Research article Special Issues

The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $

  • Received: 30 November 2024 Revised: 05 March 2025 Accepted: 12 March 2025 Published: 31 March 2025
  • We proved that on every Stiefel manifold $ V_2\mathbb{R}^n\cong \operatorname{SO}(n)/\operatorname{SO}(n-2) $ with $ n\ge 3 $ the normalized Ricci flow preserves the positivity of the Ricci curvature of invariant Riemannian metrics with positive Ricci curvature. Moreover, the normalized Ricci flow evolves all metrics with mixed Ricci curvature into metrics with positive Ricci curvature in finite time. From the point of view of the theory of dynamical systems, we proved that for every invariant set $ \Sigma $ of the normalized Ricci flow on $ V_2\mathbb{R}^n $ defined as $ x_1^{n-2}x_2^{n-2}x_3 = c $, $ c > 0 $, there exists a smaller invariant set $ \Sigma\cap \mathscr{R}_{+} $ for every $ n\ge 3 $, where $ \mathscr{R}_{+} $ is the domain in $ \mathbb{R}_{+}^3 $ responsible for parameters $ x_1, x_2, x_3 > 0 $ of invariant Riemannian metrics on $ V_2\mathbb{R}^n $ admitting positive Ricci curvature.

    Citation: Nurlan A. Abiev. The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $[J]. Electronic Research Archive, 2025, 33(3): 1858-1874. doi: 10.3934/era.2025084

    Related Papers:

  • We proved that on every Stiefel manifold $ V_2\mathbb{R}^n\cong \operatorname{SO}(n)/\operatorname{SO}(n-2) $ with $ n\ge 3 $ the normalized Ricci flow preserves the positivity of the Ricci curvature of invariant Riemannian metrics with positive Ricci curvature. Moreover, the normalized Ricci flow evolves all metrics with mixed Ricci curvature into metrics with positive Ricci curvature in finite time. From the point of view of the theory of dynamical systems, we proved that for every invariant set $ \Sigma $ of the normalized Ricci flow on $ V_2\mathbb{R}^n $ defined as $ x_1^{n-2}x_2^{n-2}x_3 = c $, $ c > 0 $, there exists a smaller invariant set $ \Sigma\cap \mathscr{R}_{+} $ for every $ n\ge 3 $, where $ \mathscr{R}_{+} $ is the domain in $ \mathbb{R}_{+}^3 $ responsible for parameters $ x_1, x_2, x_3 > 0 $ of invariant Riemannian metrics on $ V_2\mathbb{R}^n $ admitting positive Ricci curvature.



    加载中


    [1] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306. https://doi.org/10.4310/jdg/1214436922 doi: 10.4310/jdg/1214436922
    [2] S. Anastassiou, I. Chrysikos, The Ricci flow approach to homogeneous Einstein metrics on flag manifolds, J. Geom. Phys., 61 (2011), 1587–1600. https://doi.org/10.1016/j.geomphys.2011.03.013 doi: 10.1016/j.geomphys.2011.03.013
    [3] S. Anastassiou, I. Chrysikos, Ancient solutions of the homogeneous Ricci flow on flag manifolds, Extr. Math., 36 (2021), 99–145. https://doi.org/10.17398/2605-5686.36.1.99 doi: 10.17398/2605-5686.36.1.99
    [4] R. G. Bettiol, A. M. Krishnan, Ricci flow does not preserve positive sectional curvature in dimension four, Calc. Var. Partial Differ. Equations, 62 (2023), 13. https://doi.org/10.1007/s00526-022-02335-z doi: 10.1007/s00526-022-02335-z
    [5] M. Buzano, Ricci flow on homogeneous spaces with two isotropy summands, Ann. Global Anal. Geom., 45 (2014), 25–45. https://doi.org/10.1007/s10455-013-9386-9 doi: 10.1007/s10455-013-9386-9
    [6] A. Arvanitoyeorgos, Progress on homogeneous Einstein manifolds and some open problems, preprint, arXiv: 1605.05886.
    [7] C. Böhm, B. Wilking, Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature, Geom. Funct. Anal., 17 (2007), 665–681. https://doi.org/10.1007/s00039-007-0617-8 doi: 10.1007/s00039-007-0617-8
    [8] M. Cheung, N. R. Wallach, Ricci flow and curvature on the variety of flags on the two dimensional projective space over the complexes, quaternions and octonions, Proc. Am. Math. Soc., 143 (2015), 369–378. https://doi.org/10.1090/S0002-9939-2014-12241-6 doi: 10.1090/S0002-9939-2014-12241-6
    [9] N. A. Abiev, Yu. G. Nikonorov, The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow, Ann. Global Anal. Geom., 50 (2016), 65–84. https://doi.org/10.1007/s10455-016-9502-8 doi: 10.1007/s10455-016-9502-8
    [10] L. F. Cavenaghi, L. Grama, R. M. Martins, On the dynamics of positively curved metrics on ${\rm{SU(3)/T^2}}$ under the homogeneous Ricci flow, Matemática Contemp., 60 (2024), 3–30. http://doi.org/10.21711/231766362024/rmc602 doi: 10.21711/231766362024/rmc602
    [11] D. González-Álvaro, M. Zarei, Positive intermediate curvatures and Ricci flow, Proc. Am. Math. Soc., 152 (2024), 2637–2645. https://doi.org/10.1090/proc/16752 doi: 10.1090/proc/16752
    [12] N. Abiev, Ricci curvature and normalized Ricci flow on generalized Wallach spaces, preprint, arXiv: 2409.02570.
    [13] Yu. G. Nikonorov, Classification of generalized Wallach spaces, Geom. Dedicata, 181 (2016), 193–212. https://doi.org/10.1007/s10711-015-0119-z doi: 10.1007/s10711-015-0119-z
    [14] M. M. Kerr, New examples of homogeneous metrics, Mich. Math. J., 45 (1998), 115–134. https://doi.org/10.1307/mmj/1030132086 doi: 10.1307/mmj/1030132086
    [15] M. Statha, Invariant metrics on homogeneous spaces with equivalent isotropy summands, preprint, arXiv: 1603.06528.
    [16] M. Statha, Ricci flow on certain homogeneous spaces, Ann. Global Anal. Geom., 62 (2022), 93–127. https://doi.org/10.1007/s10455-022-09843-3 doi: 10.1007/s10455-022-09843-3
    [17] N. Abiev, On the dynamics of a three-dimensional differential system related to the normalized Ricci flow on generalized Wallach spaces, Results Math., 79 (2024), 198. https://doi.org/10.1007/s00025-024-02229-w doi: 10.1007/s00025-024-02229-w
    [18] A. Arvanitoyeorgos, Homogeneous Einstein metrics on Stiefel manifolds, Commentat. Math. Univ. Carol., 37 (1996), 627–634.
    [19] R. S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Commun. Anal. Geom., 7 (1999), 695–729. https://doi.org/10.4310/CAG.1999.v7.n4.a2 doi: 10.4310/CAG.1999.v7.n4.a2
    [20] J. Lauret, Ricci flow on homogeneous manifolds, Math. Z., 274 (2013), 373–403. https://doi.org/10.1007/s00209-012-1075-z doi: 10.1007/s00209-012-1075-z
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(885) PDF downloads(33) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog