Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is difficult to diagnose early. Traditional methods can only confirm the diagnosis when symptoms are evident, but by that time, brain damage is irreversible. Recent research has found that changes in brain activity patterns occur early in AD. Using brain imaging and computational modeling techniques, we can hopefully detect these changes before the onset of symptoms, enabling early intervention. In this paper, we constructed a neurovascular coupling (NVC) whole-brain dynamic model by integrating brain structural data with biophysical modeling methods, aiming to explore the association between dynamical parameters and biomarkers of AD and to reveal their relationship with the overall brain function and network dynamic changes. First, the model simulates properly the resting-state functional connectivity (FC) at various stages of AD development; second, the strength of circulatory connectivity and NVC parameters generated by the brain simulation may be some potential new indicators for the early diagnosis of AD; and finally, the predictive ability of the indicator is quantified using the area under the curve (AUC) values of the receiver operating characteristic (ROC) curves, which suggests a dual strategy for the early diagnosis of biomarkers. These new indicators not only deepen our understanding of the mechanisms of disease progression but also provide an important theoretical basis and technical support for the formulation of early intervention strategies and the development of novel therapeutic approaches.
Citation: Ruoyao Xu, Youjun Liu, Bao Li, Tongna Wang, Yuejuan Xu, Liyuan Zhang. Exploring of new biomarkers for early diagnosis of Alzheimer's disease based on a large scale neurovascular coupling model[J]. Electronic Research Archive, 2025, 33(11): 6652-6671. doi: 10.3934/era.2025294
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is difficult to diagnose early. Traditional methods can only confirm the diagnosis when symptoms are evident, but by that time, brain damage is irreversible. Recent research has found that changes in brain activity patterns occur early in AD. Using brain imaging and computational modeling techniques, we can hopefully detect these changes before the onset of symptoms, enabling early intervention. In this paper, we constructed a neurovascular coupling (NVC) whole-brain dynamic model by integrating brain structural data with biophysical modeling methods, aiming to explore the association between dynamical parameters and biomarkers of AD and to reveal their relationship with the overall brain function and network dynamic changes. First, the model simulates properly the resting-state functional connectivity (FC) at various stages of AD development; second, the strength of circulatory connectivity and NVC parameters generated by the brain simulation may be some potential new indicators for the early diagnosis of AD; and finally, the predictive ability of the indicator is quantified using the area under the curve (AUC) values of the receiver operating characteristic (ROC) curves, which suggests a dual strategy for the early diagnosis of biomarkers. These new indicators not only deepen our understanding of the mechanisms of disease progression but also provide an important theoretical basis and technical support for the formulation of early intervention strategies and the development of novel therapeutic approaches.
| [1] |
K. Kisler, A. R. Nelson, A. Montagne, B. V. Zlokovic, Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease, Nat. Rev. Neurosci., 18 (2017), 419–434. https://doi.org/10.1038/nrn.2017.48 doi: 10.1038/nrn.2017.48
|
| [2] |
J. Wang, X. Yang, Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition, Cognit. Neurodyn., 19 (2025), 60. https://doi.org/10.1007/s11571-025-10246-w doi: 10.1007/s11571-025-10246-w
|
| [3] |
X. Ren, Y. Wang, X. Li, X. Wang, Z. Liu, J. Yang, et al., Attenuated heterogeneity of hippocampal neuron subsets in response to novelty induced by amyloid-β, Cognit. Neurodyn., 19 (2025), 56. https://doi.org/10.1007/s11571-025-10237-x doi: 10.1007/s11571-025-10237-x
|
| [4] |
Z. Yang, F. Lange, Y. Xia, C. Chertavian, K. Cabolis, M. Sajic, et al., Nimodipine protects vascular and cognitive function in an animal model of cerebral small vessel disease, Stroke, 55 (2024), 1914–1922. https://doi.org/10.1161/STROKEAHA.124.047154 doi: 10.1161/STROKEAHA.124.047154
|
| [5] |
A. R. Bateman, J. Lechner-Scott, T. Barber, G. A. Bateman, S. Ramadan, R. Lea, A longitudinal investigation of the cerebral venous hemodynamics in multiple sclerosis using computational fluid dynamics, Multiple Scler. Relat. Disord., 100 (2025), 106555. https://doi.org/10.1016/j.msard.2025.106555 doi: 10.1016/j.msard.2025.106555
|
| [6] |
X. Chen, S. Li, Expert consensus on the application of amyloid-PET imaging in the diagnosis of Alzheimer's disease, National Med. J. China, 103 (2023), 3615–3626. https://doi.org/10.3760/cma.j.cn112137-20230909-00433 doi: 10.3760/cma.j.cn112137-20230909-00433
|
| [7] |
S. G. Mueller, M. W. Weiner, L. J. Thal, C. R. Jack, W. J. Jagust, J. Q. Trojanowski, et al., The Alzheimer's disease neuroimaging initiative, Neuroimaging Clin. N. Am., 15 (2005), 869–877. https://doi.org/10.1016/j.nic.2005.09.008 doi: 10.1016/j.nic.2005.09.008
|
| [8] |
L. Stefanovski, J. M. Meier, R. K. Pai, P. Triebkorn, T. Lett, L. Martin, et al., Bridging scales in Alzheimer's disease: Biological framework for brain simulation with The Virtual Brain, Front. Neuroinform., 15 (2021), 630172. https://doi.org/10.3389/fninf.2021.630172 doi: 10.3389/fninf.2021.630172
|
| [9] |
C. R. Jack Jr, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein, et al., NIA-AA research framework: toward a biological definition of Alzheimer's disease, J. Alzheimers Assoc., 14 (2018), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018 doi: 10.1016/j.jalz.2018.02.018
|
| [10] |
G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E. M. Stadlan, Clinical diagnosis of Alzheimer's disease: Report of the NINCDS—ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease, Neurology, 77 (2011), 333. https://doi.org/10.1212/01.wnl.0000400650.92875.cf doi: 10.1212/01.wnl.0000400650.92875.cf
|
| [11] |
F. C. Yeh, I. M. Zaydan, V. R. Suski, D. Lacomis, R. M. Richardson, J. C. Maroon, et al., Differential tractography as a track-based biomarker for neuronal injury, NeuroImage, 202 (2019), 116131. https://doi.org/10.1016/j.neuroimage.2019.116131 doi: 10.1016/j.neuroimage.2019.116131
|
| [12] | F. C. Yeh, T. D. Verstynen, Y. Wang, J. C. Fernández-Miranda, W. I. Tseng, Deterministic diffusion fiber tracking improved by quantitative anisotropy, PLoS One, 9 (2014). https://doi.org/10.1371/annotation/0f3b12de-8b8b-4dda-9ff4-835b8631e1dc |
| [13] |
F. C. Yeh, V. J. Wedeen, W. I. Tseng, Generalized q-sampling imaging, IEEE Trans. Med. Imaging, 29 (2010), 1626–1635. https://doi.org/10.1109/TMI.2010.2045126 doi: 10.1109/TMI.2010.2045126
|
| [14] |
F. C. Yeh, P. F. Tang, W. I. Tseng, Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke, NeuroImage Clin., 2 (2013), 912–921. https://doi.org/10.1016/j.nicl.2013.06.014 doi: 10.1016/j.nicl.2013.06.014
|
| [15] |
X. Z. Jia, J. Wang, H. Y. Sun, H. Zhang, W. Liao, Z. Wang, et al., RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing, Sci. Bull., 64 (2019), 953–954. https://doi.org/10.1016/j.scib.2019.05.008 doi: 10.1016/j.scib.2019.05.008
|
| [16] |
H. M. Lin, Y. H. Yang, J. Y. Lu, Z. W. Zhang, S. F. Chen, J. J. Ge, et al. Visualization of brain abnormal β-amyloid deposition in Alzheimer's disease based on 18F-Florbetaben PET imaging, Chin. J. Med. Imaging, 32 (2024), 420–425. https://doi.org/10.3969/j.issn.1005-5185.2024.05.002 doi: 10.3969/j.issn.1005-5185.2024.05.002
|
| [17] |
G. Deco, A. Ponce-Alvarez, D. Mantini, G. L. Romani, P. Hagmann, M. Corbetta, Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations, J. Neurosci., 33 (2013), 11239–11252. https://doi.org/10.1523/JNEUROSCI.1091-13.2013 doi: 10.1523/JNEUROSCI.1091-13.2013
|
| [18] |
K. J. Friston, L. Harrison, W. Penny, Dynamic causal modelling, NeuroImage, 19 (2003), 1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7 doi: 10.1016/S1053-8119(03)00202-7
|
| [19] |
K. E. Stephan, N. Weiskopf, P. M. Drysdale, P. A. Robinson, K. J. Friston, et al., Comparing hemodynamic models with DCM, NeuroImage, 38 (2007), 387–401. https://doi.org/10.1016/j.neuroimage.2007.07.040 doi: 10.1016/j.neuroimage.2007.07.040
|
| [20] |
J. Heinzle, P. J. Koopmans, H. E. M. den Ouden, S. Raman, K. E. Stephan, A hemodynamic model for layered bold signals, NeuroImage, 125 (2016), 556–570. https://doi.org/10.1016/j.neuroimage.2015.10.025 doi: 10.1016/j.neuroimage.2015.10.025
|
| [21] | P. Wang, T. R. Knösche, A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity––evaluation with auditory habituation, PLoS One, 8 (2013). https://doi.org/10.1371/journal.pone.0077876 |
| [22] |
P. Honhar, D. Matuskey, R. E. Carson, A. T. Hillmer, Improving SUVR quantification by correcting for Radiotracer clearance in tissue, J. Cereb. Blood Flow Metab., 44 (2023), 296–309. https://doi.org/10.1177/0271678X231196804 doi: 10.1177/0271678X231196804
|
| [23] |
J. Soucy, F. Mohammadi, T. Boulier, V. Hortelan, P. Rosa-Neto, T. A. Pascoal, et al., Different relationship of cross‐regional correlations of progression of local cortical thickness and local SUVR 18f‐flortaucipir PET values to strength of connectivity, J. Alzheimers Assoc., 16 (2020), e037267. https://doi.org/10.1002/alz.037267 doi: 10.1002/alz.037267
|
| [24] |
K. R. Thomas, A. J. Weigand, L. C. Edwards, E. C. Edmonds, K. J. Bangen, G. Ortiz, et al., Tau levels are higher in objective subtle cognitive decline but not subjective memory complaint, Alzheimers Res. Ther., 14 (2022), 114. https://doi.org/10.1186/s13195-022-01060-1 doi: 10.1186/s13195-022-01060-1
|
| [25] |
C. E. Metz, Some practical issues of experimental design and data analysis in Radiological Roc Studies, Invest. Radiol., 24 (1989), 234–245. https://doi.org/10.1097/00004424-198903000-00012 doi: 10.1097/00004424-198903000-00012
|
| [26] |
C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, et al., Predicting human resting-state functional connectivity from structural connectivity, Proc. Natl. Acad. Sci. U. S. A., 106 (2009), 2035–2040. https://doi.org/10.1073/pnas.0811168106 doi: 10.1073/pnas.0811168106
|