In this paper, we propose a high-order numerical method for the 2D time-fractional convection-diffusion equation with weakly singular solutions, where the time Caputo fractional derivative is approximated by using the $ L2 $-$ 1_\sigma $ formula on a nonuniform graded mesh, and the space derivatives are discretized by a fourth-order compact finite difference scheme on a uniform mesh. The fully discrete compact ADI scheme is established by adding a high-order term. The stability and the convergence analyses of the scheme are analyzed in $ L^2 $-norm by using the discrete energy method. It has been proved that the introduced numerical scheme has spatial fourth-order convergence, and temporal optimal $ (1 + \alpha) $-$ th $ order convergence. The numerical results show that the error estimates are sharp.
Citation: Jianxiong Cao, Yuexin Xing. Error analysis of a high-order compact ADI scheme for 2D time-fractional convection-diffusion equation with weakly singular solutions[J]. Electronic Research Archive, 2025, 33(8): 4763-4784. doi: 10.3934/era.2025214
In this paper, we propose a high-order numerical method for the 2D time-fractional convection-diffusion equation with weakly singular solutions, where the time Caputo fractional derivative is approximated by using the $ L2 $-$ 1_\sigma $ formula on a nonuniform graded mesh, and the space derivatives are discretized by a fourth-order compact finite difference scheme on a uniform mesh. The fully discrete compact ADI scheme is established by adding a high-order term. The stability and the convergence analyses of the scheme are analyzed in $ L^2 $-norm by using the discrete energy method. It has been proved that the introduced numerical scheme has spatial fourth-order convergence, and temporal optimal $ (1 + \alpha) $-$ th $ order convergence. The numerical results show that the error estimates are sharp.
| [1] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
| [2] | C. Li, F. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, 2015. |
| [3] |
J. Cao, W. Xu, Adaptive-coefficient finite difference frequency domain method for time fractional diffusive-viscous wave equation arising in geophysics, Appl. Math. Lett., 160 (2025), 109337. https://doi.org/10.1016/j.aml.2024.109337 doi: 10.1016/j.aml.2024.109337
|
| [4] |
A. Chang, H. G. Sun, C. Zheng, B. Lu, C. Lu, R. Ma, et al., A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Physica A, 502 (2018), 356–369. https://doi.org/10.1016/j.physa.2018.02.080 doi: 10.1016/j.physa.2018.02.080
|
| [5] |
L. Li, Z. Jiang, Z. Yin, Compact finite-difference method for 2D time-fractionalconvection–diffusion equation of groundwater pollution problems, Comput. Appl. Math., 39 (2020), 142. https://doi.org/10.1007/s40314-020-01169-9 doi: 10.1007/s40314-020-01169-9
|
| [6] |
J. Zhang, X. Zhang, B. Yang, An approximation scheme for the time fractional convection–diffusion equation, Appl. Math. Comput., 335 (2018), 305–312. https://doi.org/10.1016/j.amc.2018.04.019 doi: 10.1016/j.amc.2018.04.019
|
| [7] |
J. Cao, C. Li, Y. Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (Ⅱ), Fract. Calc. Appl. Anal., 18 (2015), 735–761. https://doi.org/10.1515/fca-2015-0045 doi: 10.1515/fca-2015-0045
|
| [8] |
Y. M. Wang, X. Wen, A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions, Appl. Math. Comput., 381 (2020), 125316. https://doi.org/10.1016/j.amc.2020.125316 doi: 10.1016/j.amc.2020.125316
|
| [9] |
Y. M. Wang, X. Wen, Z. Zheng, A high-order $L2$–$1_\sigma$ compact exponential difference method for multi-term time-fractional convection-reaction-diffusion equations, J. Appl. Math. Comput., 71 (2025), 5977–6011. https://doi.org/10.1007/s12190-025-02448-6 doi: 10.1007/s12190-025-02448-6
|
| [10] |
M. Liu, X. Zheng, K. Li, W. Qiu, High-order compact difference method for convection-reaction–subdiffusion equation with variable exponent and coefficients, Numer. Algorithms, 2025 (2025). https://doi.org/10.1007/s11075-025-02060-6 doi: 10.1007/s11075-025-02060-6
|
| [11] |
P. Deng, G. Peng, X. Feng, D. Luo, Y. Chen, A finite volume simple WENO scheme for convection–diffusion equations, Numer. Math. Theory Methods Appl., 17 (2024), 882–903. https://doi.org/10.4208/nmtma.OA-2024-0003 doi: 10.4208/nmtma.OA-2024-0003
|
| [12] |
A. A. Tiruneh, H. G. Kumie, G. A. Derese, Singularly perturbed time-fractional convection–diffusion equations via exponential fitted operator scheme, Partial Differ. Equations Appl. Math., 11 (2024), 100873. https://doi.org/10.1016/j.padiff.2024.100873 doi: 10.1016/j.padiff.2024.100873
|
| [13] |
E. Ngondiep, A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivative, Numer. Algorithms, 94 (2023), 681–700. https://doi.org/10.1007/s11075-023-01516-x doi: 10.1007/s11075-023-01516-x
|
| [14] |
P. Roul, V. Rohil, A high-order numerical scheme based on graded mesh and its analysis for the two-dimensional time-fractional convection-diffusion equation, Comput. Math. Appl., 126 (2022), 1–13. https://doi.org/10.1016/j.camwa.2022.09.006 doi: 10.1016/j.camwa.2022.09.006
|
| [15] |
A. Singh, S. Kumar, Error analysis of a high-order fully discrete method for two-dimensional time-fractional convection-diffusion equations exhibiting weak initial singularity, Numer. Algorithms, 99 (2025), 251–284. https://doi.org/10.1007/s11075-024-01877-x doi: 10.1007/s11075-024-01877-x
|
| [16] |
M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
|
| [17] |
A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
|
| [18] |
C. Quan, X. Wu, Global-in-Time $H^1$-stability of $L2$-$1_\sigma$ method on general nonuniform meshes for subdiffusion equation, J. Sci. Comput., 95 (2023), 59. https://doi.org/10.1007/s10915-023-02184-8 doi: 10.1007/s10915-023-02184-8
|
| [19] |
C. Huang, M. Stynes, A sharp $\alpha$-robust $L^\infty(H^1)$ error bound for a time-fractional Allen–Cahn problem discretised by the Alikhanov $L2$–$1_\sigma$ scheme and a standard FEM, J. Sci. Comput., 91 (2022), 43. https://doi.org/10.1007/s10915-022-01810-1 doi: 10.1007/s10915-022-01810-1
|
| [20] |
Z. Tan, An $\alpha$-robust and new two-grid nonuniform $L2$–$1_\sigma$ FEM for nonlinear time-fractional diffusion equation, Comput. Math. Appl., 174 (2024), 530–552. https://doi.org/10.1016/j.camwa.2024.10.023 doi: 10.1016/j.camwa.2024.10.023
|
| [21] |
A. Mohebbi, M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation, Numer. Algorithms, 63 (2013), 431–452. https://doi.org/10.1007/s11075-012-9631-5 doi: 10.1007/s11075-012-9631-5
|
| [22] |
H. Fatoorehchi, H. Abolghasemi, Finding all real roots of a polynomial by matrix algebra and the Adomian decomposition method, J. Egypt. Math. Soc., 22 (2014), 524–528. https://doi.org/10.1016/j.joems.2013.12.018 doi: 10.1016/j.joems.2013.12.018
|
| [23] |
H. Chen, M. Stynes, Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput., 79 (2019), 624–647. https://doi.org/10.1007/s10915-018-0863-y doi: 10.1007/s10915-018-0863-y
|