Research article Topical Sections

Global existence of mild solutions for impulsive $ \psi- $Caputo fractional parabolic equations

  • Published: 10 July 2025
  • This paper investigated a class of nonlinear $ \psi- $Caputo fractional parabolic equations with impulsive. We reformulated the fractional parabolic equations into abstract evolution equations. By using the nonlinear analysis method and fixed point theorems, we obtained the existence and uniqueness of the global of mild solutions for the problem.

    Citation: Yonghong Ding, Yongxiang Li. Global existence of mild solutions for impulsive $ \psi- $Caputo fractional parabolic equations[J]. Electronic Research Archive, 2025, 33(7): 4205-4221. doi: 10.3934/era.2025190

    Related Papers:

  • This paper investigated a class of nonlinear $ \psi- $Caputo fractional parabolic equations with impulsive. We reformulated the fractional parabolic equations into abstract evolution equations. By using the nonlinear analysis method and fixed point theorems, we obtained the existence and uniqueness of the global of mild solutions for the problem.



    加载中


    [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science, 2006.
    [3] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
    [4] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., 11 (2010), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029
    [5] K. X. Li, J. G. Peng, J. X. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476–510. https://doi.org/10.1016/j.jfa.2012.04.011 doi: 10.1016/j.jfa.2012.04.011
    [6] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048
    [7] J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., 2025 (2025). https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
    [8] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [9] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [10] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [11] R. Almeida, A. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Methods Appl. Sci., 44 (2021), 8026–8041. https://doi.org/10.1002/mma.5678 doi: 10.1002/mma.5678
    [12] R. Ashid, F. Jarad, Z. Hammouch, Some new bounds analogous to generalized proportional fractional integral operator with respect to another function, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3703–3718. https://doi.org/10.3934/dcdss.2021020 doi: 10.3934/dcdss.2021020
    [13] Z. Baitiche, C. Derbazi, G. Wang, Monotone iterative method for nonlinear fractional $p$-Laplacian differential equation in terms of $\psi$-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions, Math. Methods Appl. Sci., 45 (2022), 967–976. https://doi.org/10.1002/mma.7826 doi: 10.1002/mma.7826
    [14] J. Liang, Y. Mu, T. Xiao, Nonlocal integro-differential equations of Sobolev type in Banach spaces involving $\psi$-Caputo fractional derivative, Banach J. Math. Anal., 16 (2022). https://doi.org/10.1007/s43037-021-00155-5 doi: 10.1007/s43037-021-00155-5
    [15] Y. H. Ding, Y. X. Li, Finite-approximate controllability of impulsive $\psi$-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 26 (2023), 1326–1358. https://doi.org/10.1007/s13540-023-00164-1 doi: 10.1007/s13540-023-00164-1
    [16] S. Apassara, S. Parinya, Extremal solutions of $\varphi-$Caputo fractional evolution equations involving integral kernels, AIMS Math., 6 (2021), 4734–4757. https://doi.org/10.3934/math.2021278 doi: 10.3934/math.2021278
    [17] S. Micu, E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM J. Control Optim., 44 (2006), 1950–1972. https://doi.org/10.1137/S036301290444263X doi: 10.1137/S036301290444263X
    [18] M. Ding, C. Zhang, S. Zhou, Local boundedness and H$\ddot{o}$lder continuity for the parabolic fractional p-Laplace equations, Calc. Var. Partial Differ. Equations, 60 (2021). https://doi.org/10.1007/s00526-020-01870-x doi: 10.1007/s00526-020-01870-x
    [19] K. Hisa, K. Ishige, Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal., 175 (2018), 108–132. https://doi.org/10.1016/j.na.2018.05.011 doi: 10.1016/j.na.2018.05.011
    [20] T. Oussaeif, A. Bouziani, Existence and uniqueness of solutions to parabolic fractional differential equations with integral conditions, Electron. J. Differ. Equations, 179 (2014).
    [21] G. Meglioli, F. Punzo, Uniqueness for fractional parabolic and elliptic equations with drift, Commun. Pure Appl. Anal., 22 (2023), 1962–1981. https://doi.org/10.3934/cpaa.2023054 doi: 10.3934/cpaa.2023054
    [22] Y. Huang, Z. Liu, C.Wen, Approximate controllability for fractional semilinear parabolic equations, Comput. Math. Appl., 77 (2019), 2971–2979. https://doi.org/10.1016/j.camwa.2018.08.003 doi: 10.1016/j.camwa.2018.08.003
    [23] N. H. Tuan, A. V. Van, R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583–621. https://doi.org/10.3934/cpaa.2020282 doi: 10.3934/cpaa.2020282
    [24] C. G. Gal, M. Warma, Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evol. Equations Control Theory, 5 (2016), 61–103. https://doi.org/10.3934/eect.2016.5.61 doi: 10.3934/eect.2016.5.61
    [25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(553) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog