Research article

Variational approach to fractional Sturm-Liouville equations with mixed impulses

  • Published: 20 November 2025
  • This research focused on solving fractional Sturm-Liouville equations subject to mixed boundary conditions and a combination of instantaneous and non-instantaneous impulses. Through the use of variational methods, the existence of both solutions and multiple solutions for the aforementioned problem was established under assumptions that were weaker than the classical superlinear Ambrosetti-Rabinowitz type growth requirement. Finally, the examples demonstrated the validity of the paper's results.

    Citation: Tingting Xue. Variational approach to fractional Sturm-Liouville equations with mixed impulses[J]. Electronic Research Archive, 2025, 33(11): 6998-7016. doi: 10.3934/era.2025308

    Related Papers:

  • This research focused on solving fractional Sturm-Liouville equations subject to mixed boundary conditions and a combination of instantaneous and non-instantaneous impulses. Through the use of variational methods, the existence of both solutions and multiple solutions for the aforementioned problem was established under assumptions that were weaker than the classical superlinear Ambrosetti-Rabinowitz type growth requirement. Finally, the examples demonstrated the validity of the paper's results.



    加载中


    [1] R. Agarwal, S. Hristova, D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, 2017. https://doi.org/10.1007/978-3-319-66384-5
    [2] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
    [3] L. Bai, B. Dai, Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory, Math. Comput. Modell., 53 (2011), 1844–1855. https://doi.org/10.1016/j.mcm.2011.01.006 doi: 10.1016/j.mcm.2011.01.006
    [4] J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10 (2009), 680–690. https://doi.org/10.1016/j.nonrwa.2007.10.022 doi: 10.1016/j.nonrwa.2007.10.022
    [5] G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal. Theory Methods Appl., 74 (2011), 792–804. https://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030
    [6] J. Wang, Y. Zhou, M. Fečkan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064
    [7] Z. Bai, X. Dong, C. Yin, Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Boundary Value Probl., 2016 (2016), 63. https://doi.org/10.1186/s13661-016-0573-z doi: 10.1186/s13661-016-0573-z
    [8] K. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, Adv. Contin. Discrete Models, 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
    [9] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [10] X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293 (2017), 416–422. https://doi.org/10.1016/j.amc.2016.08.039 doi: 10.1016/j.amc.2016.08.039
    [11] G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 717–744. https://doi.org/10.2478/s13540-014-0196-y doi: 10.2478/s13540-014-0196-y
    [12] R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016–1038. https://doi.org/10.2478/s13540-014-0212-2 doi: 10.2478/s13540-014-0212-2
    [13] W. Zhang, J. Ni, Study on a new p-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Solitons Fractals, 168 (2023), 113143. https://doi.org/10.1016/j.chaos.2023.113143 doi: 10.1016/j.chaos.2023.113143
    [14] G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [15] L. Bai, J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44–48. https://doi.org/10.1016/j.aml.2017.02.019 doi: 10.1016/j.aml.2017.02.019
    [16] Y. Tian, M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94 (2019), 160–165. https://doi.org/10.1016/j.aml.2019.02.034 doi: 10.1016/j.aml.2019.02.034
    [17] L. Bai, J. J. Nieto, X. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440–2448. https://doi.org/10.22436/jnsa.010.05.14 doi: 10.22436/jnsa.010.05.14
    [18] W. Yao, H. Zhang, Multiple solutions for p-Laplacian Kirchhoff-type fractional differential equations with instantaneous and non-instantaneous impulses, J. Appl. Anal. Comput., 15 (2025), 422–441. https://doi.org/10.11948/20240118 doi: 10.11948/20240118
    [19] A. Khaliq, M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95–102. https://doi.org/10.1016/j.aml.2018.03.014 doi: 10.1016/j.aml.2018.03.014
    [20] W. Zhang, W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993. https://doi.org/10.1016/j.aml.2019.07.024 doi: 10.1016/j.aml.2019.07.024
    [21] Y. Qiao, F. Chen, Y. An, Variational methods for a fractional advection-dispersion equation with instantaneous and non-instantaneous impulses and nonlinear Sturm-Liouville conditions, J. Appl. Anal. Comput., 14 (2024), 1698–1716. https://doi.org/10.11948/20230340 doi: 10.11948/20230340
    [22] R. Bourguiba, A. Cabada, W. O. Kalthoum, Existence of solutions of discrete fractional problem coupled to mixed fractional boundary conditions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 116 (2022), 175. https://doi.org/10.1007/s13398-022-01321-6 doi: 10.1007/s13398-022-01321-6
    [23] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42 (2019), 1687–1697. https://doi.org/10.1007/s40840-017-0569-6 doi: 10.1007/s40840-017-0569-6
    [24] J. Carmona, E. Colorado, T. Leonori, A. Ortega, Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions, Fract. Calc. Appl. Anal., 23 (2020), 1208–1239. https://doi.org/10.1515/fca-2020-0061 doi: 10.1515/fca-2020-0061
    [25] B. Łupińska, Existence of solutions to nonlinear Katugampola fractional differential equations with mixed fractional boundary conditions, Math. Methods Appl. Sci., 46 (2023), 12007–12017. https://doi.org/10.1002/mma.8894 doi: 10.1002/mma.8894
    [26] Z. Wang, W. Zhang, J. Ni, Variational approach to mixed boundary value problems of fractional Sturm-Liouville differential equations with instantaneous and non-instantaneous impulses, J. Appl. Anal. Comput., 15 (2025), 1113–1133. https://doi.org/10.11948/20240278 doi: 10.11948/20240278
    [27] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [28] Y. Tian, J. J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinburgh Math. Soc., 60 (2017), 1021–1051. https://doi.org/10.1017/S001309151600050X doi: 10.1017/S001309151600050X
    [29] N. Nyamoradi, S. Tersian, Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory, Fract. Calc. Appl. Anal., 22 (2019), 945–967. https://doi.org/10.1515/fca-2019-0051 doi: 10.1515/fca-2019-0051
    [30] E. Zeidler, Nonlinear Functional Analysis and its Applications-III: Variational Methods and Optimization, $1^{st}$ edition, Springer, 1985. https://doi.org/10.1007/978-1-4612-5020-3
    [31] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, 1986. https://doi.org/10.1090/cbms/065
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(210) PDF downloads(17) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog