Research article Topical Sections

Existence and uniqueness of solutions for (p, q)-difference equations with integral boundary conditions

  • Published: 23 May 2025
  • In this paper, we explored the existence and uniqueness of solutions for a boundary value problem involving $ \left(p, q\right) $-difference equations with integral conditions. By employing well-established fixed-point theorems, we established new and significant results in this area. To further illustrate the applicability of our findings, we presented three concrete examples that demonstrate the validity of the theoretical results.

    Citation: Özlem Batıt Özen, Erbil Çetin, Öyküm Ülke, Aynur Şahin, Fatma Serap Topal. Existence and uniqueness of solutions for (p, q)-difference equations with integral boundary conditions[J]. Electronic Research Archive, 2025, 33(5): 3225-3245. doi: 10.3934/era.2025142

    Related Papers:

  • In this paper, we explored the existence and uniqueness of solutions for a boundary value problem involving $ \left(p, q\right) $-difference equations with integral conditions. By employing well-established fixed-point theorems, we established new and significant results in this area. To further illustrate the applicability of our findings, we presented three concrete examples that demonstrate the validity of the theoretical results.



    加载中


    [1] B. Daşbaşı, The fractional-order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection, Sakarya Univ. J. Sci., 21 (2017), 442–453. https://doi.org/10.16984/saufenbilder.298934 doi: 10.16984/saufenbilder.298934
    [2] S. Alkan, A numerical method for solution of integro-differential equations of fractional order, Sakarya Univ. J. Sci., 21 (2017), 82–89. https://doi.org/10.16984/saufenbilder.296796 doi: 10.16984/saufenbilder.296796
    [3] S. Çetinkaya, A. Demir, Time fractional equation with non-homogenous Dirichlet boundary conditions, Sakarya Univ. J. Sci., 24 (2020), 1185–1190. https://doi.org/10.16984/saufenbilder.749168 doi: 10.16984/saufenbilder.749168
    [4] İ. Devecioğlu, R. Mutlu, A conformal fractional derivative-based leaky integrate-and-fire neuron model, Sakarya Univ. J. Sci., 26 (2022), 568–578. https://doi.org/10.16984/saufenbilder.1041088 doi: 10.16984/saufenbilder.1041088
    [5] R. J. Finkelstein, q-field theory, Letters Math. Phys., 34 (1995), 169–176. https://doi.org/10.1007/BF00739095 doi: 10.1007/BF00739095
    [6] P. G. O. Freund, A. V. Zabrodin, The spectral problem for the q-Knizhnik-Zamolodchikov equation and continuous q-Jacobi polynomials, Commun. Math. Phys., 173 (1995), 17–42. https://doi.org/10.1007/BF02100180 doi: 10.1007/BF02100180
    [7] P. P. Kulish, E. V. Damaskinsky, On the q oscillator and the quantum algebra suq (1, 1), J. Phys. A: Math. Gen., 23 (1990), L415. https://doi.org/10.1088/0305-4470/23/9/003
    [8] N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fractal Fract., 6 (2022), 2–11. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237
    [9] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
    [10] M. N. Hounkonnou, J. D. B. Kyemba, R (p, q)-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145–167. https://doi.org/10.55937/sut/1394548362
    [11] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 1–21. https://doi.org/10.48550/arXiv.1309.3934 doi: 10.48550/arXiv.1309.3934
    [12] V. Sahai, S. Yadav, Representations of two parameter quantum algebras and p, q-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. https://doi.org/10.1016/j.jmaa.2007.01.072
    [13] N. Turan, M. Başarır, A. Şahin, On the solutions of a nonlinear system of q-difference equations, Boundary Value Probl., 92 (2024), 1–19. https://doi.org/10.1186/s13661-024-01896-6 doi: 10.1186/s13661-024-01896-6
    [14] N. Turan, M. Başarır, A. Şahin, On the solutions of the second-order (p, q)-difference equation with an application to the fixed-point theory, AIMS Math., 9 (2024), 10679–10697. https://doi.org/10.3934/math.2024521 doi: 10.3934/math.2024521
    [15] İ. Gençtürk, Boundary value problems for a second-order (p, q)-difference equation with integral conditions, Turkish J. Math., 46 (2022), 499–515. https://doi.org/10.3906/mat-2106-90 doi: 10.3906/mat-2106-90
    [16] Z. Qin, S. Sun, Positive solutions for fractional (p, q)-difference boundary value problems, J. Appl. Math. Comput., 68 (2022), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w
    [17] P. Neang, K. Nonlaopon, J. Tariboon, S.K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional (p, q)-difference equations with separated boundary conditions, Mathematics, 10 (2022), 1–15. https://doi.org/10.3390/math10050767
    [18] N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for (p, q)-difference equations, Differ. Equations Appl., 10 (2018), 183–195. https://doi.org: 10.7153/dea-2018-10-11
    [19] J. Soontharanon, T. Sitthiwirattham, On fractional (p, q)-calculus, Adv. Differ. Equations, 35 (2020), 1–18. https://doi.org/10.1186/s13662-020-2512-7 doi: 10.1186/s13662-020-2512-7
    [20] A. Şahin, Z. Kalkan, The AA-iterative algorithm in hyperbolic spaces with applications to integral equations on time scales, AIMS Math., 9 (2024), 24480–24506. https://doi.org/10.3934/math.20241192 doi: 10.3934/math.20241192
    [21] Z. Kalkan, A. Şahin, A. Aloqaily, N. Mlaiki, Some fixed point and stability results in b-metric-like spaces with an application to integral equations on time scales, AIMS Math., 9 (2024), 11335–11351. https://doi.org/10.3934/math.2024556 doi: 10.3934/math.2024556
    [22] A. Şahin, E. Öztürk, G. Aggarwal, Some fixed-point results for the KF-iteration process in hyperbolic metric spaces, Symmetry, 15 (2023), 1–16. https://doi.org/10.3390/sym15071360 doi: 10.3390/sym15071360
    [23] A. Şahin, Z. Kalkan, H. Arısoy, On the solution of a nonlinear Volterra integral equation with delay, Sakarya Univ. J. Sci., 21 (2017), 1367–1376. https://doi.org/10.16984/saufenbilder.305632 doi: 10.16984/saufenbilder.305632
    [24] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10 (1955), 123–127.
    [25] S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications aux équations integrals, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [26] T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Three-point boundary value problems of nonlinear second-order q-difference equations involving different numbers of q, J. Appl. Math., 2013 (2013), 1–12. http://dx.doi.org/10.1155/2013/763786 doi: 10.1155/2013/763786
    [27] D. W. Boyd, J. S. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 doi: 10.2307/2035677
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(811) PDF downloads(68) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog