
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(12): 7331–7359.
DOI: 10.3934/era.2025324
Received: 07 October 2025
Revised: 18 November 2025
Accepted: 27 November 2025
Published: 04 December 2025

Research article

A Cartesian grid-based kernel-free boundary integral method for
Allen-Cahn equation

Min Zeng and Yaning Xie*

School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China

* Correspondence: Email: xieyaning@zjut.edu.cn.

Abstract: This paper investigates the numerical solution for Allen-Cahn equations with perturbation
parameters and strong nonlinear terms in general computational domains. To get a global second-order
accuracy, we use the second-order semi-implicit Runge-Kutta (SIRK) method and some implicit-
explicit (IMEX) methods for time discretization. Then the original problem is transformed into
boundary value problems (BVPs) of a modified Helmholtz equation at each time step, which can be
solved by a Cartesian grid-based kernel-free boundary integral (KFBI) method. In the KFBI method,
the BVPs are reformulated into a corresponding boundary integral equation and then solved iteratively
by a class of subspace methods such as the matrix-free generalized minimal residual(GMRES) method,
while integrals involved are regarded as solutions to their equivalent interface problems. Unlike
traditional boundary integral methods, this method avoids numerical integration of the singular or
nearly singular integrals. Instead, it utilizes grid-based operations as an alternative to direct evaluation.
Therefore, integral evaluation only requires solving equivalent but much simpler interface problems
in a bounding box so that fast elliptic solvers such as fast fourier transforms(FFTs) and geometric
multigrid methods are applicable. This makes the KFBI method accurate and efficient when solving
constant coefficient elliptic problems in general irregular domains. It can be seen that the accuracy of
the present method is verified by numerical examples.

Keywords: Allen-Cahn equation; kernel-free boundary integral method; implicit-explicit method;
boundary value problem; interface problem

1. Introduction

This paper investigates numerical methods for approximating solutions to the Allen-Cahn equation

∂u
∂t
= ϵ∆u − f (u) in Ω, (1.1)
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with the initial condition
u(p, 0) = u0(p) for t = 0 and p ∈ Ω, (1.2)

and the homogeneous Dirichlet boundary condition

u(p, t) = 0 for t > 0 and p ∈ Γ. (1.3)

Here, Ω is a bounded two-dimensional general irregular domain, Γ is at least twice continuously
differentiable, u = u(p, t) is an unknown phase field variable to be solved with p ∈ R2 being a space
point, and u0 is a given smooth initial data. The positive parameter ϵ represents the interfacial width,
which is small compared to the characteristic length of the laboratory scale, f (u) = F′(u) with F(u)
being a given energy potential. The homogeneous Dirichlet boundary condition physically prohibits
material flux across domain boundaries.

The Allen-Cahn equation was introduced by Allen and Cahn to describe the motion of antiphase
boundaries in crystalline solids [1]. It is a type of nonlinear reaction diffusion equation and is widely
used in fields such as phase field modeling [2], grain growth [3], materials science [4, 5],
hydrodynamics [6, 7], biomathematics [8, 9], and mean curvature motion [10]. Hence, developing
computationally efficient numerical methods is of vital importance.

Various numerical methods have been developed to improve the numerical stability and accuracy
of the Allen-Cahn equation over the past two decades [11–14]. In [15], a temporally stable
semi-implicit Fourier spectral scheme was employed for time discretization, which rigorously
demonstrated the unconditional energy stability of a modified energy functional. For the Allen-Cahn
model describing anti-phase domain coarsening in binary mixtures, reference [16] concluded that
through an operator splitting approach, the Allen-Cahn equation can be decomposed into linear and
nonlinear sub-equations. The linear sub-equation can be solved by a Fourier spectral method, which
benefits from an exact analytical solution and consequently imposes no stability restrictions on the
time step. Due to the intrinsic singularity of the logarithmic free energy, developing unconditionally
stable numerical schemes for the Allen-Cahn equation with logarithmic potential presents significant
challenges. These difficulties were successfully addressed by either introducing a stabilization term to
the logarithmic energy or employing a regularized potential formulation. In this regard, reference [17]
proposed an unconditionally stable splitting method with a special formulation that is physically more
meaningful than conventional polynomial potentials. Reference [18] developed a novel second-order
temporal approximation for the potential term. Through careful parameter design, this method
guarantees both energy stability and unique solvability, demonstrating superior performance
compared to other time discretization schemes.

Due to the fundamental property of the Allen-Cahn equation [19], the solution to the Allen-Cahn
equation exhibits a monotonic dissipation of the total free energy over the whole time. The design of
numerical schemes for phase-field models that satisfy the energy-decay property has been extensively
studied in the past years. One widely adopted approach to achieve numerical energy property is the
convex splitting method, which was first introduced by Elliott and Stuart in 1993 [20] and further
developed by Eyre [21]. Specifically, the semi-implicit convex splitting method by Eyre guarantees
that the numerical solution satisfies energy dissipation even in the discrete setting. It implicitly treats
the convex part of the chemical potential while explicitly handling the concave part, ensuring the
unique solvability and energy stability. Recently, convex splitting has been widely applied to various
gradient flows, leading to the development of both first-order and second-order accurate algorithms in
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time [22–24]. Moreover, the breakthrough work by Eyre has significantly shaped the field of phase-
field simulations, serving as a catalyst for the development of many modern time integration methods
[25–27].

It is observed that the Allen-Cahn equation contains a small positive parameter in the diffusion
term, which often leads to a stiff system after spatial discretization. In such cases, the IMEX technique
introduced for time-dependent partial differential equations (PDEs) plays an important role [28]. Such
schemes were proposed and analyzed as early as the late 1970s. For the latest developments, we
refer to [29, 30]. The IMEX approach typically demonstrates superior stability properties over wide
parameter regimes when contrasted with competing schemes. Recent applications span a range of
incompressible Navier-Stokes simulations [31] and asymptotic-preserving discretizations for kinetic
equations [32, 33], where implicit diffusion or explicit convection treatment remains canonical.

For spatial discretization, early numerical methods were represented by the finite difference method
(FDM) [34]. The FDM is intuitive and efficient, but it heavily relies on regular, structured grids,
making it difficult to handle complex geometries. In contrast, the finite element method (FEM), due to
its exceptional adaptability to complex geometries, has become an indispensable choice in fields such
as viscous and compressible flow [35]. Typically, the enriched or extended FEM formulations can
capture sharp interfaces or localized phase transitions effectively and accurately, but without excessive
mesh refinement [36, 37]. For problems defined in irregular domains, the immersed boundary method
and overset grid techniques have been developed over the decades, which allow the mesh grid to be
nonconforming with solid boundaries, significantly simplifying mesh generation [38, 39].

Besides these grid-based methods, the boundary integral methods (BIMs) transform differential
problems into the boundary integral equations (BIEs) on the domain boundary, thus reducing the
dimensionality of the model. The BIE for elliptic BVPs can be transformed into a Fredholm integral
equation of the second kind, which can be subsequently solved by the Krylov subspace iterative
methods. However, traditional BIEs often involve singular kernel functions [40]. To circumvent the
direct computation of these kernels, Ying et al. proposed the KFBI method [41], which essentially
eliminates the need to directly compute integrals with singular kernels. In the solution to the
equivalent interface problems of the integrals, the coefficient matrix of the discrete system remains
unchanged, it can be further solved by a FFT-based elliptic solver, whose computational work is
roughly proportional to the number of grid nodes in the Cartesian grid used. As the discrete boundary
integral equations are well-conditioned, the iteration converges within an essentially fixed number of
steps, which is independent of the mesh parameter. As a result, the KFBI method achieves efficient,
accurate, and stable numerical solutions for elliptic problems in general domains [42, 43].

As a combination of the traditional BIM and the Cartesian grid-based FDM, the KFBI method
benefits both of their advantages, such as easy grid generation, the reduced dimensionality of the model,
and the ease of complex boundary capturing. These implie less computer memory requirements and
the convenience in moving boundary description. More importantly, the BIM converts the potential
problem into an integral equation, whose discretized form becomes a well-conditioned system, which
is totally different from the case of classical FDM and FEM. For constant coefficient elliptic problems
with irregular boundaries/interfaces, the discrete system only modifies the right-hand side while the
left-hand side remains unchanged. Thus, a series of fast elliptic solvers can be applied. Besides, the
KFBI method works on the Cartesian grid with no need of complex mesh generation. All of these
reduce the computational complexity of the KFBI method. In the consideration of algorithm accuracy,
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the accuracy of the KFBI method depends on the accuracy of the FDM used for integral evaluation. In
recent years, the KFBI method has developed to be a general purpose fourth-order method for elliptic
PDEs with various applications [44–46]. The present work follows the main idea of the KFBI method
as the spatial discretization method, providing an alternative perspective in solving the phase field
problem, especially for problems in complex domains.

An outline of this paper is presented as follows. In Section 2, we introduce several parameterized
IMEX time discretization schemes. Section 3 provides a brief description of BVPs for elliptic PDEs,
the equivalent interface problems of the integrals, and the reformulation of BIEs. Section 4 gives
a concise introduction of the KFBI method, including the computational modules of discretization,
correction, solution, and interpolation. In Section 5, we present a series of numerical experiments. The
conclusions of this study and potential extensions are discussed in the final section.

2. Time discretization method

Time discretization of the Allen-Cahn equation (1.1) can be attributed to an extensive system of
reaction-diffusion equations, which is often typically in the pattern

du
dt
= ϵ∆u +G(u), (2.1)

where G is a nonlinear function of u, and ϵ is a small positive parameter. To discretize the Eq (2.1)
in time, we mainly employ two methods: a second-order SIRK method and a class of two-step IMEX
methods. A detailed explanation of these two methods will be provided next.

2.1. Second-order SIRK method

In the SIRK framework, the linear/stiff term ∆u is treated implicitly, while the nonlinear/stiff term
G(u) is handled explicitly. A typical second-order SIRK scheme reads

K0 = ϵ∆(u0 +
1
2

K0∆t) +G(u0),

K1 = ϵ∆(u0 +
1
2

K1∆t) +G(u0 + K0∆t), (2.2)

un+1 = un +
1
2
∆t(K0 + K1).

Here, ∆t is the time step, tn = n∆t, and un ≈ u(p, tn) represents the approximate solution at the time
level tn. By introducing v0 = un, v1 = un + 1

2 K0∆t ≈ un+ 1
2 , and v2 = un + 1

2 K1∆t ≈ un+ 1
2 , then (2.2) can

be simplified as follows:

v1 − v0
1
2∆t

= K0 = ϵ∆v1 +G(v0),

v2 − v1
1
2∆t

= K1 = ϵ∆v2 +G(2v1 − v0), (2.3)

un+1 = v1 + v2 − v0.
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By rearranging the terms in each formula, we obtain the following form:

− ∆v1 +
2
ϵ∆t

v1 =
2
ϵ∆t

v0 +
1
ϵ

G(v0),

− ∆v2 +
2
ϵ∆t

v2 =
2
ϵ∆t

v0 +
1
ϵ

G(2v1 − v0),

un+1 = v1 + v2 − v0.

(2.4)

The first two equations are the modified Helmholtz equations in the spatial domain, whose boundary
conditions at certain time steps are given by (1.3). Therefore, we can transform (2.4) into two
corresponding BVPs

− ∆v1 +
2
ϵ∆t

v1 =
2
ϵ∆t

v0 +
1
ϵ

G(v0) in Ω,

v1(p) = gD(p, tn+ 1
2 ) on Γ,

(2.5)

and
− ∆v2 +

2
ϵ∆t

v2 =
2
ϵ∆t

v0 +
1
ϵ

G(2v1 − v0) in Ω,

v2(p) = gD(p, tn+ 1
2 ) on Γ.

(2.6)

The values of v1 and v2 can be obtained by solving the BVPs (2.5) and (2.6), and then substituting them
into the formula of un+1 to update its value.

2.2. Two-step IMEX method

We still focus on discretizing the Eq (2.1). A k-step IMEX scheme for Eq (2.1) takes the form

1
∆t

un+1 +

k−1∑
j=0

α jun− j

 = ϵ k−1∑
j=−1

β j∆un− j +

k−1∑
j=0

γ jG(un− j), (2.7)

where β−1 , 0 [47]. Assume that the function u(t) is sufficiently smooth. Applying the Taylor
expansion at tn, we obtain the following truncation error:

1
∆t

1 + k−1∑
j=0

α j

 u(tn) +

1 − k−1∑
j=1

jα j

 u(1)(tn) + · · · +
∆tp−1

p!

1 + k−1∑
j=1

(− j)pα j

 u(p)(tn)

−ϵ

k−1∑
j=−1

β j∆u(tn) − ϵ∆t

β−1 −

s−1∑
j=−1

β j

∆u(1)(tn) − · · · −
ϵ∆tp−1

(p − 1)!

β−1 +

k−1∑
j=0

β j(− j)p−1

∆u(p−1)(tn)

−

k−1∑
j=0

γ jG(u(tn)) + ∆t
k−1∑
j=1

jγ jG(1) − · · · −
∆tp−1

(p − 1)!

k−1∑
j=1

(− j)p−1γ jG(p−1) = o(∆tp).

Here, the parameter p denotes the order of accuracy of the numerical method, u(p)(tn) signifies the
p-th order derivative of u at time tn, and G(p) denotes the p-th order derivative of G with respect to
u(tn)(p ≥ 1). To achieve p-th order accuracy, it is necessary to ensure that all terms of order lower
than ∆tp in the Taylor expansion vanish. These conditions are fulfilled by appropriately choosing the
coefficients α j, β j, and γ j, thus preserving high-order convergence during the discretization process.
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By analyzing the local truncation error through the original equation, we derive a p-order scheme
under the following requirements:

1 +
k−1∑
j=0

α j = 0,

1 −
k−1∑
j=1

jα j =

k−1∑
j=−1

β j =

k−1∑
j=0

γ j,

...

1
p!

1 + k−1∑
j=1

(− j)pα j

 = 1
(p − 1)!

β−1 +

k−1∑
j=1

β j(− j)p−1

 = 1
(p − 1)!

k−1∑
j=1

(− j)p−1.

(2.8)

The general k-step IMEX scheme on the order of k depends on the parameter p with (p ≤ k) [28, 48].
We proceed to solve the underdetermined equations (2.8) to derive concrete examples of the second-
order IMEX scheme.

2.2.1. Second-order IMEX scheme with parameter

Following the approach in [47], we use an IMEX time integration method, a widely adopted
technique for efficiently solving time-dependent problems involving stiffness. According to Eqs (2.2)
and (2.7) above, the numerical scheme achieves second-order accuracy when p = k = 2, so if we
center our schemes in time at tn−α/(4+2α), the second-order IMEX schemes can be written as

un+1 + αun − (1 + α)un−1

∆t

= ϵ∆

(
(β −

α

2
)un+1 + (2 +

3
2
α − 2β)un + βun−1

)
+

(
(2 +

α

2
)G(un) +

α

2
G(un−1)

)
, (2.9)

where α and β are two free parameters. The present scheme is a three-step method so that u0 and u1 are
indispensable to set up the time evolution. Here, we use the second-order SIRK method to compute
u1. By uniting the like terms and rearranging the sequence, Eq (2.9) can be simplified to a modified
Helmholtz equation that

− ∆un+1 +
1

ϵ∆t(β − α2 )
un+1

= −
α

ϵ∆t(β − α2 )
un +

(2 + 3
2 − 2β)
β − α2

∆un +
β

β − α2
∆un−1 +

1 + α
ϵ∆t(β − α2 )

un−1

+
1

ϵ(β − α2 )
((2 +

α

2
)G(un) +

α

2
G(un+1)) (n ≥ 2). (2.10)

Together with the Dirichlet boundary condition (1.3) at the time step tn−α/(4+2α), this results in a BVP
of the modified Helmholtz equation. The BVP can be solved by the KFBI method, which serves as the
spatial discretization method in this work.
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2.2.2. Semi-implicit Leap-Frog scheme

Considering the second-order IMEX scheme (2.9), if we set the parameters as (α, β) = (0, 1), then
we obtain the semi-implicit leapfrog(SILF) scheme:

un+1 − un−1

2∆t
= ϵ∆

(
un+1 + un−1

2

)
+ G(un). (2.11)

By uniting the like terms and rearranging the sequence, the above scheme implies the form of the
modified Helmholtz equation that

−∆un+1 +
1
ϵ∆t

un+1 = ∆un−1 +
1
ϵ∆t

un−1 +
2
ϵ

G(un). (2.12)

Together with the Dirichlet boundary condition (1.3) at the corresponding time step t
n
4 , the equation

also results in a BVP of the modified Helmholtz equation.
This scheme combines an explicit leapfrog time advancement with an implicit treatment technique.

The explicit part adopts explicit second-order center difference for non-rigid or fluctuating terms to
maintain energy conservation characteristics, while the implicit part adopts implicit processing for
rigid terms (such as diffusion and damping terms) to improve stability. With second-order temporal
accuracy, the scheme outperforms the purely explicit Euler method. Moreover, the implicit processing
of the rigid term allows for a larger time step, which is the advantage of the SILF scheme.

2.2.3. Crank-Nicolson/Adams-Bashforth schemes

We also investigate an explicit multistep approach, the Crank-Nicolson/Adams-Bashforth (CNAB)
method, which is a hybrid time integration scheme that combines the implicit Crank-Nicolson (CN)
method with the explicit Adams-Bashforth (AB) method. The second-order CNAB scheme can be
simply derived by setting the parameters in (2.9) as (α, β) = (−1, 0). For time integration of Eq (2.1),
the nonlinear term G(u) is treated explicitly using the AB method, and the diffusion term is handled
implicitly through CN. Then we obtain the second-order CNAB scheme:

un+1 − un

∆t
=
ϵ

2

(
∆un+1 + ∆un

)
+

(
3
2

G(un) −
1
2

G(un−1)
)
. (2.13)

By simply rearranging the sequence, this yields a modified Helmholtz equation of the following form

−∆un+1 +
2
ϵ∆t

un+1 = ∆un +
2
ϵ∆t

un +
3
ϵ

G(un) −
1
ϵ

G(un−1), (2.14)

which can also be solved by the KFBI method to update un+1.

2.2.4. Modified CNAB scheme

Considering the numerical scheme with parameters again, if α and β are taken as −1 and 1/16,
respectively, a mixed numerical method can be obtained, namely the modified CNAB scheme. We take
the modified CNAB scheme to the Eq (2.1), then it holds

un+1 − un

∆t
= ϵ∆

(
9

16
un+1 +

3
8

un +
1

16
un−1

)
+

(
3
2

G(un) −
1
2

G(un−1)
)
. (2.15)
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Similarly, by simply uniting the like terms and rearranging the sequence, the modified Helmholtz
equation can be obtained

−∆un+1 +
16

9ϵ∆t
un+1 =

2
3
∆un +

16
9ϵ∆t

un +
1
9
∆un−1 +

(
8
3ϵ

G(un) −
8
9ϵ

G(un−1)
)
, (2.16)

which is then solved by the KFBI method to update un+1.

3. Spatial discretization method

As can be seen above, all the time discretization schemes (2.9), (2.11), (2.13), and (2.15) mentioned
in the previous chapter result in a spatial elliptic equation in the form of the modified Helmholtz
equation at each time step. In this section, the modified Helmholtz equation, together with the proper
boundary condition, is solved by a Cartesian grid-based boundary integral method.

3.1. Boundary value problem

Let Ω ⊂ R2 be a bounded irregular domain with smooth boundary Γ = ∂Ω. Let p ∈ R2 the spatial
coordinate. We consider numerical solutions to the Dirichlet BVP

Lu ≡ −∆u + κu = f in Ω, (3.1)
u = gD on Γ. (3.2)

Here, L denotes the differential operator of the elliptic PDE, gD represents the Dirichlet boundary
data, κ is a constant, f = f (p) is a smooth function defined on Ω, and u = u(p) is the unknown
function to be determined. To use the KFBI method, we introduce a rectangular domain B. Then Γ
becomes a smooth interface within B that divides the rectangle into two subdomains Ωi and Ωe, so that
Ωi∪Γ∪Ωe = B. Let G denote the Green’s function for the differential operatorL on B, which satisfies
the following constraints:

LG = −∆pG(p,q) + κG(p,q) = δ(p − q) p ∈ B,
G(p,q) = 0 p ∈ ∂B,

(3.3)

for any q ∈ B. Here, δ(p − q) denotes the Dirac function. According to potential theory [49], the
Dirichlet BVP (3.1) and (3.2) can be restated as a Fredholm BIE of the second kind

1
2
φ(p) +Mφ(p) = gD(p) − G f (p) p ∈ Γ. (3.4)

The solution to Dirichlet BVP reads

u(p) =Mφ(p) + G f (p) p ∈ Ω, (3.5)

with

Mφ(p) =
∫
Γ

∂G(q,p)
∂nq

φ(q) dsq,

G f (p) =
∫
Ω

G(q,p) f (q) dq.
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Here, φ(p) is a density function defined on Γ, and nq denotes the outward unit normal vector at the
boundary point q ∈ Γ. Equation (3.4) can be solved using Krylov subspace methods (such as the
GMRES method [50]) or a simple Richardson iteration. As the iteration converges, u(p) can be
calculated by the formula (3.5).

3.2. Redefinition of boundary integral equations

All the boundary and volume integrals can be reinterpreted as the solution to their equivalent
interface problems. For the piecewise smooth dependent variable v(p) defined on a larger rectangular
domain B, which is discontinuous only across the interface Γ, let v+ and v− be the restrictions of v in
the subdomains Ωi and Ωe, respectively. For any interface point p ∈ Γ, v+(p), and v−(p) are interpreted
as the limiting values of v(p) from the corresponding side of the interface. Hence, the jump of v
across the interface Γ can be naturally defined by

[v(p)] = v+(p) − v−(p) p ∈ Γ.

According to potential theory [49], the double layer potential v = Mφ satisfies the following
interface problem:

Lv = −∆v + κv = 0 in B \ Γ,
[v] = φ on Γ,
[∂nv] = 0 on Γ,
v = 0 on ∂B.

(3.6)

This means the double layer potential is discontinuous across the interface. Specifically, the
discontinuity of the double layer potential is given by

v+(p) =
1
2
φ(p) +Mφ(p) p ∈ Γ,

v−(p) = −
1
2
φ(p) +Mφ(p) p ∈ Γ.

The volume integral v = G f satisfies the simple interface problem

Lv = −∆v + κv =

 f in Ω,
0 in Ωc,

[v] = 0 on Γ,
[∂nv] = 0 on Γ,
v = 0 on ∂B.

(3.7)

This means the volume potential and its normal derivative are continuous across the interface. Due to
the continuity or discontinuity of the boundary and volume potentials, we can rewrite the BIE (3.4) in
the following simpler form:

(Mφ)+(p) = gD(p) − (G f )+(p) p ∈ Γ, (3.8)

where the superscript ‘+’ represents the one-sided limit from the domain Ωi.
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The homogeneous Dirichlet boundary conditions in (3.6) and (3.7) hold since the involved Green’s
function satisfies the same Dirichlet zero condition as supposed in its definition (3.3). Based on the
description in Section 3.1, equivalent simple interface problems (3.6) and (3.7) can be expressed in a
unified form

Lv = −∆v + κv = F in B \ Γ,
[v] = Φ on Γ,
[∂nv] = Ψ on Γ,
v = 0 on ∂B.

(3.9)

On the right-hand side F, Φ, and Ψ are determined according to the potentials of different types. In the
context of the KFBI method, we first iteratively solve the reformulated BIE (3.8) with the Krylov
subspace method, and then substitute the approximate density function φ into the solution
representation formula (3.5) to get the approximation of u. Through the whole calculation process, all
the integrals are evaluated by solving the equivalent and simple interface problem (3.9) with a
Cartesian grid-based boundary integral method, which will be explained in detail in the next section.

4. Kernel-free boundary integral method

The KFBI method is an extension of the classical boundary integral method, which enables the
solution of elliptic PDEs within the framework of BIEs [41]. Since the Green’s function or the kernel
involved in boundary integrals for elliptic PDEs are generally not available in a closed form [51],
directly computing these boundary integrals is typically challenging or even infeasible. To address
this, the KFBI substitutes the direct evaluation of boundary or volume integrals with interpolation
from a grid-based solution that satisfies a discretized interface problem on a larger, regular grid. This
section provides a detailed explanation of the method for two-dimensional space.

4.1. Discretization with corrected finite difference scheme

In the two-dimensional case, suppose B = (a, b) × (c, d) is a square domain introduced in (3.9). We
partition this square uniformly into an M × M grid along both the horizontal and vertical directions,
where M denotes the number of grid subdivisions. After partitioning, the size of the grid is given by
h = (b − a)/M = (d − c)/M. The grid nodes/points are denoted by (xi, y j), where xi = a + ih and
y j = c + jh, with i, j = 0, 1, 2, ...,M. For a general function v defined in B, we denote vi, j ≈ v(xi, y j) as
its grid approximation. For a given function f , we write fi, j = f (xi, y j) as its value at the nodes of the
grid. Using traditional second-order partial differential approximations [52], we derive the following
five-point finite difference scheme for the modified Helmholtz equation:

Lhvi, j ≡
4vi, j − vi−1, j − vi+1, j − vi, j−1 − vi, j+1

h2 + κvi, j = fi, j. (4.1)

Here, Lh denotes the second-order finite difference operator for the control equation of (3.9). On the
Cartesian grid, all the grid points are classified into two categories: regular points and irregular points.
A grid point is designated as irregular if the five-point compact difference stencil intersects with the
interface Γ (as illustrated in Figure 1); otherwise it is classified as regular. The interface Γ divides the
rectangular domain into two distinct regions, resulting in a discontinuous solution throughout the
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domain and significant local truncation errors near the interface. Since irregular points exhibit
excessively large local truncation errors, we should identify and correct all such points to ensure the
global accuracy of the finite difference scheme. To formally achieve second-order accuracy of the
approximate solution, the finite difference scheme (4.1) is corrected accordingly into the form

Lhvi, j =

 fi, j if (xi, y j) is regular,
fi, j +

1
h2

∑
(xi+r ,y j+s)∈T

(5)
i, j ∩Ωe

Ci+r, j+s if (xi, y j) is irregular.
(4.2)

In the second case, (xi, y j) is typically supposed to be an irregular grid point inside Ωi, and T (5)
i, j

denotes the corresponding five-point finite difference template. The summation is known as the
correction of the modified scheme with Ci+r, j+s being the correction term at the neighboring grid point
involved in the template but belonging to the opposite side Ωe. As the primary cause of the large local
truncation error, the correction term Ci+r, j+s is defined by

Ci+r, j+s := v+(xi+r, y j+s) − v−(xi+r, y j+s). (4.3)

The superscript ”+” means the corresponding grid point is located in the domain Ωi (referred to as
the interior point), while ”−” suggests that the grid point is inside the domain Ωe (referred to as the
exterior point). Therefore, v+ and v− are smooth extension functions of v from two different sides Ωi

and Ωe, respectively.

Figure 1. A five-point compact difference template at an irregular point (xi, y j) (black circle),
intersections of the grid lines, and the interface (gray diamond).

The underlying reason for this definition is plotted in Figure 2, which gives an illustration of a
degraded one-dimensional case. For a piecewise smooth function near an interface point zi, the standard
centered difference scheme at xi has large local truncation error. To eliminate the leading order of
the truncation error, at the grid point xi+1, which is on the other side of the interface compared to
xi, the expected ghost function value v+i+1 can be calculated by adding the real function value v−i+1
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and the difference between them, which is indeed the correction term defined there. In this way, the
discontinuities of the piecewise function can be approximately removed in a local sense.

Figure 2. A piecewise smooth function along a straight line with an interface, where zi is the
interface point. The real function v− in Ωe (full line) is replaced by the corresponding ghost
function v+ (dashed line).

In this work, two kinds of correction techniques are applied to this end. The first one is the Taylor
expansion, so that Ci+r, j+s can be estimated by

v+(xi+r, y j+s) − v−(xi+r, y j+s)

=

2∑
n=0

1
n!

(
ξi+r
∂

∂x
+ η j+s

∂

∂y

)n {
v+(x′i+r, y

′
j+s) − v−(x′i+r, y

′
j+s)

}
+ O(h3)

=

2∑
n=0

1
n!

(
ξi+r
∂

∂x
+ η j+s

∂

∂y

)n

[v](x′i+r, y
′
j+s) + O(h3).

(4.4)

Here, (x′i+r, y
′
j+s) is the intersection point between the centering grid point (xi, y j) ∈ Ωi and the

neighboring grid point (xi+r, y j+s) ∈ Ωe (see Figure 1 for illustration), and ξi+r = xi+r − x′i+r and
η j+s = y j+s − y′j+s are displacements in the horizontal and vertical directions between them.
v+(x′i+r, y

′
j+s) and v−(x′i+r, y

′
j+s) are the one-sided limit of v at the interface point (x′i+r, y

′
j+s) from the

domain Ωi or Ωe, respectively. The abbreviation of derivative operation means(
ξi+r
∂

∂x
+ η j+s

∂

∂y

)n

· =

n∑
m=0

n!
m!(n − m)!

ξm
i+rη

n−m
j+s

∂n ·

∂xm∂yn−m ,(
ξi+r
∂

∂x
+ η j+s

∂

∂y

)n

[ · ] =
n∑

m=0

n!
m!(n − m)!

ξm
i+rη

n−m
j+s

[
∂n ·

∂xm∂yn−m

]
,

where [ · ] denotes the jump of the involved function. Hence, the difference is finally represented in
terms of a Taylor expansion-based linear combination of the jumps of v.
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The above formulas are given in a general form of two-dimensional Taylor expansion. However, we
remark that since the five points in the finite difference template are all along the grid lines compared
to the centering point (xi, y j), the Taylor expansion is actually the one-dimensional Taylor expansion
(see Figure 3 for illustration), and the involved jumps are exactly [v], [vx], [vxx], [vy], and [vyy] only.

(a) Correction in horizontal direction.
Intersection point (zi, y j) of the interface
and line segment between (xi, y j) and
(xi+1, y j) in the five-point template.

(b) Correction in vertical direction.
Intersection point (xi,w j) of the interface
and line segment between (xi, y j) and
(xi, y j+1) in the five-point template.

Figure 3. Schematic diagram of the intersections of the interface and grid lines in the
horizontal directions and vertical directions. Taylor expansions is performed at the horizontal
intersection point (zi, y j) or the vertical intersection point (xi,w j).

Since the jumps of v are all computable quantities, the correction term can be numerically
computed. The jumps in the partial derivatives of the function v can be determined from the jumps of
both the function itself and the two interface conditions of (3.9) [41, 53]. After the correction
procedure, the local truncation error of the finite difference scheme is reduced to first-order at
irregular grid points. Even so, the global second-order convergence can be guaranteed in the
numerical solution. The modified finite difference scheme maintains the same coefficient matrix as
the original standard five-point compact finite difference scheme. Consequently, the modified discrete
system can also be solved by an FFT-based fast elliptic solver.

The second approach is based on a correction function method, where the correction term in (4.3)
is regarded as a smooth function and defined as a solution of a local Cauchy problem [42]:

− ∆C(x) + κC(x) = F̄(x) x ∈ ΩΓ,
C(x) = Φ(x) x ∈ Γ ∩ΩΓ,
∂nC(x) = Ψ(x) x ∈ Γ ∩ΩΓ.

(4.5)

Here, F̄ = [F], ΩΓ is a small partition of the narrow band in a neighborhood of a given interface point
x ∈ Γ. The local Cauchy problem can be solved by a mesh-free collocation method. To get the second-
order accuracy, we use ϕ0 = 1, ϕ1 = x, ϕ2 = y, ϕ3 = x2, ϕ4 = y2, and ϕ5 = xy, the basis of the Taylor
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polynomial of degree no more than two, as the collection functions. Collocation points consist of three
parts for each identity in (4.5) satisfied, namely grid collocation points for control equation satisfaction,
interface collocation points for Dirichlet condition satisfaction, and also interface collocation points for
Neumann condition satisfaction. The number of three kinds of collocation points are one, three and
two, respectively. Distribution of those points are plotted in Figure 4.

Figure 4. Collocation points stencil xi (i = 0, 1, 2, 3) used for correction evaluation at a
given interface point x in the shaded region. The stencil is determined by the quadrant of
interface point x in a grid cell compared to the closest grid point.

For a given interface point x in the shaded region, the corresponding correction term C(x) is
computed in the following steps: 1) Find the closest grid point x0, the closest discrete interface point
x1, and its two neighboring points x2 and x3. Choose x0 for control equation satisfaction, choose the
three consecutive interface points x1, x2, and x3 for the Dirichlet condition, and the two adjacent
interface points x2, and x3 for the Neumann condition. 2) Express the approximate correction
function C(x) as a linear combination of the basis

C(x) =
5∑

i=0

diϕi(x) x ∈ ΩΓ,

where di is the linear combination coefficients to be determined and yi is the collection points ordered
in sequence, y0 = x0, y1 = x1, y2 = x2, y3 = x3, y4 = x2, and y5 = x3. 3) Set up the finite-dimensional
interpolate problem

5∑
i=0

(−∆ + κ)diϕi(y j) = F̄(y j) j = 0,

5∑
i=0

diϕi(y j) = Φ(y j) j = 1, 2, 3,

5∑
i=0

din(y j) · ∇ϕi(y j) = Ψ(y j) j = 2, 3.

(4.6)

After solving the six by six system, one can get the combination coefficients di to further determine the
correction function C(x). The correction function method provides an accurate and stable technique
but doesn’t need to know the jumps as in the Taylor expansion-based method. So, it is more efficient
to a certain extent.
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4.2. Interpolation for integral values on the boundary

After solving the linear system of the corrected finite difference equation (4.2), one can obtain the
second-order grid-based numerical solution. However, Dirichlet one-sided boundary data is repeatedly
needed in the KFBI method as shown in the BIE (3.8). In order to extract boundary data of the grid-
based numerical solution, a quadratic polynomial interpolation is used here.

To set up a two-dimensional quadratic interpolation, six distinct grid points should be selected where
Taylor expansions are performed to construct a linear system. For any discrete point q on the interface
Γ, we first select the closest grid point and denote it p1. The four adjacent grid points surrounding p1

(up, down, left, and right) are chosen and labeled with p2, p3, p4, and p5, respectively. The sixth point
p6 is chosen as the remaining point of the square where q is located (see Figure 5 for illustration).

Figure 5. Six-point template for quadratic interpolation.

We assume that the grid-based piecewise smooth solution obtained from the corrected finite
difference equation (4.2) also satisfies the jump interface conditions in (3.9). Then the Taylor
expansion of v at any grid point p ∈ B takes the form

v(p) = v+(q) +
∂v+(q)
∂x
ζ +
∂v+(q)
∂y
η +

1
2
∂2v+(q)
∂x2 ζ2

+
∂2v+(q)
∂x∂y

ζη +
1
2
∂2v+(q)
∂y2 η2 + O(|p − q|3), if p ∈ Ωi,

v(p) = v−(q) +
∂v−(q)
∂x
ζ +
∂v−(q)
∂y
η +

1
2
∂2v−(q)
∂x2 ζ2

+
∂2v−(q)
∂x∂y

ζη +
1
2
∂2v−(q)
∂y2 η2 + O(|p − q|3), if p ∈ Ωe.

Here, (ζ, η)T = p − q. For simplicity, the following expression is used to represent the approximate
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solution v± and its partial derivatives:

w± = v±(q), w±x =
∂v±(q)
∂x
, w±y =

∂v±(q)
∂y
,

w±xx =
∂2v±(q)
∂x2 , w±xy =

∂2v±(q)
∂x∂y

, w±yy =
∂2v±(q)
∂y2 .

Then the Taylor series at each interpolation point pi (i = 1, 2, · · · , 6) can be simply expressed as

w+ + w+x ζ j + w+y η j +
1
2
ζ2

j w
+
xx + ζ jη jw+xy +

1
2
η2

jw
+
yy = w j if p j ∈ Ωi, (4.7)

and

w− + w−x ζ j + w−y η j +
1
2
ζ2

j w
−
xx + ζ jη jw−xy +

1
2
η2

jw
−
yy = w j if p j ∈ Ωe, (4.8)

with w j = v(p j) and (ζ j, η j)T = p j−q. However, only the boundary datas labeled with ”+”, which means
the one-sided limit from the subdomain Ωi, are needed in the KFBI method. Hence, the corresponding
terms labeled with ”−” are expected to be replaced by their counterpart labeled with ”+”. For this end,
we introduce the following corrected quadratic interpolation scheme for p j ∈ Ωe:

w+ + w+ζ j + w+j η j +
1
2
ζ2

j w
+
xx + ζ jη jw+xy +

1
2
η2

jw
+
yy = w j +C(p j) if p j ∈ Ωe. (4.9)

Here, C(p j) is the correction term as similarly defined in (4.3) to eliminate the discontinuities of v
near the interface. Thus, C(p j) can be computed either by the correction function method or linear
combination in truncated Taylor series that

C(p j) = [w] + [wx]ζ j + [wy]η j +
1
2

[wxx]ζ2
j + [wxy]ζ jη j +

1
2

[wyy]η2
j . (4.10)

From Eqs (4.7) and (4.9), we obtain a well-posed linear system involving six unknowns, which is
then solved using any direct or simple iterative methods, such as LU decomposition and CG iteration.
The derived first unknown w+ exactly serves as the Dirichlet one-sided boundary data, which is then
inserted into the BIE (3.8). As can be seen in the BIE (3.8), the volume integral (G f )+ only exists
on the right-hand side of the equation, thus interpolation for computing (G f )+ is performed before the
iteration is initiated. The boundary integral (Mφ)+ actually represents an operator on the unknown
density φ, so interpolation for this term is applied at every step of the loop until the iteration converges.

We note that the involved jumps in either correction or interpolation modules (Eqs (4.4) and (4.10))
can be computed in advance due to the control equation and the two jump conditions of the interface
problem (3.9). Specific computation details refer to [54].

5. Numerical results

In this section, numerical experiments for initial boundary value problems of the Allen-Cahn
equation on irregular domains with the proposed KFBI are presented to demonstrate the numerical
accuracy, efficiency, and stability. For convenience, in the following examples, the bounding box B is
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set to be [−1.2, 1.2] × [−1.2, 1.2], and the computational domain is prescribed as elliptic domain,
tree-shaped domain, and shell-shaped domain, respectively. The analytical formula for the boundary
curve of the shell-shaped domain is given by

x = [(1 − c) + c cos(2 · θ)] cos θ
y = [(1 − c) + c cos(θ)] sin θ − 0.2

for θ ∈ [0, 2π). (5.1)

The analytical formulas for the boundary curves of the tree-shaped domain are given by

x = [(1 − c) − c cos(4 · θ)] cos θ
y = [(1 − c) − c cos(3 · θ)] sin θ − 0.1

for θ ∈ [0, 2π). (5.2)

In the following examples, the boundary condition is supposed as a Dirichlet zero condition (1.3), and
the initial condition is given by

u0(x, y) = sin(ϵ(0.6x + 0.8y)) (x, y) ∈ Γ. (5.3)

Therefore, the examples considered in this work have no exact solution with analytical expression. To
test the numerical accuracy, we adopt the numerical scheme described in Section 2 and use the
numerical solution obtained with a grid size of 1024 × 1024 and a time step ∆t = 1/512 as the
exact/reference solution. Numerical accuracy is verified at terminal time T = 1.0 with the error
measured in the maximum norm and denoted by ∥uh − ure f ∥∞ hereafter. We denote M as the grid
number along x or y direction. Then the number of the quasi-uniformly spaced points on the boundary
curve is fixed to be 2M throughout. The perturbation parameter ϵ is set to be 0.1, 0.01, and 0.001,
respectively. The tolerance for the GMRES method in solving the BIE is fixed to be 10−9, and the
average iteration number of the GMRES method over the time evolution is denoted by #GMRESave.
The GMRES iteration always starts with the zero initial guess. The maximum number of iterations
is 1000. The upper bound of the restart parameter is set to be 400. When the mesh parameter M is less
than the upper bound, we set the restart parameter to be equal to M. In the KFBI method, the
correction and interpolation are implemented based on Taylor expansion or correction function. As
shown in the following results, we can observe that the maximum norm of the calculation error
roughly exhibits second-order accuracy.

Example 1. This example solves the Allen-Cahn equation on an ellipse domain whose radii are set
to be 0.8 and 0.6, respectively. The nonlinear term f is supposed as f (u) = u3 − u [1]. In this example,
the correction and interpolation procedure in the KFBI method are both implemented with the Taylor
expansion based scheme. For time integration, the IMEX scheme (2.9) with (α, β) = (−0.75, 0.5) and
(α, β) = (−1, 0.5), the SILF scheme (2.11), the CNAB scheme (2.13), as well as the modified CNAB
scheme (2.15) are used to conduct an effect comparison. It can be seen from the tables that the IMEX
scheme with the parameters (α, β) = (−0.75, 0.5) relatively performs best from the aspects of accuracy
and efficiency, especially for small perturbation parameter ϵ. Figure 6 shows the distribution of the
numerical solution and discrete errors in the computational domain of this example.
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(a) Solution distribution

(b) Error distribution

Figure 6. Figure (a) shows the 2D ellipse-shaped numerical solution distribution in
Example 1. Figure (b) shows the 3D error distribution on 512 × 512 grid when T = 1.0
and ϵ = 0.01.
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Table 1. Numerical results of Example 1 by the second-order IMEX scheme with (α, β) =
(−0.75, 0.5).

ϵ grid size 64 × 64 128 × 128 256 × 256 512 × 512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.75E-4 4.54E-5 1.21E-5 2.94E-6
#GMRESave 12 11 13 15
CPU time 1.70E+01 2.15E+02 2.20E+02 2.61E+03
MEM 1.87E+04 1.89E+04 1.96E+04 2.03E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 2.00E-4 4.44E-5 1.18E-5 2.66E-6
#GMRESave 15 14 12 11
CPU time 2.53E+03 2.88E+03 2.93E+03 3.34E+03
MEM 1.88E+04 1.91E+04 2.01E+04 2.04E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 5.04E-4 1.32E-4 2.09E-5 5.78E-6
#GMRESave 19 18 18 15
CPU time 3.12E+03 3.55E+03 3.82E+03 4.21E+03
MEM 1.88E+04 1.92E+04 2.02E+04 2.05E+04

Table 2. Numerical results of Example 1 by the second-order IMEX scheme with (α, β) =
(−1, 0.5).

ϵ grid size 64 × 64 128 × 128 256 × 256 512 × 512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.93E-3 4.72E-4 1.20E-4 2.62E-5
#GMRESave 13 13 12 15
CPU time 4.40E+03 5.18E+02 5.20E+02 5.61E+03
MEM 1.87E+04 1.89E+04 1.96E+04 2.03E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.21E-3 3.14E-4 8.07E-5 1.97E-5
#GMRESave 16 14 12 11
CPU time 4.37E+03 5.17E+03 5.22E+03 5.60E+03
MEM 1.88E+04 1.91E+04 2.02E+04 2.05E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 9.72E-4 1.81E-4 4.21E-5 1.01E-5
#GMRESave 18 16 15 15
CPU time 4.30E+03 5.02E+03 5.10E+03 5.41E+03
MEM 1.89E+04 1.92E+04 2.05E+04 2.07E+04
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Table 3. Numerical results of Example 1 with the second-order SILF scheme.

ϵ grid size 64 × 64 128 × 128 256 × 256 512 × 512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.90E-3 4.89E-4 1.15E-4 2.77E-5
#GMRESave 14 13 11 14
CPU time 4.25E+03 5.04E+03 5.07E+03 5.42E+03
MEM 1.85E+04 1.88E+04 1.93E+04 2.00E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.65E-3 4.33E-4 1.16E-4 2.83E-5
#GMRESave 15 14 14 11
CPU time 4.33E+03 5.07E+03 5.13E+03 5.50E+03
MEM 1.87E+04 1.89E+04 2.00E+04 2.03E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.34E-3 4.11E-4 1.01E-4 2.52E-5
#GMRESave 16 15 15 13
CPU time 4.50E+03 5.26E+03 5.34E+03 5.67E+03
MEM 1.88E+04 1.90E+04 2.01E+04 2.05E+04

Table 4. Numerical results of Example 1 with the second-order CNAB scheme.

ϵ grid size 64 × 64 128 × 128 256 × 256 512 × 512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 2.33E-3 6.21E-4 1.66E-4 4.21E-5
#GMRESave 12 11 12 14
CPU time 4.36E+03 5.02E+03 5.07E+03 5.46E+03
MEM 1.82E+04 1.97E+04 1.99E+04 2.05E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 8.09E-3 9.77E-4 2.26E-4 5.49E-5
#GMRESave 17 15 14 12
CPU time 4.33E+03 4.87E+03 4.93E+03 5.32E+03
MEM 1.78E+04 1.80E+04 1.92E+04 2.00E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 9.24E-3 2.01E-3 4.78E-4 1.12E-4
#GMRESave 19 18 16 14
CPU time 4.31E+03 4.80E+03 4.88E+03 5.27E+03
MEM 1.74E+04 1.76E+04 1.79E+04 1.84E+04
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Table 5. Numerical results of Example 1 with the second-order modified CNAB scheme.

ϵ grid size 64 × 64 128 × 128 256 × 256 512 × 512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.94E-3 4.47E-4 1.19E-4 3.16E-5
#GMRESave 16 15 12 12
CPU time 4.37E+03 5.10E+03 5.15E+03 5.53E+03
MEM 1.80E+04 1.92E+04 1.93E+04 2.01E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 4.29E-3 7.79E-4 1.89E-4 4.61E-5
#GMRESave 15 15 13 12
CPU time 4.30E+03 4.83E+03 4.88E+03 5.27E+03
MEM 1.72E+04 1.79E+04 1.90E+04 1.99E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 6.31E-3 1.50E-3 3.58E-4 8.39E-5
#GMRESave 14 13 13 10
CPU time 4.25E+03 4.67E+03 4.73E+03 5.02E+03
MEM 1.60E+04 1.67E+04 1.75E+04 1.86E+04

Table 6. Numerical results of Example 2 obtained by the second-order IMEX scheme with
(α, β) = (−1.0, 0.5).

ϵ grid size 64×64 128×128 256×256 512×512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.63E-4 5.74E-5 1.62E-5 4.67E-6
#GMRESave 10 10 12 13
CPU time 7.68E+02 7.99E+02 8.11E+03 8.76E+03
MEM 1.84E+04 1.86E+04 1.92E+04 2.02E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.95E-4 5.34E-5 1.45E-5 3.90E-6
#GMRESave 37 17 12 13
CPU time 8.01E+03 8.03E+03 8.15E+03 9.13E+03
MEM 1.85E+04 1.88E+04 1.93E+04 2.03E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 3.98E-4 1.04E-4 2.66E-5 4.31E-6
#GMRESave 40 21 21 20
CPU time 8.04E+03 8.10E+03 8.57+03 9.31E+03
MEM 1.86E+04 1.90E+04 1.97E+04 2.04E+04

Example 2. This example solves the Allen-Cahn equation on a shell-shaped domain whose curve is
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given in (5.1) with the parameter c = 0.2. The nonlinear term f is supposed as f (u) = u5−u3+u, which
is used to describe more complex phase transition behavior [55]. In this example, the correction and
interpolation procedure in the KFBI method are both implemented with the Taylor expansion-based
scheme. For time integration, we use the numerical scheme (2.9), where the parameters α and β are set
to be -1 and 0.5, respectively. Numerical results are listed in Table 6. Figure 7 shows the distribution
of solutions and errors in the computational domain of this example.

(a) Solution distribution

(b) Error distribution

Figure 7. Figure (a) shows the 2D shell-shaped numerical solution distribution in Example 2.
Figure (b) shows the 3D error distribution on 512 × 512 grid when T = 1.0 and ϵ = 0.01.
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Example 3. This example solves the Allen-Cahn equation on a tree-shaped domain whose curve
is given in (5.2) with the parameter c = 0.2. The non-linear term f is supposed as the asymmetric
double well potential f (u) = 2u(u − 1)(2u − 1) [56]. In this example, the correction and interpolation
procedure in the KFBI method are both implemented with the correction function-based scheme. For
time integration, we use the SILF scheme (2.11). Numerical results are listed in Table 7. Figure 8
shows the distribution of solutions and errors in the computational domain of this example.

Table 7. Numerical results of Example 3 obtained with the second-order SILF scheme.

ϵ grid size 64×64 128×128 256×256 512×512

ϵ = 10−1 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 1.80E-4 5.11E-5 1.34E-5 3.84E-6
#GMRESave 10 10 10 12
CPU time 1.24E+04 1.40E+04 1.56E+04 1.62E+04
MEM 1.84E+04 1.85E+04 1.93E+04 2.07E+04

ϵ = 10−2 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 3.91E-3 1.25E-3 3.82E-4 1.22E-4
#GMRESave 36 14 13 16
CPU time 1.08E+04 1.12E+04 1.13E+04 1.20E+04
MEM 1.85E+04 1.87E+04 1.94E+04 2.08E+04

ϵ = 10−3 time step 1/32 1/64 1/128 1/256
∥uh − ure f ∥∞ 9.01E-3 2.12E-3 5.41E-4 1.63E-4
#GMRESave 52 37 36 20
CPU time 3.89E+03 3.95E+03 3.96E+03 4.01E+04
MEM 1.86E+04 1.89E+04 1.96E+04 2.11E+04
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(a) Solution distribution

(b) Error distribution

Figure 8. Figure (a) shows the 2D tree-shaped numerical solution distribution in Example 3.
Figure (b) shows the 3D error distribution on 512 × 512 grid when T = 1.0 and ϵ = 0.01.

6. Conclusions

This study employs the KFBI method as the spatial discretization method to solve the Allen-Cahn
equation, with a class of IMEX schemes as the temporal discretization method. The entire calculation
process can be roughly summarized into the following steps: discretize in the time dimension, and

Electronic Research Archive Volume 33, Issue 12, 7331–7359.



7355

then solve the corresponding spatial elliptic equations at each discrete time step. In the process of
spatial discretization, we first select a rectangular domain that completely encompasses the interface,
then establish a Cartesian grid and identify all irregular grid points on both sides of the interface for
correction. Next, we use the FFT-based fast solver to get the numerical solutions at all grid points,
followed by polynomial interpolation to calculate the function values on the interface. This process is
repeatedly conducted in the iteration of solving the restated BIEs.

Numerical experiments demonstrate that the KFBI method can effectively solve problems with
various forms of non-stiff terms and small perturbation parameters ϵ, achieving approximately second-
order accuracy in solution convergence. The average number of iterations of the GMRES method
will not necessarily increase during the grid refinement. This is because the discrete boundary integral
equations are well-conditioned for relatively large ϵ. Thus, the iteration converges within an essentially
fixed number of steps, independent of the mesh parameter. However, for even smaller values of ϵ, the
procedure fails to converge as the discrete system becomes ill-conditioned. Instead, a class of fitted
operator methods or fitted mesh methods on non-uniform mesh may generate a more accurate solution
for singular perturbation problems [57]. The advantage of the proposed method lies in that, based on
Green’s third identity, the BVPs at each time step are reformulated into corresponding BIEs, where
the integrals are treated as solutions to their equivalent interface problems, thereby circumventing the
complexity of analytical expressions of the kernels. This is the true essence of the KFBI method termed
with “kernel-free”.
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