In this study, we investigate the existence of at least one solution and the existence of an infinite number of solutions for a discrete fractional boundary value problem. Requiring an algebraic condition on the nonlinear term for small values of the parameter, and requiring an additional asymptotical behavior of the potential at zero, we investigate the existence of at least one nontrivial solution for the problem. Moreover, under suitable assumptions on the oscillatory behavior of the nonlinearity at infinity, for exact collections of the parameter, we discuss the existence of a sequence of solutions for the problem. We also present some examples that illustrate the applicability of the main results.
Citation: David Barilla, Martin Bohner, Giuseppe Caristi, Shapour Heidarkhani, Shahin Moradi. Existence results for a discrete fractional boundary value problem[J]. Electronic Research Archive, 2025, 33(3): 1541-1565. doi: 10.3934/era.2025073
In this study, we investigate the existence of at least one solution and the existence of an infinite number of solutions for a discrete fractional boundary value problem. Requiring an algebraic condition on the nonlinear term for small values of the parameter, and requiring an additional asymptotical behavior of the potential at zero, we investigate the existence of at least one nontrivial solution for the problem. Moreover, under suitable assumptions on the oscillatory behavior of the nonlinearity at infinity, for exact collections of the parameter, we discuss the existence of a sequence of solutions for the problem. We also present some examples that illustrate the applicability of the main results.
| [1] | G. Bonanno, G. M. Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Probl., 2009 (2009). https://doi.org/10.1155/2009/670675 |
| [2] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/406910 |
| [3] | K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, https://doi.org/10.1007/978-3-642-14574-2 |
| [4] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., 2000. https://doi.org/10.1142/9789812817747 |
| [5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
| [6] |
Y. M. Chu, S. Bekiros, E. Zambrano-Serrano, O. Orozco-López, S. Lahmiri, H. Jahanshahi, et al., Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model, Chaos Solitons Fractals, 145 (2021), 1–9. https://doi.org/10.1016/j.chaos.2021.110776 doi: 10.1016/j.chaos.2021.110776
|
| [7] | H. Ming, J. Wang, M. Fečkan, The application of fractional calculus in Chinese economic growth models, Mathematics, 7 (2019), 1–6. https://www.mdpi.com/2227-7390/7/8/665 |
| [8] |
M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential equation in economic growth model: A systematic review approach, AIMS Math., 6 (2021), 10266–10280, https://doi.org/10.3934/math.2021594 doi: 10.3934/math.2021594
|
| [9] |
M. Galewski, G. M. Bisci, Existence results for one-dimensional fractional equations, Math. Methods Appl. Sci., 39 (2016), 1480–1492. https://doi.org/10.1002/mma.3582 doi: 10.1002/mma.3582
|
| [10] | S. Heidarkhani, Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynam. Systems Appl., 23 (2014), 317–331. |
| [11] | L. Kong, Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Differ. Equ., 2013 (2013), 1–15. |
| [12] |
A. Cabada, A. Iannizzotto, S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418–428. https://doi.org/10.1016/j.jmaa.2009.02.038 doi: 10.1016/j.jmaa.2009.02.038
|
| [13] |
M. Galewski, S. Gł$\mathop {\rm{a}}\limits_{¸} $b, On the discrete boundary value problem for anisotropic equation, J. Math. Anal. Appl., 386 (2012), 956–965. https://doi.org/10.1016/j.jmaa.2011.08.053 doi: 10.1016/j.jmaa.2011.08.053
|
| [14] |
M. Galewski, R. Wieteska, On the system of anisotropic discrete BVPs, J. Differ. Equ. Appl., 19 (2013), 1065–1081. https://doi.org/10.1080/10236198.2012.709508 doi: 10.1080/10236198.2012.709508
|
| [15] |
J. Henderson, H. B. Thompson, Existence of multiple solutions for second-order discrete boundary value problems, Comput. Math. Appl., 43 (2002), 1239–1248. https://doi.org/10.1016/S0898-1221(02)00095-0 doi: 10.1016/S0898-1221(02)00095-0
|
| [16] |
F. Faraci, Multiple solutions for two nonlinear problems involving the $p$-Laplacian, Nonlinear Anal., 63 (2005), e1017–e1029. https://doi.org/10.1016/j.na.2005.02.066 doi: 10.1016/j.na.2005.02.066
|
| [17] |
W. Li, Z. He, The applications of sums of ranges of accretive operators to nonlinear equations involving the $p$-Laplacian operator, Nonlinear Anal., 24 (1995), 185–193. https://doi.org/10.1016/0362-546X(94)E0051-H doi: 10.1016/0362-546X(94)E0051-H
|
| [18] |
L. Wei, R. P. Agarwal, Existence of solutions to nonlinear Neumann boundary value problems with generalized $p$-Laplacian operator, Comput. Math. Appl., 56 (2008), 530–541. https://doi.org/10.1016/j.camwa.2008.01.013 doi: 10.1016/j.camwa.2008.01.013
|
| [19] | G. Chai, Positive solutions for boundary value problem of fractional differential equation with $p$-Laplacian operator, Boundary Value Probl., 2012 (2012). https://doi.org/10.1186/1687-2770-2012-18 |
| [20] | J. Wang, H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$-Laplacian operator, Abstr. Appl. Anal., 2010 (2010). https://doi.org/10.1155/2010/971824 |
| [21] | J. Wang, H. Xiang, Z. Liu, Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with $p$-Laplacian, Far East J. Appl. Math., 37 (2009), 33–47. |
| [22] | W. Lv, Existence of solutions for discrete fractional boundary value problems with a $p$-Laplacian operator, Adv. Differ. Equ., 2012 (2012). https://doi.org/10.1186/1687-1847-2012-163 |
| [23] |
V. Ambrosio, D. Repovš, Multiplicity and concentration results for a $(p, q)$-Laplacian problem in $\mathbb R^N$, Z. Angew. Math. Phys., 72 (2021), 1–33. https://doi.org/10.1007/s00033-020-01466-7 doi: 10.1007/s00033-020-01466-7
|
| [24] |
L. Baldelli, R. Filippucci, Existence of solutions for critical $(p, q)$-Laplacian equations in $\mathbb{R}^N$, Commun. Contemp. Math., 25 (2023), 1–26. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091
|
| [25] | B. Ricceri, A general variational principle and some of its applications, 113 (2000), 401–410. https://doi.org/10.1016/S0377-0427(99)00269-1 |
| [26] |
D. Barilla, M. Bohner, S. Heidarkhani, S. Moradi, Existence results for dynamic Sturm-Liouville boundary value problems via variational methods, Appl. Math. Comput., 409 (2021), 1–10. https://doi.org/10.1016/j.amc.2020.125614 doi: 10.1016/j.amc.2020.125614
|
| [27] |
J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, On an anisotropic discrete boundary value problem of Kirchhoff type, J. Differ. Equ. Appl., 27 (2021), 1103–1119. https://doi.org/10.1080/10236198.2021.1968847 doi: 10.1080/10236198.2021.1968847
|
| [28] |
S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, B. Ge, Existence of one weak solution for $p(x)$-biharmonic equations with Navier boundary conditions, Z. Angew. Math. Phys., 67 (2016), 1–13. https://doi.org/10.1007/s00033-016-0668-5 doi: 10.1007/s00033-016-0668-5
|
| [29] |
G. Bonanno, P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal., 88 (2009), 605–616. https://doi.org/10.1080/00036810902942242 doi: 10.1080/00036810902942242
|
| [30] |
J. R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for systems of Sturm-Liouville boundary value problems, Results Math., 66 (2014), 327–341. https://doi.org/10.1007/s00025-014-0379-1 doi: 10.1007/s00025-014-0379-1
|
| [31] |
S. Heidarkhani, Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems, Ann. Polon. Math., 107 (2013), 133–152. https://doi.org/10.4064/ap107-2-3 doi: 10.4064/ap107-2-3
|
| [32] |
S. Heidarkhani, Y. Zhao, G. Caristi, G. A. Afrouzi, S. Moradi, Infinitely many solutions for perturbed impulsive fractional differential systems, Appl. Anal., 96 (2017), 1401–1424. https://doi.org/10.1080/00036811.2016.1192147 doi: 10.1080/00036811.2016.1192147
|
| [33] |
B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian, Bull. London Math. Soc., 33 (2001), 331–340. https://doi.org/10.1017/S0024609301008001 doi: 10.1017/S0024609301008001
|
| [34] |
F. M. Atıcı, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–12. https://doi.org/10.14232/ejqtde.2009.4.3 doi: 10.14232/ejqtde.2009.4.3
|
| [35] |
T. Abdeljawad, F. M. Atıcı, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1–13. https://doi.org/10.1155/2012/406757 doi: 10.1155/2012/406757
|
| [36] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, 1986. https://doi.org/10.1090/cbms/065 |