Research article Special Issues

Copula-based analysis of asymmetrically distributed joint data under a risk profile using the discrete Type-I extreme value distribution

  • Received: 24 June 2025 Revised: 13 July 2025 Accepted: 21 July 2025 Published: 06 August 2025
  • Copulas provide a flexible framework for building bivariate probability models that reflect specific dependency patterns. This work introduces a discrete form of the Type-I extreme value (Gumbel) distribution within a copula-based structure. Key mathematical and statistical characteristics are examined, including the joint probability mass function, survival function, hazard rate, conditional expectation, joint probability generating function, and dependency properties such as positive quadrant dependence and total positivity of order two. The bivariate discrete Gumbel model demonstrates strong performance in handling asymmetric data and proves particularly useful for capturing extreme and outlier observations. Its joint hazard rate function adds further flexibility, making it suitable for modeling a range of failure rate behaviors. Parameter estimation is carried out using the maximum likelihood method, and a thorough simulation study evaluates the bias and mean squared errors across various sample sizes. To illustrate its practical relevance, the model is applied to three different real-world datasets: football match outcomes, nasal drainage severity scores, and lens defects involving surface and interior faults.

    Citation: Hend S. Shahen, Mahmoud El-Morshedy, Mohamed S. Eliwa, Mohamed F. Abouelenein. Copula-based analysis of asymmetrically distributed joint data under a risk profile using the discrete Type-I extreme value distribution[J]. Electronic Research Archive, 2025, 33(8): 4468-4494. doi: 10.3934/era.2025203

    Related Papers:

  • Copulas provide a flexible framework for building bivariate probability models that reflect specific dependency patterns. This work introduces a discrete form of the Type-I extreme value (Gumbel) distribution within a copula-based structure. Key mathematical and statistical characteristics are examined, including the joint probability mass function, survival function, hazard rate, conditional expectation, joint probability generating function, and dependency properties such as positive quadrant dependence and total positivity of order two. The bivariate discrete Gumbel model demonstrates strong performance in handling asymmetric data and proves particularly useful for capturing extreme and outlier observations. Its joint hazard rate function adds further flexibility, making it suitable for modeling a range of failure rate behaviors. Parameter estimation is carried out using the maximum likelihood method, and a thorough simulation study evaluates the bias and mean squared errors across various sample sizes. To illustrate its practical relevance, the model is applied to three different real-world datasets: football match outcomes, nasal drainage severity scores, and lens defects involving surface and interior faults.



    加载中


    [1] S. Kotz, S. Nadarajah, Extreme Value Distributions: Theory and Applications, World Scientific, 2000. https://doi.org/10.1142/p191
    [2] S. Chakraborty, D. Chakravarty, J. Mazucheli, W. Bertoli, A discrete analog of Gumbel distribution: Properties, parameter estimation and applications, J. Appl. Stat., 48 (2021), 712–737. https://doi.org/10.1080/02664763.2020.1744538 doi: 10.1080/02664763.2020.1744538
    [3] H. Boubaker, N. Sghaier, Markov-switching time-varying copula modeling of dependence structure between oil and GCC stock markets, Open Open J. Stat., 6 (2016), 565–589. http://doi.org/10.4236/ojs.2016.64048
    [4] T. P. Hutchinson, C. D. Lai, Continuous Bivariate Distributions Emphasising Applications, Rumsby Scientific, 1990.
    [5] M. S. Eliwa, M. El-Morshedy, Bivariate Gumbel-G family of distributions: Statistical properties, Bayesian and non-Bayesian estimation with application, Ann. Data Sci., 6 (2019), 39–60. https://doi.org/10.1007/s40745-018-00190-4 doi: 10.1007/s40745-018-00190-4
    [6] R. B. Nelsen, An Introduction to Copulas, Springer, 2007. https://link.springer.com/book/10.1007/0-387-28678-0
    [7] C. Ning, Dependence structure between the equity market and the foreign exchange market – a copula approach, J. Int. Money Finance, 29 (2010), 743–759. https://doi.org/10.1016/j.jimonfin.2009.12.002 doi: 10.1016/j.jimonfin.2009.12.002
    [8] E. M. Almetwally, H. Z. Muhammed, E. S. A. El-Sherpieny, Bivariate Weibull distribution: Properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5
    [9] M. El-Morshedy, M. S. Eliwa, A bivariate probability generator for the odd generalized exponential model: Mathematical structure and data fitting, Filomat, 38 (2024), 1109–1133. https://doi.org/10.2298/FIL2403109E doi: 10.2298/FIL2403109E
    [10] E. S. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, Bivariate Chen distribution based on copula function: Properties and application of diabetic nephropathy, J. Stat. Theory Pract., 16 (2022), 54. https://doi.org/10.1007/s42519-022-00275-7 doi: 10.1007/s42519-022-00275-7
    [11] S. O. Susam, A multi-parameter Generalized Farlie-Gumbel-Morgenstern bivariate copula family via Bernstein polynomial, Hacettepe J. Math. Stat., 51 (2022), 1–14. https://doi.org/10.15672/hujms.993698 doi: 10.15672/hujms.993698
    [12] S. T. Obeidat, D. Das, M. S. Eliwa, B. Das, P. J. Hazarika, W. W. Mohammed, Two-dimensional probability models for the weighted discretized Fréchet–Weibull random variable with Min–Max operators: Mathematical theory and statistical goodness-of-fit analysis, Mathematics, 13 (2025), 625. https://doi.org/10.3390/math13040625 doi: 10.3390/math13040625
    [13] C. M. Cuadras, J. Augé, A continuous general multivariate distribution and its properties, Commun. Stat. Theory Methods, 10 (1981), 339–353. https://doi.org/10.1080/03610928108828042 doi: 10.1080/03610928108828042
    [14] S. Yang, D. Meng, A. Díaz, H. Yang, X. Su, A. M. P. D. Jesus, Probabilistic modeling of uncertainties in reliability analysis of mid- and high-strength steel pipelines under hydrogen-induced damage, Int. J. Struct. Integrity, 16 (2025), 39–59. https://doi.org/10.1108/IJSI-10-2024-0177 doi: 10.1108/IJSI-10-2024-0177
    [15] S. Yang, D. Meng, H. Yang, C. Luo, X. Su, Enhanced soft Monte Carlo simulation coupled with support vector regression for structural reliability analysis, Proc. Inst. Civ. Eng. Transp., 2024 (2024), 1–16. https://doi.org/10.1680/jtran.24.00128 doi: 10.1680/jtran.24.00128
    [16] D. Das, T. S. Alshammari, K. A. Rashedi, B. Das, P. J. Hazarika, M. S. Eliwa, Discrete joint random variables in Fréchet-Weibull distribution: A comprehensive mathematical framework with simulations, goodness-of-fit analysis, and informed decision-making, Mathematics, 12 (2024), 3401. https://doi.org/10.3390/math12213401 doi: 10.3390/math12213401
    [17] C. S. Davis, Statistical Methods for the Analysis of Repeated Measures Data, Springer, 2002. https://link.springer.com/book/10.1007/b97287
    [18] J. Aitchison, C. H. Ho, The multivariate Poisson-log normal distribution, Biometrika, 76 (1989), 643–653. https://doi.org/10.1093/biomet/76.4.643 doi: 10.1093/biomet/76.4.643
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(700) PDF downloads(50) Cited by(1)

Article outline

Figures and Tables

Figures(31)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog