(x)S| —d(x)S, — d(x)E — (y(x) + d(x) + a(x))].

Assume that V (x,) = max V(x), x, € Q. By Lemma 5.1, we have
xeQ)

A(xz) 2 d(x2)S 1(x2) + d(x2)S 2(x2) + d(x2) E(x2) + (y(x2) + d(x2) + a(x2))I(x2).

Electronic Research Archive Volume 33, Issue 12, 7385-7427.



7407

This implies that
Al) _
d(x) d

Without loss of generality, assume that 0 < d; < 1. In this case,

S1(x2) +S2(x2) + E(xp) + I(xp) <

£

max(d;S 1(x) + dS2(x) + dgE(x) + d;I(x)) < max V(x) = V(x,) < M/;—,

xeQ) xeQ) *

where M = max{l1, d,, dg, d;}. Therefore, for all x € Q, we obtain

*

E() <~ max V(x) < LA
X — max X)) ——,
dE xeQ dEd

and

*

1
I(x) < d_jr,IvleaX V(ix) < d_,d

Then there is a positive constant C, independent of d,, such that

E(x),1(x) < C for all x € Q.

Assume that S (x3) = min S, (x), x3 € Q. Applying Lemma 5.1 to the first equation of (1.7), we
xeQ

obtain

A,
I(X) >S]()C3) mferallxeﬂ

We can then find a positive constant C, independent of d;, such that

S1(x)>minS (x) =S, (x3) > C > 0forall x € Q.
xeQ

Next, we estimate the lower bound of S,. Let §,(x4) = min §,(x) for some x4 € Q. We apply Lemma
x€Q)

5.1 to the second equation of (1.7) to conclude that

0(x4)S 1(x4)
Ba(x)I(x4) + d(x4)
Since S | (x) has a positive lower bound and /(x) has a positive upper bound, it follows that %

is also bounded below by a positive constant. Therefore, there is a constant C > 0, independent of d;,
such that

S2(x) > 85(xs) >

S>(x) > minS»(x) = S»(xs) > C > 0 for all x € Q.

xeQ

From the analysis above, a constant C > 0 independent of d; exists such that
1 -
C < 81(x), So(x) < C and I(x), E(x) < C for all x € Q. (5.2)

Next, we claim that E also has a positive lower bound. We argue by contradiction. Suppose, to the
contrary, that no such lower bound exists. Then there is a sequence d, := d;, = 0asn — oo, and a
corresponding positive solution

(S 1,ns SZ,na Ena In) = (S 1,d,» SZ,d,,9 Ed,,9 Idn) 5
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of system (1.7), such that min £,, — 0 as n — oo. From the third equation of (1.7), we observe that
xeQ

OE,
—dpgAE, +[d(x)+ oc(X)]E, >0, x € Q; T =0, x € 0Q.
n

Therefore, by applying [58, Lemma 2.1] with p = 1, we obtain
IEnIL @) < Cinf E,.

This implies
||En||Ll(Q) — 0asn — oo,

We now integrate the third equation of (1.7) over €2, using (5.2) to obtain

B+ B f Id f B f
- 4 naXx < (ﬁl (X)S 1,n +ﬁ2(X)S 2,n)1nd-x - [d(X) + O-(x)]End-x-
C Q Q Q

It follows that ||1,]|;1q) — 0 as n — oo.
We examine the following equation satisfied by 7,,:

{ —d;AL + [y(x) + d(x) + a(0)]I, = c(x)E,, x€Q,

& =, X €0Q.

(5.3)

From (5.2), we know that
lo()Ellrq) < C for p > 1.

By standard elliptic L? theory and the Sobolev embedding theorem, we deduce that
||In||c1+"(fz) <C ”In“WZ»!'(Q) <C ||0'(X)En||u(£2) <C

for some @ € (0, 1), where C is independent of n. Therefore, the sequence {1,}y-4, <1 1S precompact in
C'(Q). Thus, there is a subsequence of d;,, — 0, still denoted by d,,, and a corresponding sequence of
positive solutions (S'1,,, 2., Ex, I,,) to (1.7), such that

I, » Iin C'(Q) as n — .

Consequently, / = 0. Indeed, if I # 0, then fglndx — fg Idx > 0, which contradicts the fact that
IZ,l.1 ) — O as n — oco. Therefore, we conclude that

I, » 0 in CY(Q), asn — . (5.4)

In the following, we focus on the first equation of the system (1.7) as follows:

0S 1

_dnASl,n = A(x) _ﬁl(x)Sl,nIn - 0(x0)S In — d(X)S Lns X € Q; B
n

=0, x € 0Q.

In view of (5.4), for any € > 0, a positive integer N, exists such that, for all n > N,

0<I,<e xeQ. (5.5
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Consequently, for all n > N, it follows that
A(.X) _,81 (X)S l,nln - H(X)S 1n — d()C)S 1,n < A(X) - H(X)S In — d(.X)S 1,ns

and
A(x) = B1(X)S 15l — 0(X)S 1, = d(X)S 1, 2 A(x) = O(0)S 1, — d(X)S 1, — EBI(X)S 1,0

By the comparison principle, we know that S|, is an upper solution of the problem

0z
-d,AZ = A(x) — (gB1(x) + 8(x) + d(x))Z, x € Q; 6__ =0, x € 0Q. (5.6)
n
Here, Z  denotes the unique positive solution of (5.6). Using an argument analogous to the proof
of [59, Lemma 2.4], we deduce that

. AGx)
£ 7 B0 + 6(x) + d(x)

uniformly on Q as n — co.

Therefore, § |, satisfies

A _
liminf S, > lim Z = *)

o0 V= B+ o+ 5D

Similarly, we consider the problem
_ - 0Z
—d,AZ = A(x) — (0(x) + d(x))Z, x € Q; o =0, x € 0Q,
n

which admits a unique positive solution, denoted by Z,. In fact, by the comparison principle, S, serves
as a lower solution to this elliptic problem. Furthermore, we use [59, Lemma 2.4] to conclude that
A(x)

li Si,<limZ,= —=— . 5.8
b2t = 02 = 000 + d(v) 69

By the arbitrariness of ¢, together with (5.7) and (5.8), we obtain

A(x)

Sia(x) > Sl(x) = m

uniformly on Q as n — co. 5.9

Next, we focus on the following equation satisfied by S, ,:

0San

_dZAS 2n = G(X)S 1,n _IBZ(X)S 2,nln - d(X)S ons X € Q’
n

=0, x € 0Q.

Thanks to (5.4) and (5.9), the method of upper and lower solutions can be applied to show that
Son— S, uniformly on Q, asn — oo,

where S, is determined by (2.6).
Define

. E,
IEull> + M|l = N, E, = T I, = (5.10)
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It then follows that
lEalle + Ul =1,  E,, 1, >0 (5.1D)

and (E,, I) satisfies the system

~dgAE, = B1(0)S 1, + Br(0)S 20k, — [07(x) + d(D)]E,, x€Q,

~d;AlL, = c(DE, - [y(x) + d(x) + a(0)]L,, xeQ, (5.12)
aa% = %7 =0, x € 0Q).

By a standard compactness argument for elliptic equations, and after passing to a subsequence if
necessary, we obtain
E, > Eandl, » Tasd, » 0 in CY(Q),

where (E, I) satisfies

—dgAE = Bi()S 1] + Bo(x)S ] — [6(x) + d(D)E, xeQ,

—d;Al = c(x)E - [y(x) + d(x) + a(0)]], xeQ,
?3_5 = g_i =0, x € 0Q.

Applying the strong maximum principle, we conclude that either
E(x)>0,1(x)>0o0r E(x)=0,(x)=0on Q.

However, it follows from (5.11) that E(x), [(x) > 0 for all x € Q, which implies that R, = 1, contradicting
our assumption. Hence, there is a positive constant C, independent of d,,, such that

E(x) > C forall x € Q. (5.13)

Let I (x;) = min I(x), x; € Q. From the third equation in (1.7) and by applying [57, Lemma 3.1], we
obtain <
[y(x1) +d(x1) + a(x)(x1) = o(x)E(x1).
In view of (5.13), it follows that

Co

I()C) > I()Cl) > m for all x € Q (514)

Hence, by (5.2), (5.13), and (5.14), one can conclude that there is a positive constant C, independent of
0 < d; < 1, such that

1 -
o < §1(x),S82(x), E(x), I(x) < C forall x € Q. (5.15)

Step 2. Convergence of S,, E, and 1.
We now consider the following problem:

{ _dEAEn + [d(X) + O-(X)]En = ﬁl(X)S l,nln +ﬁ2(x)S2,nIn, BAS Q’ (5 16)

%:0’ x € 0Q.
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By virtue of (5.15), we can get
NB1()S 15 + B2(2)S 2 LullLri) < C forall p > 1.
Applying standard elliptic L” theory and the Sobolev embedding theorem, we obtain
IEullcreo@y < CllEllw2r) < C, 0 <a <.

Therefore, the sequence {E,}y.4< 1S precompact in C'(Q). Consequently, there is a subsequence
of d,, still denoted by d, := d,, withd, — 0 as n — oo, and a corresponding positive solution
(S 1.5 S 205 En, I,) of (1.7), such that

E, - Ein CY(Q) as n — oo.

Since (5.13) holds, we deduce that £ > 0.
Next, recalling that 7 satisfies (5.3), and S,

{ _dZAS2,n +ﬁ2(x)52,nln + d(x)SZ,n = H(X)S 1,ns X € Q7 (517)

B -, x € Q.
By (5.15), we have
lo()Ellzr@) < C, 10(X)S 14l < C forall p > 1.

We then apply a similar argument as above to conclude that

Lallcr+e) < C, < C forsome 0 < a < 1.

S 2.n

Cl-w(Q)

Thus, the sequences {S 7}, din<t Undo<ay,<1 are precompact in C 1(Q). Hence, possibly after passing to a
further subsequence (still denoted by d, := d ), a corresponding positive solution (S 1 ,, S 2.4, E,, I,) of
(1.7) exists such that

Sopn—S2 I, > I>0inC'(Q)asn — oo, (5.18)

thanks to the lower bound provided in (5.15).
Step 3. The convergence of S ;.
For eachn > 1, S, satisfies the following problem:

(5.19)

{ —dyAS 1 = AX) = B1(0)S 10y = O(X)S 1 —d(X)S 1, X €Q,

3 1.
- =0, x € 0Q.
n

In view of (5.18), for any 0 < € < rrgn I, a constant N, exists such that, for all n > N, we have
O0<I-e<I(x)<I+eforall xeQ.
Thus, for a sufficiently large n, it follows that
AX) = B1)S 1ady = () 1, — d(X)S 1y = Ax) = 0(0)S 14 — d(X)S 1, = Bi(0)S 1, (T + &)
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and
Ax) = B1(X)S 1 udy = 0()S 1, — d(X)S 1, < A(x) = O(xX)S 1, — d(X)S 1, — B1(X)S 1,.(I — &).

Now, consider the following auxiliary problem for a fixed large n:

(5.20)

&=, x €90,

{ —~d, AW = A(x) — (B1(x)IT + &) + 6(x) + d(x))W, x€Q,
which admits a unique positive solution, denoted by W . Furthermore, by [59, Lemma 2.4], one can

show that
A(x)

W — =

" Bi(x)U + &)+ 0(x) + d(x)
One can easily verify that S, satisfies the conditions of an upper solution for (5.20) in the sense of the
maximum principle. Therefore

uniformly on Q as n — c.

A(x) a

liminf S, > lim W = = on
n—e0 n—eo " Bi(x)(I + &) + 0(x) + d(x)

(5.21)

Let W, be the unique positive solution to the following problem:

{ ~d, AW = A(x) = (Bi(0)T - &) + 6(x) + d())W, x€Q,

63_2/:0’ x € 0Q,

which is an upper solution to (5.19) by the maximum principle. Applying [59, Lemma 2.4] again yields

— A _
limsup S 1 ,(x) < lim W, = __ AW on Q (5.22)
n—oo n—oo ,Bl(x)(l —&)+0(x)+d(x)
By the arbitrariness of € > 0 and combining (5.21) and (5.22), we conclude that
~ A -
Sia(x) = Si(x) = = () uniformly on Q as n — co. (5.23)
B1(x0)] + 6(x) + d(x)
It is evident that (S ,, E, ]) satisfies (5.1). This completes the proof. |

5.2. The case of dy — 0

In this subsection, we investigate the asymptotic behavior of the EE as d, — 0, while keeping
d; > 0,dg > 0, and d; > 0 fixed. By Theorem 2.3(ii) and Theorem 3.3(ii), if Ry > 1, then the system
(1.7) admits at least one EE. The corresponding result in this limiting regime is stated below.

Theorem 5.3. Suppose that Ry > 1 and fix dy > 0, dg > 0, and d; > 0. Then, for any positive solution
(S1,82,E, D) of (1.7), a subsequence (still denoted by (S 1, S, E, I) for simplicity) exists such that, as
d, — 0, we have

(S1,S2,E.I) = (51,5, E, ) uniformly on Q,

where _
0(x)S 1(x)

d(x) + B()I(x)’

Sz(x) =
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and (S, E, I) is a positive solution of the following problem:

—diAS | = A(x) = B1(x)S§ T - 0(x)S | —d(x)S,, xeQ,
—deAE = B1(x)S T + Bo(x)S,T — [d(x) + o(0)E, xeQ,
—d,Al = o(x)E - [v(x) +d(x) + a(0)]1, x€Q,

98y _ 9E _ ol _
ot = or =5, =0, x € 0Q.

(5.24)

Proof. Step 1. Estimates of the upper and lower bounds.
The upper and lower bound estimates for S, and S, and the upper bounds for E and I established
in Theorem 5.2 still hold. Therefore, there is a positive constant C, independent of d,, such that

1 —
E(x),I(x) < C and C < S1(x),S2(x) < C for x € Q.

Next, we estimate the lower bound of E. Arguing by contradiction, suppose that E does not admit a
positive lower bound. Then a sequence d,, := d,,, — 0 as n — oo, exists along which a corresponding
positive solution (S, S2., Es, I,) = (S Vs s S 2.r s Eddy s Id”) of the system (1.7) satisfies min E,, — O.

: ' S Q

X€
Using similar arguments as in the first step of the proof of Theorem 5.2, we conclude that (5.4) holds.
We now consider the elliptic equation

—d\AS 1+ B0, +0+d)S 1, = A(x), x€Q, (5.25)
Bl — 0, x € 99, '
It follows from the method of the upper and lower solutions to deduce that
S, — § uniformly on Q as d, — 0. (5.26)
Here, S is determined by (2.7).
Given any € > 0, it follows from (5.4) and (5.26) that N > 0O exists such that foralln > N,
0<S1(x)—e<S1,(x) <8 (x)+e, 0<IL(x)<einQ.
For all n > N, it then follows that
0(0)S 10 = Bo(X)S 201y — A(X)S 2 2 O(X)(S 1(x) — &) — [6Ba(x) + d(x)]S 2,
and
0()S 1.0 = B2(X)S 2Ly = A(X)S 20 < O(X)(S 1(x) + &) — d(X)S 2.
For fixed a sufficiently large n, S, serves as an upper solution to
~d, AU = 6(x)($1(x) = &) = [8B2(x) + d()]U, x€Q, 5.27)
2 =0, x €90, '
and a lower solution to
~d,AU = 0(x)(S —d(x)U, Q,
p (1) + &) = dT, x e 5.8)
o 0, X € 6Q,
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respectively. It is known that both (5.27) and (5.28) admit unique positive solutions, denoted U, and
U,, respectively. Moreover, by a similar argument as in [59, Lemma 2.4], we have

0S8 1(x) — &)

U (x) = uniformly on Q as n — oo,
S0 e+ deo ’
and A
_ 0 -
Uu, — W10 + #) uniformly on Q as n — 0.
d(x)
Therefore, we conclude that
IS -8) . . . 0x)(S1(x) + &)
<1 £fS,,(x) <1 Soa(x) < . 5.29
Ba0) + ()~ it S2n(0) < Himsup §2.,() d(x) ©:29)

Since € > 0 is arbitrary, it follows from (5.29) that

608 1(x)

S2.(x) = $2(x) = )

uniformly on Q as n — .

By the definition of (5.10), we know that (E,, 1)) satisfies (5.12). By a standard compactness
argument for elliptic equations, after passing to a subsequence if necessary, we obtain

E,— Eandl, > TinC'(Q) asd, -0,
where (E, I) satisfies the following elliptic system:

—dpAE = B1(0)S 1T + Br(x)S ] — [6(x) + d(x)]E, x€Q,

—d,Al = o(x)E — [y(x) + d(x) + a(0)]], xeQ,
% = 9l _, x € 0Q.

Applying the strong maximum principle, we conclude that either
E(x)>0,1(x)>0o0r E(x) =0,/(x) =0in Q.

It follows from (5.11) that E(x), I(x) > 0, which implies Ry = 1, leading to a contradiction. Hence, a
positive constant C independent of d, exists such that

E(x) > C forall x € Q. (5.30)

Let 7 (x,) = min I(x) for some x, € Q. By the fourth equation of (1.7), we obtain

x€Q)
[y(x2) + d(x2) + a(x2)]1(x2) = o (x2) E(x2).
In view of (5.30), this yields

Co, ]
1x) 2 1(x;) > Wﬁ for all x € Q.

Electronic Research Archive Volume 33, Issue 12, 7385-7427.



7415

Therefore, we can find a positive constant C, independent of 0 < d, < 1, such that

1 -
C < §1(x),82(x), E(x),I(x) < C forall x € Q. (5.31)

Step 2. Convergence of S, S», E, and 1.

Since ||A(x)||r) < C for any p > 1, we apply the L theory and the Sobolev embedding theorem to
(5.25) to deduce that [|S,/|c1+eq) < C, for some 0 < @ < 1. Hence, S, is precompact in C'(Q),soa
subsequence d,, := d,,, — 0 as n — oo exists, and a corresponding positive solution (S ; ,, S 2., Ey, I,,) of
(1.7), such that

Sin—81inC'(Q)asn — co. (5.32)

By virtue of (5.31), we find that §; > 0in C'(Q).
In light of (5.31), we apply a standard compactness argument to the elliptic equations (5.3) and
(5.16); after passing to a subsequence if necessary, it follows that

”En”Cl*a(Q) < C, ”L’L”C”“’(Q) < C, O<ax<l.

Thus, {E,}o<q,<1 and {l,}9<4,,<1 are precompact in C 1(Q). Therefore, passing to a subsequence if
necessary (still denoted by d,, := d,,, — 0 as n — ), a corresponding sequence of positive solutions
(S 1.5 S 24, En, I,) to (1.7) exists, such that

E,—»E>0,1,-1>0inCYQ), asn — oo, (5.33)

and by (5.31).
For any € > 0, by (5.32) and (5.33), N > 0 exists such that forall n > N,

0<S, -<8S,,<S,+eand 0<T-e<I,<I+e.
For all n > N, it then follows that
0(x)S 1,4 = Bo(X)S 201y — d(X)S 20 = O(X)(S | — &) — [Bo()U + €) + d(x)]S 2,5

and
0(x)S 11 = Bo(X)S 2L, = d(X)S 2, < O(X)(S 1 + &) — [Bo(x)U = &) + d(X)]S 2.

Let Qn and Q, be the unique positive solutions of

~d,AQ = 0(x)(S | - &) - [B()T + &) +d(x)]Q, x€Q, 53

Z -y, x €0Q, '
and . . 3 .

—dyAQ = 0(x)(S1 + &) = [B(0)U — &) +d(0]Q, x€Q, (5.35)

% — o, x € 09, '

respectively. For a sufficiently large n, it follows from the comparison principle that

Q (0) < 82,(x) < Q,(x) for all x € Q.
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Moreover, by [59, Lemma 2.4], we obtain

0(x)(S 1 (x) — &)

Qn(x) - B0 + &) + dio uniformly on Q as n — oo
and -
0,(x) — H(XB(S 1) + ©) uniformly on Q as n — oo.
Ba()(U(x) — &) + d(x)
Hence
OGO Z)  _firning 55, (x) < Timsup Sa,(x) <« — 21D +E)
Ba()U(x) + &) +d(x)  noe n—eo Ba(0)U(x) — &) + d(x)

By the arbitrariness of € > 0, we conclude that

. 0(x)S -
§2,(6) = Sax) 1= — 2D kormly on G as 1 — oo.
Bo()(x) + d(x)
It is now clear that (S, E, ]) satisfies (5.24). The proof is complete. |

5.3. The case of dg — 0

Assume that

f T (D)B10)S 1(x) + B2(x)$2(x))
Q

d(x) + o (x) dx> L(W‘) +d(x) + a(x))dx, (5.36)

where, (S, S,) is uniquely determined by (1.8). By Theorem 2.3(iii), we then have Ry > 1 for any fixed
di, d,, and d; > 0 as dg — 0. Consequently, Theorem 3.3 guarantees the existence of an EE for the
system (1.7).

In this subsection, we investigate the asymptotic behavior of this EE as the diffusion rate dg tends to
zero. Our main result is stated below.

Theorem 5.4. Suppose that (5.36) holds and fix di > 0, d, > 0, and d; > 0. Then for any positive
solution (S1,S,, E, I) of (1.7), there is a subsequence (still denoted by (S, S », E, I) for simplicity ) such
that, as dg — 0, we have

(S1,S2,E.I) = (51,58, E, I uniformly on Q,

where . _ . _
B1(x)S 1(0)1(x) + Bo(0)S 2(0)](x)
d(x) + o(x) ’

and (S, S5, 1) is a positive solution of the following problem:

E(x) =

—dlAgl = A(.X) —ﬁl(X)gli— 0()(7)51 - d(X)Sl, X € Q,

—drAS, = 0(x)S | — Br(0)S 2] — d(x)S 2, x€Q, 537
—d,AT = ¢ (0 E — [y(x) + d(x) + a1, xeQ, (5.37)
Bty x €9

on on ~ on
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Proof. In the following, C is a positive constant independent of dg > 0.

Step 1. Estimates of the upper and lower bounds.

Recalling the estimates of S|, S, and I in Theorem 5.2, we can find a constant C > 0, independent
of dg, such that

1 -
I(x) < C, C < S51(x),S2(x) < C forall x € Q. (5.38)

Let E (x;) = max E(x) for some x; € Q. Applying Lemma 5.1 to the third equation in the system
Q
(1.7), we obtain

(d(x1) + o(x))Ex) < [B1(x)S1(x1) + Bo(x)S2(x) 1 (x1) < C.

Thus, we derive the upper bound

for all x € Q. (5.39)

C
Ex)<E <
(x) S E(x)) < Lo

We now proceed to prove the lower bound of 1. Assume, for the sake of contradiction, that I does not
admit a positive lower bound. Then there is a sequence d,, := dg,, — 0 as n — oo, and a corresponding
sequence of positive solutions

S18S2m Ens 1) =(S14,,S24,, Ea,» 1a,)

to the system (1.7), such that min 7/, — 0. From the fourth equation in (1.7), we have

xeQ
ol,
—d;AlL + [y(x) +d(x) + a(x)]l, > 0,x € Q; B =0,x € 0Q.
n

By [58, Lemma 2.1] with p = 1, it follows that

Il o) < Cigf I,.

Consequently, ||1,||1) — 0 as n — oco. Applying standard elliptic regularity theory to (5.3), we deduce
that (5.4) holds, following arguments analogous to those in the proof of Theorem 5.2. Recalling that S, ,
satisfies (5.25), and S, satisfies (5.17), we apply the method of upper and lower solutions to conclude
that

Sin— S and S,, — $, uniformly on Q (5.40)

as d, — 0. Here, (S1,3,) is the unique solution determined by (1.8).

In view of the definition in (5.10) and the uniqueness of the non-negative solution I, to (5.3) with E,,
replaced by E,, standard compactness arguments for elliptic equations show, after passing to a further
subsequence if necessary, that

I, > Iin Cl(ﬁ), asdg — 0, (5.41)
where [ satisfies . .
—d;Al + (y(x) +d(x) + a(x))[ >0, xeQ,
{ a o, x € 9Q.
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By the strong maximum principle, we conclude that either / = 0 or / > 0 in Q. In view of (5.11), we
obtain [ > 0.
We now consider the following equation satisfied by E,,

% =, X €0Q
n

{ _dnAEn = (ﬂl(-x)S 1,n +ﬁ2(X)S 2n)in - [d(x) + U(x)]En’ X € Q’

In view of (5.40) and (5.41), we apply the method from [59, Lemma 2.4] to deduce that

. S\ +B88)1 . _
E, - B3+ 55l := £ uniformly on Qasn — oo.
d(x) + o(x)

Consequently, [ satisfies

BUO$ 1) +B0S200o

—diAL + [y(x) + d(x) + a(x)]] = o(x) d(x) + o(x) 7 on

This implies that the principal eigenvalue w; = 1 of (2.8) satisfies w; = 1, with [ being the corresponding
positive eigenfunction.

However, by Theorem 2.3(iii), we have Rj — Ry = 1 asd, — 0, where R} is the basic repro-
duction number associated with (2.2) when the diffusion coeflicient is d,. On the other hand, the
assumption (5.36), together with Theorem 2.3(iii), implies that Ry > 1. This contradicts the previous
conclusion that Ry = 1. Hence, our initial assumption must be false. Consequently, a positive constant
C, independent of dg > 0 exists, such that

I(x) > C for all x € Q. (5.42)

Let E (x,) = min E(x) with x, € Q. From the third equation of (1.7) and Lemma 5.1, it follows that
xeQ

E(xy) > B1(x2)S 1(x2) +ﬁz(xz)52(xz)l(x2).

d(x;) + 0 (x2)

Therefore, using (5.38), and (5.42), we deduce

(ﬁlx ﬁZ*
* 4+ o

E(x) > E(x) > for all x € Q. (5.43)

Step 2. Convergence of S, S5, and I.
First, observe that

1B1(x0)1, + 0(x) = d(X)ll=()> IAD)|Lri) < C, forall p > 1.

Applying the L? theory for elliptic equations together with the Sobolev embedding theorem to (5.25)
yields

IS 10 <C O<a<l.

C“’"(Q)
Hence, S, is precompact in C 1(Q). Consequently, a subsequence d,, := dg, — 0 as n — oo exists, and
a corresponding positive solution (S{ ., S 2.4, En, I,) of (1.7) such that

Sin— S, inC'(Q), asn — co. (5.44)
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Because of (5.38), we have §; > 0 on C'(Q).

Next, consider Eq (5.17). By the standard L? elliptic regularity theory and the Sobolev embedding
theorem, the sequence {S,} is precompact in C'(Q). Hence, upon passing to a further subsequence if
necessary (still denoted by S, for simplicity), we can assume that

Sy, —S,>0 inC'(Q), asn — o, (5.45)
where the positivity follows from (5.38). Since [, satisfies (5.3) and, by (5.39), we have
lor(X)E,ll 1oy < C for p > 1,
the L” estimates and the Sobolev embedding theorem yield
Lullcr+a@) < C lully2rq) < C for 0 < a < 1.

Thus, along the subsequence
L, > 1 inCY(Q), asn— (5.46)

and I > 0 by (5.42).
Step 3. The convergence of E.
In view of (5.44)—(5.46), for any £ > 0, a positive constant N exists, such that for all » > N, we have

0<Ix)—e<L(x)<Ix)+¢, xeQ,

0<S(0)-e<S1,x)<S 1 (x)+e, x€Q,
()<§2(x)—8SSz,n(x) <S,(x)+¢& xeQ.

Therefore, for a sufficiently large n, we obtain the following inequalities:
B1S 1+ B2S2n)ly = [d(x) + T(OE, < [Bi(S1 + &) + Bao(S2 + &)IU + &) = [d(x) + T(D)]E,,

BrS 1+ B2S2n)ly = [d(x) + T(D]E, 2 [B1(S1 = &) + Bo(S2 = &)l - &) = [d(x) + T(N)]E,.

By applying the perturbation argument [59, Lemma 2.4] as in the proof of [15, Theorem 5.4], we then
conclude that _ B _
[B1(X)(S1(x) = &) + B2(x0)(S 2(x) — &)U (x) - €)
d(x) + o(x)

| BIOG () +8) + Ba(0G(0) + DT + 8)
lim sup £,(x) < 400 + o) |

< liminf E,(x) <

Since ¢ is arbitrary, we obtain

E,(x) - B3 1(;()); fzo(_fgjz(x))l(x) uniformly on Q as n — oo.

It is evident that the triple (S, S,, I) forms a positive solution to (5.37). o
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5.4. The case of d; — 0

Assume that

T(D)B1(0)S 1(x) + Ba(1)S 2(x)
fg O+ d® ram fg("’(x) +o(0)dx, (5.47)

where (S, 5,) is the unique solution of (1.8). By Theorem 2.3(iv) and Theorem 3.3, the system (1.7)
admits a positive steady-state solution—that is, an EE.

In this subsection, we investigate the asymptotic behavior of this EE as the diffusion rate d; tends to
zero. The main result is stated as follows.

Theorem 5.5. Suppose that the condition (5.47) holds and fix d, > 0, d, > 0, and dg > 0. Then, for
any positive solution (S, S 2, E, I) of (1.7), a subsequence (still denoted by (S 1, S, E, I) for simplicity)
exists such that, as d; — 0

(S1,S.,E, 1) > (S1,5,,E, uniformly on Q,

where _
g(x)E(x)

" Y@ +d) + e

I(x)
and (S 1,55, E) is a positive solution to the following problem

—diAS | = A(x) = B1(x)S T - 0(x)S| —d(x)S,, xeQ,

~dyAS > = 008 1 = Bo(0)S o = d(0)S, _ xeQ, (5.48)
—dpAE = Bi(0)8 11 + Bo(0)So] - [d(x) + c(W]E, x€Q, '
By - 85 - 9 g, x € 9.

Proof. In the proof, C denotes a positive constant independent of d;. We begin by establishing the upper
and lower bounds. By the estimates for S, S,, and E in Theorem 5.2, a constant C > 0, independent of
d; exists, such that
E(x), S1(x), S»(x) < C forall x € Q.
Let I (x;) = max I(x) for some x; € Q. Applying Lemma 5.1 to the fourth equation of (1.7), we
Q
obtain
o(x1)E (x1) = [y(x1) +d(x)) + a(x) (x1) .

Since E(x) is uniformly bounded above, we conclude that

k

C _
I(X)SI(JQ)S—O- for all x € Q.
Ve +d. + .

Assume that S| (x,) = min S |(x), x, € Q, applying Lemma 5.1 to the first equation of (1.7), we have
xeQ
S1(x) = S81(x) = A. for all x € Q
X X —— forall x .
B == o+ a
This implies that a positive constant C, independent of d; exists, such that

S1(x)>minS(x) =S, (x;) > C >0 forall x € Q. (5.49)

xeQ
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Now, we estimate the lower bound of S,. Let S,(x3) = min S,(x), x3 € Q. We use Lemma 5.1 to the
xeQ

second equation of (1.7) to derive

0 )
SH(x) > Sy(x3) > ()S51(%) e a.

Ba(x3)I(x3) + d(x3)

Since S ;(x) has a positive lower bound and /(x) has a positive upper bound, there is a positive constant
Cy independent of d; such that

S5(x) > min S»(x) = S»(x3) > Co > 0 for all x € Q. (5.50)
xeQ

We employ an argument similar to that in the proof of [15, Theorem 5.5] to show that there is a positive
constant C, independent of d; > 0, such that

E(x)>C forall xeQ.

Set I (x4) = min I(x) for some x4 € Q. Applying Lemma 5.1( [57, Lemma 3.1]), we obtain
xeQ

[y(x4) + d(x4) + a(x)11(x4) = 0(x4) E(xs).

It follows that

o, - for all x € Q.

1 > > —
W21z =

Observe that S, 5, and FE satisfy the following system:

—d] AS] + (Q(X) + d(X))Sl +,81(X)S I = A(X), x € Q,

_dQASZ + d(X)S2 +ﬁ2(X)S2] = Q(X)Sl, x € Q,
—dgAE + [d(x) + 0(0)IE = Bi(X)S I + Ba(x)Sal, x€Q,
Br= B2 9E - x € 0Q.

on on on
Following arguments analogous to those in the proofs of Theorems 5.2-5.4, and considering a sequence
{d; .} with d;, — 0 as n — oo, we obtain

Sin—=81,82,—8, E,—» EinC'(Q), asn — co. (5.51)

Moreover, since S 1, S,, and E are uniformly bounded below by positive constants (independent of n), it
follows that S;,S5,, E > 0 in C'(Q).
Now consider the following equation satisfied by 7,:

-d,Al, = c(X)E, — [y(x) + d(x) + a(x)]I,, x€Q,
% = 0, X €0Q.

Applying the perturbation argument from [59, Lemma 2.4], we deduce that

E . -
I(x) — > Z(c)iczx)(i)a(x) uniformly on Q as n — oo.

It is now clear that (S, S,, E) is a positive solution of the system (5.48). This completes the proof. O
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6. Conclusions and discussion

In this paper, we study an SEIR reaction—diffusion epidemic model (1.3) that incorporates susceptible
individuals with underlying health conditions. We investigate the effects of spatial heterogeneity,
individual movements, and underlying diseases on the persistence and extinction of infectious diseases.
Similar problems have been addressed in our previous study [15] on the classical SEIR model without
underlying diseases (1.6), and many of the results obtained here are consistent with those obtained
in [15]. However, our results indicate that the presence of susceptible individuals with underlying health
conditions can elevate the risk of disease transmission.

In what follows, we compare and discuss how factors such as environmental heterogeneity, diffusion
rates, and the presence of underlying diseases affect the basic reproduction number, and also examine
how these factors influence the disease’s persistence or extinction, as well as the asymptotic profiles of
the steady states.

e The effects of spatial heterogeneity and the mobility

In a heterogeneous environment, the basic reproduction number Ry is defined by the eigenvalue
problem (2.2), whereas in the homogeneous case, Ry is given explicitly by Eq (4.1). Compared
with (4.1), the expression (2.2) indicates that Ry depends not only on the spatial heterogeneity, such
as resource distribution, population density, and contact rates, but also on the diffusion rates of
various compartments, including susceptible individuals without underlying diseases (d;), those with
underlying diseases (d»), the exposed (dg), and the infectious (d;). The asymptotic behavior of Ry with
respect to these diffusion rates is analyzed in Theorem 2.3, revealing that the inclusion of susceptible
individuals with underlying diseases introduces additional complexity beyond that of the classical
model (1.6).

Both spatial heterogeneity and mobility play critical roles in shaping R, by altering the transmis-
sion dynamics and disease spread patterns. The persistence results for the infectious population (see
Theorem 3.3) offer important insights into the conditions under which the disease can remain endemic,
emphasizing the central importance of controlling R, for effective epidemic management. A primary
objective of this study is to examine how spatial heterogeneity and diffusion rates influence the
asymptotic profiles of EEs; see Theorems 5.2-5.5. Analogous results for the model (1.6) have been
established in [15, Theorems 5.3-5.5]. These findings highlight the complexity of infectious disease
dynamics in spatially structured populations and demonstrate the robustness of disease persistence
even as the mobility rates of various compartments tend to zero.

e The effects of underlying diseases

The basic reproduction number plays a fundamental role in determining how a disease spreads
within a population, and is also affected by the proportion of susceptible individuals (see [15, Theorem
2.3]). However, in our model (1.3), the basic reproduction number depends not only on the density
of susceptible individuals without underlying diseases, denoted by $(x), but also on that of those
with underlying diseases, S,(x). Furthermore, the transmission coefficients differ between these
two groups: B; for individuals without underlying diseases and 5,(> ;) for those with underlying
diseases. This dual contribution highlights the added complexity of the basic reproduction number
introduced by underlying health conditions. According to Lemma 2.4, such conditions can, in certain
scenarios, lead to an increase in the basic reproduction number.
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