Research article Special Issues

Dynamics of a coevolving host-virus system with resistance-growth trade-off

  • Published: 28 November 2025
  • This study investigated biodiversity changes in host-virus coevolution, focusing on a system incorporating a resistance-growth trade-off. We derived the basic reproduction number for the host system and identified conditions for host-virus coexistence. Numerical simulations revealed that the resistance-growth trade-off may influence diversity patterns, leading to both monotonic and unimodal dynamics. Additionally, the resistance-growth trade-off may drive transitions between stable equilibria and periodic solutions under specific mutation rates, cause shifts in dominant species in both algal and viral communities, and trigger a hydra effect under specific dilution rates. Our results offer insights into the mechanisms driving biodiversity fluctuations in host-virus coevolutionary dynamics.

    Citation: Xiaoshuang Li, Danfeng Pang. Dynamics of a coevolving host-virus system with resistance-growth trade-off[J]. Electronic Research Archive, 2025, 33(11): 7216-7246. doi: 10.3934/era.2025319

    Related Papers:

  • This study investigated biodiversity changes in host-virus coevolution, focusing on a system incorporating a resistance-growth trade-off. We derived the basic reproduction number for the host system and identified conditions for host-virus coexistence. Numerical simulations revealed that the resistance-growth trade-off may influence diversity patterns, leading to both monotonic and unimodal dynamics. Additionally, the resistance-growth trade-off may drive transitions between stable equilibria and periodic solutions under specific mutation rates, cause shifts in dominant species in both algal and viral communities, and trigger a hydra effect under specific dilution rates. Our results offer insights into the mechanisms driving biodiversity fluctuations in host-virus coevolutionary dynamics.



    加载中


    [1] G. F. Fussmann, M. Loreau, P. A. Abrams, Eco-evolutionary dynamics of communities and ecosystems, Funct. Ecol., 21 (2007), 465–477. https://doi.org/10.1111/j.1365-2435.2007.01275.x doi: 10.1111/j.1365-2435.2007.01275.x
    [2] L. J. Buckingham, B. Ashby, Coevolutionary theory of hosts and parasites, J. Evol. Biol., 35 (2022), 205–224. https://doi.org/10.1111/jeb.13981 doi: 10.1111/jeb.13981
    [3] R. M. May, R. M. Anderson, Epidemiology and genetics in the coevolution of parasites and hosts, Proc. R. Soc. Ser. B Biol. Sci., 219 (1983), 281–313. https://doi.org/10.1098/rspb.1983.0075 doi: 10.1098/rspb.1983.0075
    [4] G. Dwyer, S. A. Levin, L. Buttel, A simulation model of the population dynamics and evolution of myxomatosis, Ecol. Monogr., 60 (1990), 423–447. https://doi.org/10.2307/1943014 doi: 10.2307/1943014
    [5] S. E. Forde, R. E. Beardmore, I. Gudelj, S. S. Arkin, J. N. Thompson, L. D. Hurst, Understanding the limits to generalizability of experimental evolutionary models, Nature, 455 (2008), 220–223. https://doi.org/10.1038/nature07152 doi: 10.1038/nature07152
    [6] J. Frickel, M. Sieber, L. Becks, Eco-evolutionary dynamics in a coevolving host-virus system, Ecol. Lett., 19 (2016), 450–459. https://doi.org/10.1111/ele.12580 doi: 10.1111/ele.12580
    [7] M. Wang, Y. Zhang, Q. Huang, A stage-structured continuous-/discrete-time population model: persistence and spatial spread, Bull. Math. Biol., 84 (2022), 135. ttps://doi.org/10.1007/s11538-022-01090-8 doi: 10.1007/s11538-022-01090-8
    [8] Y. Yan, J. Zhang, H. Wang, Dynamics of stoichiometric autotroph-mixotroph-bacteria interactions in the epilimnion, Bull. Math. Biol., 84 (2022), 5. https://doi.org/10.1007/s11538-021-00962-9 doi: 10.1007/s11538-021-00962-9
    [9] M. Fan, P. Wu, Z. Feng, R. K. Swihart, Dynamics of predator-prey metapopulations with Allee effects, Bull. Math. Biol., 78 (2016), 1727–1748. https://doi.org/10.1007/s11538-016-0197-6 doi: 10.1007/s11538-016-0197-6
    [10] Q. Huang, H. Wang, A. Ricciardi, M. A. Lewis, Temperature-and turbidity-dependent competitive interactions between invasive freshwater mussels, Bull. Math. Biol., 78 (2016), 353–380. https://doi.org/10.1007/s11538-016-0146-4 doi: 10.1007/s11538-016-0146-4
    [11] X. Zhao, L. Liu, H. Wang, M. Fan, Ecological effects of predator harvesting and environmental noises on oceanic coral reefs, Bull. Math. Biol., 85 (2023), 59. https://doi.org/10.1007/s11538-023-01166-z doi: 10.1007/s11538-023-01166-z
    [12] D. Pimentel, Animal population regulation by the genetic feed-back mechanism, Am. Nat., 95 (1961), 65–79. https://doi.org/10.1086/282160 doi: 10.1086/282160
    [13] D. Pimentel, W. P. Nagel, J. L. Madden, Space-time structure of the environment and the survival of parasite-host systems, Am. Nat., 97 (1963), 141–167. https://doi.org/10.1086/282265 doi: 10.1086/282265
    [14] D. Pimentel, Population regulation and genetic feedback: Evolution provides foundation for control of herbivore, parasite, and predator numbers in nature, Science, 159 (1968), 1432–1437. https://doi.org/10.1126/science.159.3822.1432 doi: 10.1126/science.159.3822.1432
    [15] S. A. Levin, J. D. Udovic, A mathematical model of coevolving populations, Am. Nat., 111 (1977), 657–675. https://doi.org/10.1086/283198 doi: 10.1086/283198
    [16] W. M. Schaffer, M. L. Rosenzweig, Homage to the red queen. I. Coevolution of predators and their victims, Theor. Popul Biol., 14 (1978), 135–157. https://doi.org/10.1016/0040-5809(78)90008-4 doi: 10.1016/0040-5809(78)90008-4
    [17] F. S. Brunner, J. M. Anaya-Rojas, B. Matthews, C. Eizaguirre, Experimental evidence that parasites drive eco-evolutionary feedbacks, Proc. Natl. Acad. Sci. U.S.A., 114 (2017), 3678–3683. https://doi.org/10.1073/pnas.1619147114 doi: 10.1073/pnas.1619147114
    [18] L. Govaert, E. A. Fronhofer, S. Lion, C. Eizaguirre, D. Bonte, M. Egas, et al., Eco-evolutionary feedbacks-theoretical models and perspectives, Funct. Ecol., 33 (2019), 13–30. https://doi.org/10.1111/1365-2435.13241 doi: 10.1111/1365-2435.13241
    [19] M. Yamamichi, How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective, Phil. Trans. R. Soc. B, 377 (2022), 20200504. https://doi.org/10.1098/rstb.2020.0504 doi: 10.1098/rstb.2020.0504
    [20] B. Ashby, R. Iritani, A. Best, A. White, M. Boots, Understanding the role of eco-evolutionary feedbacks in host-parasite coevolution, J. Theor. Biol., 464 (2019), 115–125. https://doi.org/10.1016/j.jtbi.2018.12.031 doi: 10.1016/j.jtbi.2018.12.031
    [21] A. MacPherson, S. P. Otto, Joint coevolutionary-epidemiological models dampen Red Queen cycles and alter conditions for epidemics, Theor. Popul Biol., 122 (2018), 137–148. https://doi.org/10.1016/j.tpb.2017.12.003 doi: 10.1016/j.tpb.2017.12.003
    [22] T. Yoshida, N. G. Hairston, S. P. Ellner, Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris, Proc. R. Soc. Ser. B Biol. Sci., 271 (2004), 1947–1953. https://doi.org/10.1098/rspb.2004.2818 doi: 10.1098/rspb.2004.2818
    [23] V. Poullain, S. Gandon, M. A. Brockhurst, A. Buckling, M. E. Hochberg, The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage, Evolution, 62 (2008), 1–11. https://doi.org/10.1111/j.1558-5646.2007.00260.x doi: 10.1111/j.1558-5646.2007.00260.x
    [24] R. C. Wright, M. A. Brockhurst, E. Harrison, Ecological conditions determine extinction risk in co-evolving bacteria-phage populations, BMC Evol. Biol., 16 (2016), 227. https://doi.org/10.1186/s12862-016-0808-8 doi: 10.1186/s12862-016-0808-8
    [25] L. J. Bartlett, L. Wilfert, M. Boots, A genotypic trade-off between constitutive resistance to viral infection and host growth rate, Evolution, 72 (2018), 2749–2757. https://doi.org/10.1111/evo.13623 doi: 10.1111/evo.13623
    [26] R. G. Bowers, A. Hoyle, A. White, M. Boots, The geometric theory of adaptive evolution: trade-off and invasion plots, J. Theor. Biol., 233 (2005), 363–377. https://doi.org/10.1016/j.jtbi.2004.10.017 doi: 10.1016/j.jtbi.2004.10.017
    [27] E. Kisdi, Trade-off geometries and the adaptive dynamics of two co-evolving species, Evol. Ecol. Res., 8 (2006), 959–973.
    [28] A. Sasaki, Host-parasite coevolution in a multilocus gene-for-gene system, Proc. R. Soc. Ser. B Biol. Sci., 267 (2000), 2183–2188. https://doi.org/10.1098/rspb.2000.1267 doi: 10.1098/rspb.2000.1267
    [29] A. Best, A. White, E. Kisdi, J. Antonovics, M. A. Brockhurst, M. Boots, The evolution of host-parasite range, Am. Nat., 176 (2010), 63–71. https://doi.org/10.1086/653002 doi: 10.1086/653002
    [30] P. H. Thrall, J. J. Burdon, A. Young, Variation in resistance and virulence among demes of a plant host-pathogen metapopulation, J. Ecol., 89 (2001), 736–748. https://doi.org/10.1046/j.0022-0477.2001.00597.x doi: 10.1046/j.0022-0477.2001.00597.x
    [31] A. L. Laine, Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics, J. Ecol., 92 (2004), 990–1000. https://doi.org/10.1111/j.0022-0477.2004.00925.x doi: 10.1111/j.0022-0477.2004.00925.x
    [32] J. Wu, G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the unstirred chemostat, J. Differ. Equations, 172 (2001), 300–332. https://doi.org/10.1006/jdeq.2000.3870 doi: 10.1006/jdeq.2000.3870
    [33] J. Wu, H. Nie, G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math., 65 (2004), 209–229. https://doi.org/10.1137/S0036139903423285 doi: 10.1137/S0036139903423285
    [34] H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043 doi: 10.1017/CBO9780511530043
    [35] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [36] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
    [37] X. Q. Zhao, Dynamical Systems in Population Biology, Springer, 2017. https://doi.org/10.1007/978-3-319-56433-3
    [38] S. B. Hsu, F. B. Wang, X. Q. Zhao, A reaction–diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659–677. https://doi.org/10.1016/j.jmaa.2017.02.034 doi: 10.1016/j.jmaa.2017.02.034
    [39] L. Jost, Entropy and diversity, OIKOS, 113 (2006), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x doi: 10.1111/j.2006.0030-1299.14714.x
    [40] M. Roswell, J. Dushoff, R. Winfree, A conceptual guide to measuring species diversity, OIKOS, 130 (2021), 321–338. https://doi.org/10.1111/oik.07202 doi: 10.1111/oik.07202
    [41] E. H. Simpson, Measurement of diversity, Nature, 163 (1949), 688–688. https://doi.org/10.1038/163688a0 doi: 10.1038/163688a0
    [42] M. H. Cortez, P. A. Abrams, Hydra effects in stable communities and their implications for system dynamics, Ecology, 97 (2016), 1135–1145. https://doi.org/10.1890/15-0648.1 doi: 10.1890/15-0648.1
    [43] S. Tang, X. Feng, D. Yan, J. Liang, L. Liu, Y. Xiao, et al., Hormesis and hydra effects revealed by intraspecific overcompensation models and dose-response curves, J. R. Soc. Interface, 22 (2025), 20250169. https://doi.org/10.1098/rsif.2025.0169 doi: 10.1098/rsif.2025.0169
    [44] M. H. Cortez, M. Yamamichi, How (co)evolution alters predator responses to increased mortality: extinction thresholds and hydra effects, Ecology, 100 (2019), e02789. https://doi.org/10.1002/ecy.2789 doi: 10.1002/ecy.2789
    [45] S. Tang, J. Liang, C. Xiang, Y. Xiao, X. Wang, J. Wu, et al., A general model of hormesis in biological systems and its application to pest management, J. R. Soc. Interface, 16 (2019), 20190468. https://doi.org/10.1098/rsif.2019.0468 doi: 10.1098/rsif.2019.0468
    [46] M. Sieber, F. M. Hilker, The hydra effect in predator-prey models, J. Math. Biol., 64 (2012), 341–360. https://doi.org/10.1007/s00285-011-0416-6 doi: 10.1007/s00285-011-0416-6
    [47] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [48] P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173
    [49] M. W. Hirsch, H. L. Smith, X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dyn. Differ. Equations, 13 (2001), 107–131. https://doi.org/10.1023/A:1009044515567 doi: 10.1023/A:1009044515567
    [50] H. Smith, X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theory Methods Appl., 47 (2001), 6169–6179. https://doi.org/10.1016/S0362-546X(01)00678-2 doi: 10.1016/S0362-546X(01)00678-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(161) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog