In this study, we innovatively applied dynamic game theory to analyze blockchain adoption decisions in competitive environments. By constructing a multi-stage dynamic game model and solving for optimal strategies through backward induction, we overcame the limitations of the traditional static game analysis. Combining the mathematical modeling with numerical simulations, we identified a critical threshold effect of the competition intensity on the blockchain adoption equilibrium. Specifically, when the competition intensity fell below the threshold, blockchain adoptions emerged as the dominant strategy. Beyond this threshold, the equilibrium shifted to a mixed-strategy outcome. Furthermore, we developed a dynamic response mechanism that linked traceability preferences to profit functions. Our model provides a theoretical framework for analyzing blockchain adoptions in competitive settings, while the numerical results offer actionable insights for optimizing the blockchain system design.
Citation: Xiaojing Li, Tianxing Liu, Feng Gu. Mathematical modeling and numerical analysis of blockchain decision systems by a dynamic game method[J]. Electronic Research Archive, 2025, 33(8): 4837-4856. doi: 10.3934/era.2025218
In this study, we innovatively applied dynamic game theory to analyze blockchain adoption decisions in competitive environments. By constructing a multi-stage dynamic game model and solving for optimal strategies through backward induction, we overcame the limitations of the traditional static game analysis. Combining the mathematical modeling with numerical simulations, we identified a critical threshold effect of the competition intensity on the blockchain adoption equilibrium. Specifically, when the competition intensity fell below the threshold, blockchain adoptions emerged as the dominant strategy. Beyond this threshold, the equilibrium shifted to a mixed-strategy outcome. Furthermore, we developed a dynamic response mechanism that linked traceability preferences to profit functions. Our model provides a theoretical framework for analyzing blockchain adoptions in competitive settings, while the numerical results offer actionable insights for optimizing the blockchain system design.
| [1] |
R. Azzi, R. K. Chamoun, M. Sokhn, The power of a blockchain-based supply chain, Comput. Ind. Eng., 135 (2019), 582–592. https://doi.org/10.1016/j.cie.2019.06.042 doi: 10.1016/j.cie.2019.06.042
|
| [2] |
K. Yavaprabhas, M. Pournader, S. Seuring, Blockchain as the "trust-building machine" for supply chain management, Ann. Oper. Res., 327 (2023), 49–88. https://doi.org/10.1007/s10479-022-04868-0 doi: 10.1007/s10479-022-04868-0
|
| [3] |
P. Dutta, T. M. Choi, S. Somani, R. Butala, Blockchain technology in supply chain operations: Applications, challenges and research opportunities, Transp. Res. Part E Logist. Transp. Rev., 142 (2020), 102067. https://doi.org/10.1016/j.tre.2020.102067 doi: 10.1016/j.tre.2020.102067
|
| [4] |
B. Shen, C. Dong, S. Minner, Combating copycats in the supply chain with permissioned blockchain technology, Prod. Oper. Manage., 31 (2022), 138–154. https://doi.org/10.1111/poms.13456 doi: 10.1111/poms.13456
|
| [5] | Nestle announces partnership with IBM to enable supply chain traceability through blockchain, 2023. Available from: https://www.weiyangx.com/356376.html. |
| [6] |
N. Kshetri, Blockchain and the economics of food safety, IT Prof., 21 (2019), 63–66. https://doi.org/10.1109/MITP.2019.2906761 doi: 10.1109/MITP.2019.2906761
|
| [7] |
Y. Cui, V. Gaur, J. Liu, Supply chain transparency and blockchain design, Manage. Sci., 70 (2023), 3245–3263. https://doi.org/10.1287/mnsc.2023.4851 doi: 10.1287/mnsc.2023.4851
|
| [8] |
A. G. Naclerio, P. Degiovanni, Blockchain, logistics and omnichannel for last mile and performance, Int. J. Logist. Manage., 33 (2022), 663–686. https://doi.org/10.1108/IJLM-08-2021-0415 doi: 10.1108/IJLM-08-2021-0415
|
| [9] |
A. Kumar, R. Liu, Z. Shan, Is blockchain a silver bullet for supply chain management? Technical challenges and research opportunities, Decis. Sci., 51 (2020), 8–37. https://doi.org/10.1111/deci.12396 doi: 10.1111/deci.12396
|
| [10] |
S. Saberi, M. Kouhizadeh, J. Sarkis, L. Shen, Blockchain technology and its relationships to sustainable supply chain management, Int. J. Prod. Res., 57 (2019), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261 doi: 10.1080/00207543.2018.1533261
|
| [11] |
D. Biswas, H. Jalali, A. H. Ansaripoor, P. De Giovanni, Traceability vs. sustainability in supply chains: The implications of blockchain, Eur. J. Oper. Res., 305 (2023), 128–147. https://doi.org/10.1016/j.ejor.2022.05.034 doi: 10.1016/j.ejor.2022.05.034
|
| [12] |
K. Zhang, T. M. Choi, S. H. Chung, Y. Dai, X. Wen, Blockchain adoption in retail operations: Stable coins and traceability, Eur. J. Oper. Res., 315 (2024), 147–160. https://doi.org/10.1016/j.ejor.2023.11.026 doi: 10.1016/j.ejor.2023.11.026
|
| [13] |
V. Babich, G. Hilary, OM forum—Distributed ledgers and operations: What operations management researchers should know about blockchain technology, Manuf. Serv. Oper. Manage., 22 (2019), 223–240. https://doi.org/10.1287/msom.2018.0752 doi: 10.1287/msom.2018.0752
|
| [14] |
T. M. Choi, Supply chain financing using blockchain: impacts on supply chains selling fashionable products, Ann. Oper. Res., 331 (2020), 393–415. https://doi.org/10.1007/s10479-020-03615-7 doi: 10.1007/s10479-020-03615-7
|
| [15] |
C. Dong, C. Chen, X. Shi, C. T. Ng, Operations strategy for supply chain finance with asset-backed securitization: centralization and blockchain adoption, Int. J. Prod. Econ., 241 (2021), 108261. https://doi.org/10.1016/j.ijpe.2021.108261 doi: 10.1016/j.ijpe.2021.108261
|
| [16] |
J. Chod, N. Trichakis, G. Tsoukalas, H. Aspegren, M. Weber, On the financing benefits of supply chain transparency and blockchain adoption, Manage. Sci., 66 (2020), 4378–4396. https://doi.org/10.1287/mnsc.2019.3434 doi: 10.1287/mnsc.2019.3434
|
| [17] |
Y. Cao, C. Yi, G. Wan, H. Hu, Q. Li, S. Wang, An analysis on the role of blockchain-based platforms in agricultural supply chains, Transp. Res. Part E Logist. Transp. Rev., 163 (2022), 102731. https://doi.org/10.1016/j.tre.2022.102731 doi: 10.1016/j.tre.2022.102731
|
| [18] |
X. Y. Wu, Z. P. Fan, B. B. Cao, An analysis of strategies for adopting blockchain technology in the fresh product supply chain, Int. J. Prod. Res., 61 (2021), 3717–3734. https://doi.org/10.1080/00207543.2021.1894497 doi: 10.1080/00207543.2021.1894497
|
| [19] |
S. Liu, G. Hua, Y. Kang, T. Cheng, Y. Xu, What value does blockchain bring to the imported fresh food supply chain? Transp. Res. Part E Logist. Transp. Rev., 165 (2022), 102859. https://doi.org/10.1016/j.tre.2022.102859 doi: 10.1016/j.tre.2022.102859
|
| [20] |
X. Xu, M. Zhang, G. Dou, Y. Yu, Coordination of a supply chain with an online platform considering green technology in the blockchain era, Int. J. Prod. Res., 61 (2021), 3793–3810. https://doi.org/10.1080/00207543.2021.1894367 doi: 10.1080/00207543.2021.1894367
|
| [21] |
F. Tao, Y. Y. Wang, S. H. Zhu, Impact of blockchain technology on the optimal pricing and quality decisions of platform supply chains, Int. J. Prod. Res., 61 (2022), 3670–3684. https://doi.org/10.1080/00207543.2022.2050828 doi: 10.1080/00207543.2022.2050828
|
| [22] |
J. Xu, Y. Duan, Pricing and greenness investment for green products with government subsidies: when to apply blockchain technology? Electron. Commer. Res. Appl., 51 (2022), 101108. https://doi.org/10.1016/j.elerap.2021.101108 doi: 10.1016/j.elerap.2021.101108
|
| [23] |
J. Wu, J. Yu, Blockchain's impact on platform supply chains: Transaction cost and information transparency perspectives, Int. J. Prod. Res., 61 (2022), 3703–3716. https://doi.org/10.1080/00207543.2022.2027037 doi: 10.1080/00207543.2022.2027037
|
| [24] |
C. Fang, M. Chi, S. Fan, T. M. Choi, Who should invest in blockchain technology under different pricing models in supply chains? Eur. J. Oper. Res., 319 (2024), 777–792. https://doi.org/10.1016/j.ejor.2024.07.006 doi: 10.1016/j.ejor.2024.07.006
|
| [25] |
N. Shirafkan, H. Rajabzadeh, M. Wiens, Competitive dynamics in blockchain-based supply chains under cryptocurrency volatility: a game theory approach, Int. J. Prod. Res., (2025), 1–24. https://doi.org/10.1080/00207543.2025.2523527 doi: 10.1080/00207543.2025.2523527
|
| [26] |
S. J. Wang, Q. Y. Hu, W. Q. Liu, Price and quality-based competition and channel structure with consumer loyalty, Eur. J. Oper. Res., 262 (2017), 563–574. https://doi.org/10.1016/j.ejor.2017.03.052 doi: 10.1016/j.ejor.2017.03.052
|
| [27] |
A. Y. Ha, S. L. Tong, Contracting and information sharing under supply chain competition, Manage. Sci., 54 (2008), 701–715. https://doi.org/10.1287/mnsc.1070.0795 doi: 10.1287/mnsc.1070.0795
|
| [28] |
Y. Y. Wang, Z. Hua, J. C. Wang, F. Lai, Equilibrium analysis of markup pricing strategies under power imbalance and supply chain competition, IEEE Trans. Eng. Manage., 64 (2017), 464–475. https://doi.org/10.1109/TEM.2017.2693991 doi: 10.1109/TEM.2017.2693991
|
| [29] |
Z. H. Ge, Q. Y. Hu, Y. S. Xia, Firms' R & D cooperation behavior in a supply chain, Prod. Oper. Manage., 23 (2014), 599–609. https://doi.org/10.1111/poms.12037 doi: 10.1111/poms.12037
|
| [30] |
A. Yenipazarli, To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain, Eur. J. Oper. Res., 260 (2017), 571–587. https://doi.org/10.1016/j.ejor.2016.12.035 doi: 10.1016/j.ejor.2016.12.035
|
| [31] |
S. Gupta, Research note—Channel structure with knowledge spillovers, Mark. Sci., 27 (2008), 247–261. https://doi.org/10.1287/mksc.1070.0285 doi: 10.1287/mksc.1070.0285
|
| [32] |
X. Li, J. Chen, X. Ai, Contract design in a cross-sales supply chain with demand information asymmetry, Eur. J. Oper. Res., 275 (2019), 939–956. https://doi.org/10.1016/j.ejor.2018.12.023 doi: 10.1016/j.ejor.2018.12.023
|
| [33] |
X. Li, F. Gu, X. Ai, Contract strategy in a nonexclusive system under the competition, Int. Trans. Oper. Res., 2025. https://doi.org/10.1111/itor.70005 doi: 10.1111/itor.70005
|
| [34] |
F. Yao, Q. Tan, T. Li, B. Liu, Optimal integration and bargaining decisions in asymmetric competing supply chains under virtual bargaining, Comput. Ind. Eng., 182 (2023), 109361. https://doi.org/10.1016/j.cie.2023.109361 doi: 10.1016/j.cie.2023.109361
|
| [35] |
C. Li, X. Chen, W. Xia, The effects of common ownership on price and quality decisions in competing supply chains, Manage. Decis. Econ., 45 (2024), 4125–4137. https://doi.org/10.1002/mde.4253 doi: 10.1002/mde.4253
|
| [36] |
B. Liu, L. Huang, R. Zhang, C. Hu, Strategic outsourcing decisions of new entrant and competing incumbent manufacturer in a supply chain with common supplier, J. Ind. Manage. Optim., 19 (2023), 5842–5868. https://doi.org/10.3934/jimo.2022197 doi: 10.3934/jimo.2022197
|