Research article

Temporal pattern classification of internet meme propagation: A hybrid machine learning approach

  • Published: 12 September 2025
  • Quantitative analysis of internet memes—digital cultural phenomena that propagate through online networks—remains an understudied domain in computational social science. Building upon established research that modeled meme popularity through ordinary differential equations, this study presents a novel machine learning approach to classify and predict meme popularity trajectories. Previous work identified four distinct post-peak patterns: smooth decay, oscillatory decay, plateau, and sustained growth. We significantly expanded the empirical foundation by constructing a comprehensive dataset of 2000+ memes, leveraging Google Trends time-series data. Our methodological framework employed a two-stage machine learning pipeline: first, implementing k-means clustering ($ k = 4 $) for unsupervised pattern discovery, followed by support vector classification for supervised learning. This approach enabled both validation of previously identified trajectory patterns and development of a predictive model for meme popularity evolution. Additionally, we conducted a systematic analysis of the relationship between meme taxonomic categories (e.g., catchphrases, viral videos) and their temporal popularity patterns. Our findings contribute to the emerging field of computational memetics and offer insights into the quantitative dynamics of online cultural transmission. The resulting classification model demonstrates robust predictive capabilities, with implications for understanding viral content dynamics in digital ecosystems.

    Citation: William Little, Pengcheng Xiao. Temporal pattern classification of internet meme propagation: A hybrid machine learning approach[J]. Electronic Research Archive, 2025, 33(9): 5323-5346. doi: 10.3934/era.2025238

    Related Papers:

  • Quantitative analysis of internet memes—digital cultural phenomena that propagate through online networks—remains an understudied domain in computational social science. Building upon established research that modeled meme popularity through ordinary differential equations, this study presents a novel machine learning approach to classify and predict meme popularity trajectories. Previous work identified four distinct post-peak patterns: smooth decay, oscillatory decay, plateau, and sustained growth. We significantly expanded the empirical foundation by constructing a comprehensive dataset of 2000+ memes, leveraging Google Trends time-series data. Our methodological framework employed a two-stage machine learning pipeline: first, implementing k-means clustering ($ k = 4 $) for unsupervised pattern discovery, followed by support vector classification for supervised learning. This approach enabled both validation of previously identified trajectory patterns and development of a predictive model for meme popularity evolution. Additionally, we conducted a systematic analysis of the relationship between meme taxonomic categories (e.g., catchphrases, viral videos) and their temporal popularity patterns. Our findings contribute to the emerging field of computational memetics and offer insights into the quantitative dynamics of online cultural transmission. The resulting classification model demonstrates robust predictive capabilities, with implications for understanding viral content dynamics in digital ecosystems.



    加载中


    [1] L. Shifman, Memes in Digital Culture, MIT Press, Cambridge, MA, 2014.
    [2] D. J. Daley, D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118.
    [3] L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser, C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006), 513–536. https://doi.org/10.1016/j.physa.2005.08.083 doi: 10.1016/j.physa.2005.08.083
    [4] K. Nahon, J. Hemsley, Viral politics: Information flows and political behavior on social media, in Gateway: Understanding Information Flows, Oxford University Press, 2011.
    [5] C. Bauckhage, Insights into internet memes, in Proceedings of the International AAAI Conference on Web and Social Media, 5 (2011), 42–49. https://doi.org/10.1609/icwsm.v5i1.14097
    [6] A. Lonnberg, P. Xiao, K. Wolfinger, The growth, spread, and mutation of internet phenomena: a study of memes, Results Appl. Math., 6 (2020), 100092. https://doi.org/10.1016/j.rinam.2020.100092 doi: 10.1016/j.rinam.2020.100092
    [7] L. Wang, B. C. Wood, An epidemiological approach to model the viral propagation of memes, Appl. Math. Model., 36 (2012), 5442–5447. https://doi.org/10.1016/j.apm.2011.04.035 doi: 10.1016/j.apm.2011.04.035
    [8] A. Guille, H. Hacid, C. Favre, D. A. Zighed, Information diffusion in online social networks: A survey, ACM SIGMOD Rec., 42 (2013), 17–28. https://doi.org/10.1145/2503792.2503797 doi: 10.1145/2503792.2503797
    [9] J. P. Gleeson, J. A. Ward, K. P. O'Sullivan, W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett., 112 (2014), 048701. https://doi.org/10.1103/PhysRevLett.112.048701 doi: 10.1103/PhysRevLett.112.048701
    [10] S. A. Myers, J. Leskovec, Clash of the contagions: Cooperation and competition in information diffusion, in 2012 IEEE 12th International Conference on Data Mining, (2012), 539–548. https://doi.org/10.1109/ICDM.2012.159
    [11] L. Weng, A. Flammini, A. Vespignani, F. Menczer, Competition among memes in a world with limited attention, Sci. Rep., 2 (2012), 335. https://doi.org/10.1038/srep00335 doi: 10.1038/srep00335
    [12] M. Coscia, Competition and success in the meme pool: a case study on quickmeme.com, in Proceedings of the International AAAI Conference on Web and Social Media, 7 (2013), 100–109. https://doi.org/10.1609/icwsm.v7i1.14385
    [13] C. M. Valensise, A. Serra, A. Galeazzi, G. Etta, M. Cinelli, W. Quattrociocchi, Entropy and complexity unveil the landscape of memes evolution, Sci. Rep., 11 (2021), 20022. https://doi.org/10.1038/s41598-021-99468-6 doi: 10.1038/s41598-021-99468-6
    [14] K. Barnes, P. Juhász, M. Nagy, R. Molontay, Topicality boosts popularity: a comparative analysis of NYT articles and Reddit memes, Soc. Network Anal. Min., 14 (2024), 119. https://doi.org/10.1007/s13278-024-01272-3 doi: 10.1007/s13278-024-01272-3
    [15] K. A. Oliveira, Modelling Meme Popularity with Networks, University of Limerick, 2022.
    [16] P. Wang, M. C. González, C. A. Hidalgo, A. L. Barabási, Understanding the spreading patterns of mobile phone viruses, Science, 324 (2009), 1071–1076. https://doi.org/10.1126/science.1167053 doi: 10.1126/science.1167053
    [17] M. J. Salganik, P. S. Dodds, D. J. Watts, Experimental study of inequality and unpredictability in an artificial cultural market, Science, 311 (2006), 854–856. https://doi.org/10.1126/science.1121066 doi: 10.1126/science.1121066
    [18] E. Ferrara, M. JafariAsbagh, O. Varol, V. Qazvinian, F. Menczer, A. Flammini, Clustering memes in social media, in Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (2013), 548–555. https://doi.org/10.1145/2492517.2492530
    [19] S. Vosoughi, D. Roy, S. Aral, The spread of true and false news online, Science, 359 (2018), 1146–1151. https://doi.org/10.1126/science.aap9559 doi: 10.1126/science.aap9559
    [20] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, Proc. SODA, (2007), 1027–1035.
    [21] B. E. Wiggins, B. S. Bowers, Memes as genre: A structurational analysis of the memescape, New Media Soc., 17 (2015), 1886–1906. https://doi.org/10.1177/1461444814535194 doi: 10.1177/1461444814535194
    [22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825–2830. https://doi.org/10.5555/1953048.2078195 doi: 10.5555/1953048.2078195
    [23] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20 (1987), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 doi: 10.1016/0377-0427(87)90125-7
    [24] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York, 1990.
    [25] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
    [26] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett., 27 (2006), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 doi: 10.1016/j.patrec.2005.10.010
    [27] S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in Pacific-Asia Conference on Knowledge Discovery and Data Mining, (2004), 22–30. https://doi.org/10.1007/978-3-540-24775-3_5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1036) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog