Research article Special Issues

Attenuation of backpropagating action potentials in three types of dentate granule cells

  • Published: 26 September 2025
  • Backpropagating action potentials (bpAPs) are retrograde electrical signals crucial for modulating synaptic plasticity. They play a pivotal role in regulating neuronal computation and memory formation. In dentate gyrus granule cells, which are key neuronal populations responsible for pattern separation and memory storage, bpAPs-mediated signaling is particularly important for integrating synaptic inputs and fine-tuning network activity. However, this neuronal population has marked structural and functional heterogeneity, including regular granule cells (GCs), semilunar granule cells (SGCs), and hilar ectopic granule cells (HEGCs). The influence of the distinct biophysical properties of these GC subtypes on backpropagation dynamics such as attenuation amplitude, velocity, and spatial spread remains unclear. Here, we utilized multi-compartment models of three types of GCs to systematically investigate the backpropagation efficiency across three metrics: attenuation amplitude, attenuation rate, and propagation distance. We found that higher dendritic K$ ^{+} $ channel density drove strong attenuation of bpAPs in SGCs (highest rate, shortest propagation), whereas higher dendritic Na$ ^{+} $ channel density in HEGCs minimized attenuation. Dendritic branching patterns modulated attenuation amplitude secondarily, while passive axial resistance had negligible effects. These findings establish dendritic active properties rather than morphology as the dominant regulator of attenuation intensity and reveal how activity regulation in these neuronal subtypes contributes to pattern separation and memory storage.

    Citation: Yue Mao, Ming Liu, Xiaojuan Sun. Attenuation of backpropagating action potentials in three types of dentate granule cells[J]. Electronic Research Archive, 2025, 33(9): 5845-5864. doi: 10.3934/era.2025260

    Related Papers:

  • Backpropagating action potentials (bpAPs) are retrograde electrical signals crucial for modulating synaptic plasticity. They play a pivotal role in regulating neuronal computation and memory formation. In dentate gyrus granule cells, which are key neuronal populations responsible for pattern separation and memory storage, bpAPs-mediated signaling is particularly important for integrating synaptic inputs and fine-tuning network activity. However, this neuronal population has marked structural and functional heterogeneity, including regular granule cells (GCs), semilunar granule cells (SGCs), and hilar ectopic granule cells (HEGCs). The influence of the distinct biophysical properties of these GC subtypes on backpropagation dynamics such as attenuation amplitude, velocity, and spatial spread remains unclear. Here, we utilized multi-compartment models of three types of GCs to systematically investigate the backpropagation efficiency across three metrics: attenuation amplitude, attenuation rate, and propagation distance. We found that higher dendritic K$ ^{+} $ channel density drove strong attenuation of bpAPs in SGCs (highest rate, shortest propagation), whereas higher dendritic Na$ ^{+} $ channel density in HEGCs minimized attenuation. Dendritic branching patterns modulated attenuation amplitude secondarily, while passive axial resistance had negligible effects. These findings establish dendritic active properties rather than morphology as the dominant regulator of attenuation intensity and reveal how activity regulation in these neuronal subtypes contributes to pattern separation and memory storage.



    加载中


    [1] G. Stuart, N. Spruston, B. Sakmann, M. Häusser, Action potential initiation and backpropagation in neurons of the mammalian CNS, Trends Neurosci., 20 (1997), 125–131. https://doi.org/10.1016/s0166-2236(96)10075-8 doi: 10.1016/s0166-2236(96)10075-8
    [2] P. Vetter, A. Roth, M. Häusser, Propagation of action potentials in dendrites depends on dendritic morphology, J. Neurophysiol., 85 (2001), 926–937. https://doi.org/10.1152/jn.2001.85.2.926 doi: 10.1152/jn.2001.85.2.926
    [3] J. Brunner, J. Szabadics, Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling, Nat. Commun., 7 (2016), 13033. https://doi.org/10.1038/ncomms13033 doi: 10.1038/ncomms13033
    [4] N. L. Golding, W. L. Kath, N. Spruston, Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites, J. Neurophysiol., 86 (2001), 2998–3010. https://doi.org/10.1152/jn.2001.86.6.2998 doi: 10.1152/jn.2001.86.6.2998
    [5] D. Johnston, J. C. Magee, C. M. Colbert, B. R. Christie, Active properties of neuronal dendrites, Annu. Rev. Neurosci., 19 (1996), 165–186. https://doi.org/10.1146/annurev.ne.19.030196.001121 doi: 10.1146/annurev.ne.19.030196.001121
    [6] T. Bock, A. Negrean, S. A. Siegelbaum, Somatic depolarization enhances hippocampal CA1 dendritic spike propagation and distal input driven synaptic plasticity, J. Neurosci., 42 (2022), 3406–3425. https://doi.org/10.1523/JNEUROSCI.0780-21.2022 doi: 10.1523/JNEUROSCI.0780-21.2022
    [7] C. Schmidt-Hieber, P. Jonas, J. Bischofberger, Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells, J. Neurosci., 27 (2007), 8430–8441. https://doi.org/10.1523/jneurosci.1787-07.2007 doi: 10.1523/jneurosci.1787-07.2007
    [8] M. Häusser, G. Stuart, C. Racca, B. Sakmann, Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons, Neuron, 15 (1995), 637–647. https://doi.org/10.1016/0896-6273(95)90152-3 doi: 10.1016/0896-6273(95)90152-3
    [9] J. Waters, A. Schaefer, B. Sakmann, Backpropagating action potentials in neurones: Measurement, mechanisms and potential functions, Prog. Biophys. Mol. Biol., 87 (2005), 145–170. https://doi.org/10.1016/j.pbiomolbio.2004.06.009 doi: 10.1016/j.pbiomolbio.2004.06.009
    [10] O. Herreras, Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ, J. Neurophysiol., 64 (1990), 1429–1441. https://doi.org/10.1152/jn.1990.64.5.1429 doi: 10.1152/jn.1990.64.5.1429
    [11] R. W. Turner, L. Maler, T. Deerinck, S. R. Levinson, M. H. Ellisman, TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron, J. Neurosci., 14 (1994), 6453–6471. https://doi.org/10.1523/jneurosci.14-11-06453.1994 doi: 10.1523/jneurosci.14-11-06453.1994
    [12] W. Tian, L. Peng, M. Zhao, L. Tao, P. Zou, Y. Zhang, Dendritic morphology affects the velocity and amplitude of back-propagating action potentials, Neurosci. Bull., 38 (2022), 1330–1346. https://doi.org/10.1007/s12264-022-00931-9 doi: 10.1007/s12264-022-00931-9
    [13] T. Hainmueller, M. Bartos, Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories, Nat. Rev. Neurosci., 21 (2020), 153–168. https://doi.org/10.1038/s41583-019-0260-z doi: 10.1038/s41583-019-0260-z
    [14] X. Zhang, P. Jonas, Integration of spatial and non-spatial information by heterogeneous dentate gyrus granule cells, J. Life Sci., 2 (2020), 19–24.
    [15] A. Gupta, A. Proddutur, Y. J. Chang, V. Raturi, J. Guevarra, Y. Shah, et al., Dendritic morphology and inhibitory regulation distinguish dentate semilunar granule cells from granule cells through distinct stages of postnatal development, Brain Struct. Funct., 225 (2020), 2841–2855. https://doi.org/10.1101/2019.12.17.880005 doi: 10.1101/2019.12.17.880005
    [16] Y. Kasahara, H. Nakashima, K. Nakashima, Seizure-induced hilar ectopic granule cells in the adult dentate gyrus, Front. Neurosci., 17 (2023), 1150283. https://doi.org/10.3389/fnins.2023.1150283 doi: 10.3389/fnins.2023.1150283
    [17] Y. Mao, M. Liu, X. Sun, Excitatory synaptic integration of three types of granule cells in the dentate gyrus, Cognit. Neurodyn., 19 (2025), 40. https://doi.org/10.1007/s11571-025-10226-0 doi: 10.1007/s11571-025-10226-0
    [18] S. Chavlis, P. C. Petrantonakis, P. Poirazi, Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity, Hippocampus, 27 (2017), 89–110. https://doi.org/10.1002/hipo.22675 doi: 10.1002/hipo.22675
    [19] S. Kim, Y. Kim, S. H. Lee, W. K. Ho, Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse, eLife, 7 (2018), e35269. https://doi.org/10.7554/eLife.35269 doi: 10.7554/eLife.35269
    [20] R. Krueppel, S. Remy, H. Beck, Dendritic integration in hippocampal dentate granule cells, Neuron, 71 (2011), 512–528. https://doi.org/10.1016/j.neuron.2011.05.043 doi: 10.1016/j.neuron.2011.05.043
    [21] M. Häusser, B. Mel, Dendrites: Bug or feature, Curr. Opin. Neurobiol., 13 (2003), 372–383. https://doi.org/10.1016/s0959-4388(03)00075-8
    [22] P. Jedlicka, L. Benuskova, W. C. Abraham, A voltage-based STDP rule combined with fast BCM-like metaplasticity accounts for LTP and concurrent "heterosynaptic" LTD in the dentate gyrus in vivo, PLoS Comput. Biol., 11 (2015), e1004588. https://doi.org/10.1371/journal.pcbi.1004588 doi: 10.1371/journal.pcbi.1004588
    [23] H. Yin, X. Sun, K. Yang, Y. Lan, Z. Lu, Regulation of dentate gyrus pattern separation by hilus ectopic granule cells, Cognit. Neurodyn., 19 (2025), 10. https://doi.org/10.1007/s11571-024-10204-y doi: 10.1007/s11571-024-10204-y
    [24] M. L. Hines, N. T. Carnevale, NEURON: A tool for neuroscientists, Neuroscientist, 7 (2001), 123–135. https://doi.org/10.1177/107385840100700207 doi: 10.1177/107385840100700207
    [25] K. R. Kim, S. Y. Lee, S. H. Yoon, Y. Kim, H. J. Jeong, S. Lee, et al., Kv4.1, a key ion channel for low frequency firing of dentate granule cells, is crucial for pattern separation, J. Neurosci., 40 (2020), 2200–2214. https://doi.org/10.1523/JNEUROSCI.1541-19.2020 doi: 10.1523/JNEUROSCI.1541-19.2020
    [26] N. L. Golding, T. J. Mickus, Y. Katz, W. L. Kath, N. Spruston, Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites, J. Physiol., 568 (2005), 69–82. https://doi.org/10.1113/jphysiol.2005.086793 doi: 10.1113/jphysiol.2005.086793
    [27] J. H. Goldberg, G. Tamas, R. Yuste, Ca$^{2+}$ imaging of mouse neocortical interneurone dendrites: I$_a$-type K$^+$ channels control action potential backpropagation, J. Physiol., 551 (2003), 49–65. https://doi.org/10.1113/jphysiol.2003.042580 doi: 10.1113/jphysiol.2003.042580
    [28] H. Y. Jung, T. Mickus, N. Spruston, Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons, J. Neurosci., 17 (1997), 6639–6646. https://doi.org/10.1523/JNEUROSCI.17-17-06639.1997 doi: 10.1523/JNEUROSCI.17-17-06639.1997
    [29] Z. He, S. Zhang, Q. Song, W. Li, D. Liu, H. Li, et al., The structural development of primary cultured hippocampal neurons on a graphene substrate, Colloids Surf. B Biointerfaces, 146 (2016), 442–451. https://doi.org/10.1016/j.colsurfb.2016.06.045 doi: 10.1016/j.colsurfb.2016.06.045
    [30] M. Diamantaki, M. Frey, P. Berens, P. Preston-Ferrer, A. Burgalossi, Sparse activity of identified dentate granule cells during spatial exploration, eLife, 5 (2016), e20252. https://doi.org/10.7554/elife.20252 doi: 10.7554/elife.20252
    [31] S. S. Goldstein, W. Rall, Changes of action potential shape and velocity for changing core conductor geometry, Biophys. J., 14 (1974), 731–757. https://doi.org/10.1016/s0006-3495(74)85947-3 doi: 10.1016/s0006-3495(74)85947-3
    [32] C. D. Acker, J. A. White, Roles of IA and morphology in action potential propagation in CA1 pyramidal cell dendrites, J. Comput. Neurosci., 23 (2007), 201–216. https://doi.org/10.1007/s10827-007-0028-8 doi: 10.1007/s10827-007-0028-8
    [33] W. Rall, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol., 1 (1959), 491–527. https://doi.org/10.1016/0014-4886(59)90046-9 doi: 10.1016/0014-4886(59)90046-9
    [34] V. Volman, H. Levine, T. J. Sejnowski, Shunting inhibition controls the gain modulation mediated by asynchronous neurotransmitter release in early development, PLoS Comput. Biol., 6 (2010), e1000973. https://doi.org/10.1371/journal.pcbi.1000973 doi: 10.1371/journal.pcbi.1000973
    [35] K. Yang, X. Sun, S. Zhu, The heterogeneous population of granule cells contributes to pattern separation of the dentate gyrus neural network, Nonlinear Dyn., 112 (2024), 13465–13481. https://doi.org/10.1007/s11071-024-09730-5 doi: 10.1007/s11071-024-09730-5
    [36] M. Y. Yim, A. Hanuschkin, J. Wolfart, Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability, Hippocampus, 25 (2015), 297–308. https://doi.org/10.1002/hipo.22373 doi: 10.1002/hipo.22373
    [37] L. Dovek, K. Marrero, E. Zagha, V. Santhakumar, Cellular and circuit features distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation, eLife, 14 (2025), e101428. https://doi.org/10.1101/2024.08.21.608983 doi: 10.1101/2024.08.21.608983
    [38] R. Z. Zhan, J. V. Nadler, Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus, J. Neurophysiol., 102 (2009), 670–681. https://doi.org/10.1152/jn.00147.2009 doi: 10.1152/jn.00147.2009
    [39] M. C. Cameron, R. Zhan, J. V. Nadler, Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy, J. Comp. Neurol., 519 (2011), 2175–2192. https://doi.org/10.1002/cne.22623 doi: 10.1002/cne.22623
    [40] J. N. Wood, J. P. Boorman, K. Okuse, M. D. Baker, Voltage-gated sodium channels and pain pathways, J. Neurobiol., 61 (2004), 55–71. https://doi.org/10.1002/neu.20094 doi: 10.1002/neu.20094
    [41] D. Johnston, D. A. Hoffman, J. C. Magee, N. P. Poolos, S. Watanabe, C. M. Colbert, et al., Dendritic potassium channels in hippocampal pyramidal neurons, J. Physiol., 525 (2000), 75–81. https://doi.org/10.1111/j.1469-7793.2000.00075.x doi: 10.1111/j.1469-7793.2000.00075.x
    [42] A. J. Hudspeth, M. M. Poo, A. E. Stuart, Passive signal propagation and membrane properties in median photoreceptors of the giant barnacle, J. Physiol., 272 (1977), 25–43. https://doi.org/10.1113/jphysiol.1977.sp012032 doi: 10.1113/jphysiol.1977.sp012032
    [43] P. Alcami, A. El Hady, Axonal computations, Front. Cell Neurosci., 13 (2019), 413. https://doi.org/10.3389/fncel.2019.00413
    [44] N. Spruston, Pyramidal neurons: Dendritic structure and synaptic integration, Nat. Rev. Neurosci., 9 (2008), 206–221. https://doi.org/10.1038/nrn2286 doi: 10.1038/nrn2286
    [45] J. Tønnesen, G. Katona, B. Rózsa, U. V. Nägerl, Spine neck plasticity regulates compartmentalization of synapses, Nat. Neurosci., 17 (2014), 678–685. https://doi.org/10.1038/nn.3682 doi: 10.1038/nn.3682
    [46] A. L. Althaus, S. J. Moore, H. Zhang, X. Du, G. G. Murphy, J. M. Parent, Altered synaptic drive onto birthdated dentate granule cells in experimental temporal lobe epilepsy, J. Neurosci., 39 (2019), 7604–7614. https://doi.org/10.1523/JNEUROSCI.0654-18.2019 doi: 10.1523/JNEUROSCI.0654-18.2019
    [47] S. C. Danzer, Adult neurogenesis in the development of epilepsy, Epilepsy Curr., 19 (2019), 316–320. https://doi.org/10.1177/1535759719868186 doi: 10.1177/1535759719868186
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(415) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog