Research article Special Issues

A Cartesian grid-based kernel-free boundary integral method for Allen-Cahn equation

  • Published: 04 December 2025
  • This paper investigates the numerical solution for Allen-Cahn equations with perturbation parameters and strong nonlinear terms in general computational domains. To get a global second-order accuracy, we use the second-order semi-implicit Runge-Kutta (SIRK) method and some implicit-explicit (IMEX) methods for time discretization. Then the original problem is transformed into boundary value problems (BVPs) of a modified Helmholtz equation at each time step, which can be solved by a Cartesian grid-based kernel-free boundary integral (KFBI) method. In the KFBI method, the BVPs are reformulated into a corresponding boundary integral equation and then solved iteratively by a class of subspace methods such as the matrix-free generalized minimal residual(GMRES) method, while integrals involved are regarded as solutions to their equivalent interface problems. Unlike traditional boundary integral methods, this method avoids numerical integration of the singular or nearly singular integrals. Instead, it utilizes grid-based operations as an alternative to direct evaluation. Therefore, integral evaluation only requires solving equivalent but much simpler interface problems in a bounding box so that fast elliptic solvers such as fast fourier transforms(FFTs) and geometric multigrid methods are applicable. This makes the KFBI method accurate and efficient when solving constant coefficient elliptic problems in general irregular domains. It can be seen that the accuracy of the present method is verified by numerical examples.

    Citation: Min Zeng, Yaning Xie. A Cartesian grid-based kernel-free boundary integral method for Allen-Cahn equation[J]. Electronic Research Archive, 2025, 33(12): 7331-7359. doi: 10.3934/era.2025324

    Related Papers:

  • This paper investigates the numerical solution for Allen-Cahn equations with perturbation parameters and strong nonlinear terms in general computational domains. To get a global second-order accuracy, we use the second-order semi-implicit Runge-Kutta (SIRK) method and some implicit-explicit (IMEX) methods for time discretization. Then the original problem is transformed into boundary value problems (BVPs) of a modified Helmholtz equation at each time step, which can be solved by a Cartesian grid-based kernel-free boundary integral (KFBI) method. In the KFBI method, the BVPs are reformulated into a corresponding boundary integral equation and then solved iteratively by a class of subspace methods such as the matrix-free generalized minimal residual(GMRES) method, while integrals involved are regarded as solutions to their equivalent interface problems. Unlike traditional boundary integral methods, this method avoids numerical integration of the singular or nearly singular integrals. Instead, it utilizes grid-based operations as an alternative to direct evaluation. Therefore, integral evaluation only requires solving equivalent but much simpler interface problems in a bounding box so that fast elliptic solvers such as fast fourier transforms(FFTs) and geometric multigrid methods are applicable. This makes the KFBI method accurate and efficient when solving constant coefficient elliptic problems in general irregular domains. It can be seen that the accuracy of the present method is verified by numerical examples.



    加载中


    [1] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [2] C. M. Elliott, B. Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements, Commun. Comput. Phys., 13 (2013), 325–360. https://doi.org/10.4208/cicp.170611.130112a doi: 10.4208/cicp.170611.130112a
    [3] L. Golubović, A. Levandovsky, D. Moldovan, Interface dynamics and far-from-equilibrium phase transitions in multilayer epitaxial growth and erosion on crystal surfaces: Continuum theory insights, East Asian J. Appl. Math., 1 (2011), 297–371. https://doi.org/10.4208/eajam.040411.030611a doi: 10.4208/eajam.040411.030611a
    [4] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [5] R. Kobayashi, J. A. Warren, W. C. Carter, A continuum model of grain boundaries, Physica D, 140 (2000), 141–150. https://doi.org/10.1016/S0167-2789(00)00023-3 doi: 10.1016/S0167-2789(00)00023-3
    [6] J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12 (2012), 613–661. https://doi.org/10.4208/cicp.301110.040811a doi: 10.4208/cicp.301110.040811a
    [7] D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000), 57–88. https://doi.org/10.1017/S0022112099006874 doi: 10.1017/S0022112099006874
    [8] J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2009), R1–R91. https://doi.org/10.1088/0951-7715/23/1/R01 doi: 10.1088/0951-7715/23/1/R01
    [9] D. Shao, W. J. Rappel, H. Levine, Computational model for cell morphodynamics, Phys. Rev. Lett., 105 (2010), 108104. https://doi.org/10.1103/PhysRevLett.105.108104 doi: 10.1103/PhysRevLett.105.108104
    [10] M. Beneš, K. Mikula, Simulation of anisotropic motion by mean curvature–comparison of phase-field and sharp-interface approaches, Acta Math. Univ. Comenianae, 67 (1998), 17–42.
    [11] S. Gu, X. Zhou, Convex splitting method for the calculation of transition states of energy functional, J. Comput. Phys., 353 (2018), 417–434. https://doi.org/10.1016/j.jcp.2017.10.028 doi: 10.1016/j.jcp.2017.10.028
    [12] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669
    [13] D. Jeong, S. Lee, D. Lee, J. Shin, J. Kim, Comparison study of numerical methods for solving the Allen–Cahn equation, Comput. Mater. Sci., 111 (2016), 131–136. https://doi.org/10.1016/j.commatsci.2015.09.005 doi: 10.1016/j.commatsci.2015.09.005
    [14] J. Long, C. Luo, Q. Yu, Y. Li, An unconditional stable compact fourth-order finite difference scheme for three dimensional Allen–Cahn equation, Comput. Math. Appl., 77 (2019), 1042–1054. https://doi.org/10.1016/j.camwa.2018.10.028 doi: 10.1016/j.camwa.2018.10.028
    [15] D. Li, Z. Qiao, On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations, J. Sci. Comput., 70 (2017), 301–341. https://doi.org/10.1007/s10915-016-0251-4 doi: 10.1007/s10915-016-0251-4
    [16] Z. Weng, L. Tang, Analysis of the operator splitting scheme for the Allen–Cahn equation, Numer. Heat Transfer, Part B, 70 (2016), 472–483. https://doi.org/10.1080/10407790.2016.1215714 doi: 10.1080/10407790.2016.1215714
    [17] J. Park, C. Lee, Y. Choi, H. G. Lee, S. Kwak, Y. Hwang, et al., An unconditionally stable splitting method for the Allen–Cahn equation with logarithmic free energy, J. Eng. Math., 132 (2022), 18. https://doi.org/10.1007/s10665-021-10203-6 doi: 10.1007/s10665-021-10203-6
    [18] F. Guillén-González, G. Tierra, Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models, Comput. Math. Appl., 68 (2014), 821–846. https://doi.org/10.1016/j.camwa.2014.07.014 doi: 10.1016/j.camwa.2014.07.014
    [19] P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, 1988. https://doi.org/10.1137/1.9781611970180
    [20] C. M. Elliott, A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), 1622–1663. https://doi.org/10.1137/0730084 doi: 10.1137/0730084
    [21] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, 1997.
    [22] X. Wu, G. J. Van Zwieten, K. G. van der Zee, Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 180–203. https://doi.org/10.1002/cnm.2597 doi: 10.1002/cnm.2597
    [23] S. Zhai, Z. Weng, X. Feng, Investigations on several numerical methods for the non-local Allen–Cahn equation, Int. J. Heat Mass Transfer, 87 (2015), 111–118. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.071 doi: 10.1016/j.ijheatmasstransfer.2015.03.071
    [24] P. Vignal, L. Dalcin, D. L. Brown, N. Collier, V. M. Calo, An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158 (2015), 355–368. https://doi.org/10.1016/j.compstruc.2015.05.029 doi: 10.1016/j.compstruc.2015.05.029
    [25] X. Feng, T. Tang, J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59–80. https://doi.org/10.4208/eajam.200113.220213a doi: 10.4208/eajam.200113.220213a
    [26] F. Chen, J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13 (2013), 1189–1208. https://doi.org/10.4208/cicp.101111.110512a doi: 10.4208/cicp.101111.110512a
    [27] X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst. - Ser. B, 11 (2009), 1057–1070. https://doi.org/10.3934/dcdsb.2009.11.1057 doi: 10.3934/dcdsb.2009.11.1057
    [28] U. M. Ascher, S. J. Ruuth, B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797–823. https://doi.org/10.1137/0732037 doi: 10.1137/0732037
    [29] F. de la Hoz, F. Vadillo, A Sylvester-based IMEX method via differentiation matrices for solving nonlinear parabolic equations, Commun. Comput. Phys., 14 (2013), 1001–1026. https://doi.org/10.4208/cicp.050612.180113a doi: 10.4208/cicp.050612.180113a
    [30] S. Boscarino, L. Pareschi, G. Russo, Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), A22–A51. https://doi.org/10.1137/110842855 doi: 10.1137/110842855
    [31] B. E. Griffith, R. D. Hornung, D. M. McQueen, C. S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223 (2007), 10–49. https://doi.org/10.1016/j.jcp.2006.08.019 doi: 10.1016/j.jcp.2006.08.019
    [32] G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369–520. https://doi.org/10.1017/S0962492914000063 doi: 10.1017/S0962492914000063
    [33] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441–454. https://doi.org/10.1137/S1064827598334599 doi: 10.1137/S1064827598334599
    [34] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, 2007. https://doi.org/10.1137/1.9780898717839
    [35] D. H. Norrie, G. De Vries, The Finite Element Method: Fundamentals and Applications, Academic Press, 2014.
    [36] F. Nudo, Two one-parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element, Appl. Numer. Math., 203 (2024), 160–172. https://doi.org/10.1016/j.apnum.2024.05.023 doi: 10.1016/j.apnum.2024.05.023
    [37] F. Dell'Accio, A. Guessab, F. Nudo, New quadratic and cubic polynomial enrichments of the Crouzeix-Raviart finite element, Comput. Math. Appl., 170 (2024), 204–212. https://doi.org/10.1016/j.camwa.2024.06.019 doi: 10.1016/j.camwa.2024.06.019
    [38] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479–517. https://doi.org/10.1017/S0962492902000077
    [39] R. J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), 1019–1044. https://doi.org/10.1137/0731054 doi: 10.1137/0731054
    [40] A. N. Marques, J. C. Nave, R. R. Rosales, High order solution of Poisson problems with piecewise constant coefficients and interface jumps, J. Comput. Phys., 335 (2017), 497–515. https://doi.org/10.1016/j.jcp.2017.01.029 doi: 10.1016/j.jcp.2017.01.029
    [41] W. Ying, C. S. Henriquez, A kernel-free boundary integral method for elliptic boundary value problems, J. Comput. Phys., 227 (2007), 1046–1074. https://doi.org/10.1016/j.jcp.2007.08.021 doi: 10.1016/j.jcp.2007.08.021
    [42] H. Zhou, W. Ying, A correction function-based kernel-free boundary integral method for elliptic PDEs with implicitly defined interfaces, J. Comput. Phys., 496 (2024), 112545. https://doi.org/10.1016/j.jcp.2023.112545 doi: 10.1016/j.jcp.2023.112545
    [43] Y. Xie, W. Ying, A fourth-order kernel-free boundary integral method for implicitly defined surfaces in three space dimensions, J. Comput. Phys., 415 (2020), 109526. https://doi.org/10.1016/j.jcp.2020.109526 doi: 10.1016/j.jcp.2020.109526
    [44] Y. Xie, S. Li, W. Ying, A fourth-order kernel-free boundary integral method for interface problems, Commun. Comput. Phys., 33 (2023), 764–794. https://doi.org/10.4208/cicp.OA-2022-0236 doi: 10.4208/cicp.OA-2022-0236
    [45] Y. Xie, S. Li, W. Ying, A fourth-order Cartesian grid method for multiple acoustic scattering on closely packed obstacles, J. Comput. Appl. Math., 406 (2022), 113885. https://doi.org/10.1016/j.cam.2021.113885 doi: 10.1016/j.cam.2021.113885
    [46] Y. Xie, W. Ying, A high-order kernel-free boundary integral method for incompressible flow equations in two space dimensions, Numer. Math. Theory Methods Appl., 13 (2020), 595–619. https://doi.org/10.4208/nmtma.OA-2019-0175 doi: 10.4208/nmtma.OA-2019-0175
    [47] X. Feng, H. Song, T. Tang, J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Probl. Imaging, 7 (2013), 679–695. https://doi.org/10.3934/ipi.2013.7.679 doi: 10.3934/ipi.2013.7.679
    [48] U. M. Ascher, S. J. Ruuth, R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151–167. https://doi.org/10.1016/S0168-9274(97)00056-1 doi: 10.1016/S0168-9274(97)00056-1
    [49] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer Science & Business Media, 2007.
    [50] A. Frangi, A. di Gioia, Multipole BEM for the evaluation of damping forces on MEMS, Comput. Mech., 37 (2005), 24–31. https://doi.org/10.1007/s00466-005-0694-1 doi: 10.1007/s00466-005-0694-1
    [51] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977. https://doi.org/10.1007/978-3-642-96379-7
    [52] A. A. Samarskii, The Theory of Difference Schemes, CRC Press, 2001. https://doi.org/10.1201/9780203908518
    [53] J. T. Beale, A. T. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci., 1 (2006), 91–119. https://doi.org/10.2140/camcos.2006.1.91 doi: 10.2140/camcos.2006.1.91
    [54] W. Ying, W. C. Wang, A kernel-free boundary integral method for variable coefficients elliptic PDEs, Commun. Comput. Phys., 15 (2014), 1108–1140. https://doi.org/10.4208/cicp.170313.071113s doi: 10.4208/cicp.170313.071113s
    [55] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9
    [56] L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32 (2002), 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 doi: 10.1146/annurev.matsci.32.112001.132041
    [57] J. J. H. Miller On the convergence, uniformly in $varepsilon$, of difference schemes for a two point boundary singular perturbation problem, in Numerical Analysis of Singular Perturbation Problems, (1979), 467–474.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(684) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog