Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Observer-based event triggering security load frequency control for power systems involving air conditioning loads

  • Received: 10 September 2024 Revised: 12 November 2024 Accepted: 13 November 2024 Published: 19 November 2024
  • This paper presents a power system frequency control strategy that integrates an observer-based event-triggered mechanism (ETM) to defend against denial-of-service (DoS) attacks and accommodates the integration of renewable energy sources. The proposed strategy incorporates demand response by enabling air conditioning loads (ACs) to participate in frequency regulation, thereby enhancing system flexibility and stability. To address the challenges posed by limited network bandwidth and potential message blocking, the ETM minimizes communication while defending against DoS attacks. The stability of the closed-loop system is guaranteed by deriving an H stability criterion using the Lyapunov–Krasovskii function method, with controller parameters determined through linear matrix inequalities (LMIs). A two-area power system simulation is conducted to validate the feasibility and effectiveness of the proposed approach, demonstrating its ability to maintain stable frequency control under cyber-attack scenarios and varying renewable energy contributions.

    Citation: Xiaoming Wang, Yunlong Bai, Zhiyong Li, Wenguang Zhao, Shixing Ding. Observer-based event triggering security load frequency control for power systems involving air conditioning loads[J]. Electronic Research Archive, 2024, 32(11): 6258-6275. doi: 10.3934/era.2024291

    Related Papers:

    [1] Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643
    [2] Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625
    [3] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [4] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [5] Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103
    [6] Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392
    [7] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [8] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [9] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [10] Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098
  • This paper presents a power system frequency control strategy that integrates an observer-based event-triggered mechanism (ETM) to defend against denial-of-service (DoS) attacks and accommodates the integration of renewable energy sources. The proposed strategy incorporates demand response by enabling air conditioning loads (ACs) to participate in frequency regulation, thereby enhancing system flexibility and stability. To address the challenges posed by limited network bandwidth and potential message blocking, the ETM minimizes communication while defending against DoS attacks. The stability of the closed-loop system is guaranteed by deriving an H stability criterion using the Lyapunov–Krasovskii function method, with controller parameters determined through linear matrix inequalities (LMIs). A two-area power system simulation is conducted to validate the feasibility and effectiveness of the proposed approach, demonstrating its ability to maintain stable frequency control under cyber-attack scenarios and varying renewable energy contributions.



    The convexity of functions is a powerful tool to deal with many kinds of issues of pure and applied science. In recent decades, many authors have devoted themselves to studying the properties and inequalities related to convexity in different directions, see [13,21,23,34,52] and the references cited therein. One of the most important mathematical inequalities concerning convex mapping is Hermite–Hadamard inequality, which is also utilized widely in many other disciplines of applied mathematics. Let's review it as follows:

    Let f:KRR be a convex mapping defined on the interval K of real numbers and τ1,τ2K with τ1<τ2. The subsequent inequalities are called Hermite–Hadamard inequalities:

    f(τ1+τ22)1τ2τ1τ2τ1f(t)dtf(τ1)+f(τ2)2. (1.1)

    Many inequalities have been established in terms of inequalities (1.1) via functions of different classes, such as convex functions [28], s-convex functions [33], (α,m)-convex functions [47], harmonically convex functions [16], h-convex functions [18], strongly exponentially generalized preinvex functions [29], h-preinvex functions [37], p-quasiconvex functions [27], N-quasiconvex functions [3], etc. For more recent results about this topic, the readers may refer to [13,22,25,26,30,32,36] and the references cited therein.

    The multiplicatively convex function is one of the most significant functions, which can be defined as follows.

    Definition 1. A mapping f: IR[0,) is said to be multiplicatively convex or log-convex, if log f is convex or equivalently for all τ1, τ2 I and t [0,1], one has the following inequality:

    f(tτ1+(1t)τ2)[f(τ1)]t[f(τ2)]1t.

    From Definition 1, it follows that

    f(tτ1+(1t)τ2)[f(τ1)]t[f(τ2)]1ttf(τ1)+(1t)f(τ2),

    which reveals that every multiplicatively convex function is a convex mapping, but the converse is not true.

    Many properties and inequalities associated with log-convex mappings have been studied by plenty of researchers. For example, Bai and Qi [9] gave several integral inequalities of the Hermite–Hadamard type for log-convex mappings. Dragomir [20] provided some unweighted and weighted inequalities of Hermite–Hadamard type related to log-convex mappings on real intervals. Set and Ardiç [46] established certain Hermite–Hadamard-like type integral inequalities involving log-convex mappings and p-functions. Zhang and Jiang [53] researched some properties for log-convex mapping. For more results on the basis of log-convex mappings, one can see, for example, [10,39,40,49,50] and the references cited therein.

    In 2008, Bashirov [11] proposed a class of the multiplicative operators called integral, which is denoted by ba(f(x))dx and the ordinary integral is denoted by baf(x)dx. Recall that the function f is multiplicatively integrable on [a,b], if f is positive and Riemann integrable on [a,b] and

    ba(f(x))dx=ebaln(f(x))dx.

    Definition 2. [11] Let f:RR+ be a positive function. The multiplicative derivative of function f is given by

    dfdt(t)=f(t)=limh0(f(t+h)f(h))1h.

    If f has positive values and is differentiable at t, then f exists and the relation between f and ordinary derivative f is as follows:

    f(t)=e[lnf(t)]=ef(t)f(t).

    The following properties of differentiable exist:

    Theorem 1. [11] Let f and g be differentiable functions. If c is an arbitrary constant, then functions cf, fg, f+g, f/g and fg are differentiable and

    (i)(cf)(t)=f(t),(ii)(fg)(t)=f(t)g(t),(iii)(f+g)(t)=f(t)f(t)f(t)+g(t)g(t)g(t)f(t)+g(t),(iv)(fg)(t)=f(t)g(t),(v)(fg)(t)=f(t)g(t)f(t)g(t).

    Moreover, Bashirov et al. show that the multiplicative integral has the following properties:

    Proposition 1. [11] If f is positive and Riemann integrable on [a,b], then f is integrable on [a,b] and

    (i)ba((f(x))p)dx=ba((f(x))dx)p,(ii)ba(f(x)g(x))dx=ba(f(x))dx.ba(g(x))dx,(iii)ba(f(x)g(x))dx=ba(f(x))dxba(g(x))dx,(iv)ba(f(x))dx=ca(f(x))dx.bc(f(x))dx,acb,(v)aa(f(x))dx=1andba(f(x))dx=(ab(f(x))dx)1.

    The interesting geometric mean type inequalities, known as the Hermite–Hadamard inequality for the multiplicatively convex functions, are shown by the following theorem in [7].

    Theorem 2. Let f be a positive and multiplicatively convex function on interval [a,b], then the following inequalities hold

    f(a+b2)(ba(f(x))dx)1baf(a)f(b). (1.2)

    Fractional calculus, as an advantageous tool, reveals its significance to implement differentiation and integration of real or complex number orders. Furthermore, it recently emerged rapidly due to its applications in modelling a number of problems especially in dealing with the dynamics of the complex systems, decision making in structural engineering and probabilistic problems, etc., see, for instance, [6,31]. The research of mathematical inequalities including many different types of fractional integral operators, especially the Hermite–Hadamard type inequalities, is a current research focus. For example, refer to [8,19,22] for Riemann–Liouville integrals, to k-Riemann–Liouville integrals [41], to Hadamard fractional integrals [4,48], to conformable fractional integrals [2,14], to Katugampola fractional integrals [17,51], and to exponential kernel integrals [5], etc.

    An imperative generalization of Riemann–Liouville fractional integrals was considered by Abdeljawad and Grossman in [1], which is named the multiplicative Riemann–Liouville fractional integrals.

    Definition 3. [1] The multiplicative left-sided Riemann–Liouville fractional integral aIαf(x) of order α C, Re(α)>0 is defined by

    aIαf(x)=e(Iαa+(lnf))(x),

    and the multiplicative right-sided one Iαbf(x) is defined by

    Iαbf(x)=e(Iαb(lnf))(x),

    where the symbols Iαa+f(x) and Iαbf(x) denote respectively the left-sided and right-sided Riemann–Liouville fractional integrals, which are defined by

    Iαa+f(x)=1Γ(α)xa(xt)α1f(t)dt,x>a,

    and

    Iαbf(x)=1Γ(α)bx(tx)α1f(t)dt,x<b,

    respectively.

    On the other hand, Sarikaya et al. proved the following noteworthy inequalities which are the Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals.

    Theorem 3. [44] Let f:[a,b]R be a positive function with 0a<b and fL1([a,b]). If f is a convex function on [a,b], then the following inequalities for fractional integrals hold:

    f(a+b2)Γ(α+1)2(ba)α[Iαa+f(b)+Iαbf(a)]f(a)+f(b)2, (1.3)

    with α>0.

    Also, Sarikaya and Yildirim built another form relevant to Riemann–Liouville fractional Hermite–Hadamard type inequalities as follows.

    Theorem 4. [45] Under the same assumptions of Theorem 3, we have

    f(a+b2)2α1Γ(α+1)(ba)α[Iα(a+b2)+f(b)+Iα(a+b2)f(a)]f(a)+f(b)2. (1.4)

    Sabzikar et al. provided the following tempered fractional operators.

    Definition 4. [35] Let [a,b] be a real interval and λ0, α>0. Then for a function f L1([a,b]), the left-sided and right-sided tempered fractional integrals are, respectively, defined by

    Iα,λa+f(x)=1Γ(α)xa(xt)α1eλ(xt)f(t)dt,x>a,

    and

    Iα,λbf(x)=1Γ(α)bx(tx)α1eλ(tx)f(t)dt,x<b.

    For several recent related results involving the tempered fractional integrals, see [24,38,42,43] and the references included there.

    Motivated by the results in the papers above, especially these developed in [12,38], this work aims to investigate some inequalities of Hermite–Hadamard type, which involve the tempered fractional integrals and the notion of the λ-incomplete gamma function for the multiplicatively convex functions. For this purpose, we establish two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals, then we present an integral identity for differentiable mappings, from which we provide certain estimates of the upper bounds for trapezoid inequalities via the multiplicative tempered fractional integral operators.

    As one can see, the definitions of the tempered fractional integrals and the multiplicative fractional integrals have similar configurations. This observation leads us to present the following definition of fractional integral operators, to be referred to as the multiplicative tempered fractional integrals.

    Definition 5. The multiplicative left-sided tempered fractional integral aIα,λf(x) of order αC, Re(α)>0, is defined by

    aIα,λf(x)=e(Iα,λa+(lnf))(x),λ0,

    and the multiplicative right-sided one Iα,λbf(x) is defined by

    Iα,λbf(x)=e(Iα,λb(lnf))(x),λ0,

    where the symbols Iα,λa+f(x) and Iα,λbf(x) denote the left-sided and right-sided tempered fractional integrals, respectively.

    Observe that, for λ=0, the multiplicative tempered fractional integrals become to the multiplicative Riemann–Liouville fractional integrals.

    The following facts will be required in establishing our main results.

    Remark 1. For the real numbers α>0 and x,λ0, the following identities hold:

    (i) γλ(ba)(α,1)=γλ(α,ba)(ba)α, (2.1)
    (ii)10γλ(ba)(α,x)dx=γλ(α,ba)(ba)αγλ(α+1,ba)(ba)α+1, (2.2)

    where γλ(,) is the λ-incomplete gamma function [38], which is defined as follows:

    γλ(α,x)=x0tα1eλtdt.

    If λ=1, the λ-incomplete gamma function reduces to the incomplete gamma function [15]:

    γ(α,x)=x0tα1etdt.

    Proof. (i) By using the changed variable u=(ba)t in the (2.1), we get

     γλ(ba)(α,1)=10tα1eλ(ba)tdt=ba0(uba)α1eλu(1ba)du=γλ(α,ba)(ba)α,

    which ends the identity (2.1).

    (ii) From the definition of λ-incomplete gamma function, we have

    10γλ(ba)(α,x)dx=10x0yα1eλ(ba)ydydx.

    By changing the order of the integration, we get

    10γλ(ba)(α,x)dx=101yyα1eλ(ba)ydxdy=10(1y)yα1eλ(ba)ydy=10yα1eλ(ba)ydy10yαeλ(ba)ydy.

    Applying the Remark 1 (i), we get the identity (2.2).

    Our first main result is presented by the following theorem.

    Theorem 5. Let f be a positive and multiplicatively convex function on interval [a,b], then we have the following Hermite–Hadamard inequalities for the multiplicative tempered fractional integrals:

    f(a+b2)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)f(a)f(b), (2.3)

    where γλ(,) is the λ-incomplete gamma function.

    Proof. On account of the multiplicative convexity of f on interval [a,b], we have

    f(a+b2)=f(at+(1t)b+(1t)a+tb2)[f(at+(1t)b)]12[f((1t)a+tb)]12,

    i.e.

    lnf(a+b2)12[lnf(at+(1t)b)+lnf((1t)a+tb)]. (2.4)

    Multiplying both sides of (2.4) by tα1eλ(ba)t then integrating the resulting inequality with respect to t over [0, 1], we obtain

    lnf(a+b2)10tα1eλ(ba)tdt12[10tα1eλ(ba)tlnf(at+(1t)b)dt+10tα1eλ(ba)tlnf((1t)a+tb)dt].

    Utilizing the changed variable, we have

    1(ba)αlnf(a+b2)ba0xα1eλxdx12(ba)α[ba(bx)α1eλ(bx)lnf(x)dx+ba(xa)α1eλ(xa)lnf(x)dx].

    That is,

    γλ(α,ba)(ba)αlnf(a+b2)12(ba)α[ba(bx)α1eλ(bx)lnf(x)dx+ba(xa)α1eλ(xa)lnf(x)dx],lnf(a+b2)Γ(α)2γλ(α,ba)[Iα,λa+lnf(b)+Iα,λblnf(a)].

    Thus we get,

    f(a+b2)eΓ(α)2γλ(α,ba)[Iα,λa+lnf(b)+Iα,λblnf(a)]=[eIα,λa+lnf(b)eIα,λblnf(a)]Γ(α)2γλ(α,ba)=[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba),

    which completes the proof of the first inequality in (2.3).

    On the other hand, as f is multiplicatively convex on interval [a,b], we have

    f(at+(1t)b)[f(a)]t[f(b)]1t,

    and

    f((1t)a+tb)[f(a)]1t[f(b)]t.

    Thus,

    lnf(at+(1t)b)+lnf((1t)a+tb)tlnf(a)+(1t)lnf(b)+(1t)lnf(a)+tlnf(b)=lnf(a)+lnf(b). (2.5)

    Multiplying both sides of (2.5) by tα1eλ(ba)t then integrating the resulting inequality with respect to t over [0,1], we obtain

    10tα1eλ(ba)tlnf(at+(1t)b)dt+10tα1eλ(ba)tlnf((1t)a+tb)dt[lnf(a)+lnf(b)]10tα1eλ(ba)tdt.

    Hence,

    Γ(α)2γλ(α,ba)[Iα,λa+lnf(b)+Iα,λblnf(a)]12[lnf(a)+lnf(b)].

    Consequently, we have the following inequality

    e[Iα,λa+lnf(b)+Iα,λblnf(a)]Γ(α)2γλ(α,ba)f(a)f(b),

    i.e.

    [aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)f(a)f(b).

    This ends the proof.

    Remark 2. Considering Theorem 5, we have the following conclusions:

    (i) The inequalities (2.3) are equivalent to the following inequalities:

    lnf(a+b2)Γ(α)2γλ(α,ba)[Iα,λa+lnf(b)+Iα,λblnf(a)]12[lnf(a)+lnf(b)].

    (ii) If we choose λ=0, then we have the following inequalities:

    f(a+b2)[aIαf(b)Iαbf(a)]Γ(α+1)2(ba)αf(a)f(b),

    which is given by Budak in [12].

    (iii) If we choose λ=0 and α=1, then we obtain Theorem 2 given by Ali et al. in [7].

    Corollary 1. Suppose that f and g are two positive and multiplicatively convex functions on [a,b], then we have

    f(a+b2)g(a+b2)[aIα,λfg(b)Iα,λbfg(a)]Γ(α)2γλ(α,ba)f(a)f(b)g(a)g(b). (2.6)

    Proof. As f and g are positive and multiplicatively convex, the function fg is positive and multiplicatively convex. If we apply Theorem 5 to the function fg, then we obtain the required inequalities (2.6).

    Remark 3. If we take λ=0 in Corollary 1, then we have the following inequalities:

    f(a+b2)g(a+b2)[aIαfg(b)Iαbfg(a)]Γ(α+1)2(ba)αf(a)f(b)g(a)g(b),

    which is established by Budak in [12]. Especially if we take α = 1, we obtain Theorem 7 in [7].

    Hermite–Hadamard's inequalities involving midpoint can be represented in the multiplicative tempered fractional integral forms as follows:

    Theorem 6. Under the same assumptions of Theorem 5, we have

    f(a+b2)[a+b2Iα,λf(b)Iα,λa+b2f(a)]Γ(α)2γλ(α,ba2)f(a)f(b), (2.7)

    where γλ(,) is the λ-incomplete gamma function.

    Proof. On account of the multiplicative convexity of f on interval [a,b], we have

    f(a+b2)=f[12(t2a+2t2b)+12(2t2a+t2b)],

    i.e.

    lnf(a+b2)12[lnf(t2a+2t2b)+lnf(2t2a+t2b)]. (2.8)

    Multiplying both sides of (2.8) by tα1eλ(ba)2t then integrating the resulting inequality with respect to t over [0, 1], we obtain

    lnf(a+b2)10tα1eλ(ba)2tdt12[10tα1eλ(ba)2tlnf(t2a+2t2b)dt+10tα1eλ(ba)2tlnf(2t2a+t2b)dt].

    That is,

    2α(ba)αγλ(α,ba2)lnf(a+b2)2α1(ba)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)lnf(a)],

    which yields that,

    f(a+b2)e[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)lnf(a)]Γ(α)2γλ(α,ba2)=[a+b2Iα,λf(b)Iα,λa+b2f(a)]Γ(α)2γλ(α,ba2).

    This completes the proof of the first inequality in inequalities (2.7).

    On the other hand, as f is multiplicatively convex, we get

    f(t2a+2t2b)[f(a)]t2[f(b)]2t2,

    and

    f(2t2a+t2b)[f(a)]2t2[f(b)]t2.

    Thus, we have

    lnf(t2a+2t2b)+lnf(2t2a+t2b)lnf(a)+lnf(b). (2.9)

    Multiplying both sides of (2.9) by tα1eλ(ba)2t then integrating the resulting inequality with respect to t over [0, 1], we have

    2α(ba)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)lnf(a)]2α(ba)αγλ(α,ba2)[lnf(a)+lnf(b)],

    i.e.

    Γ(α)2γλ(α,ba2)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)lnf(a)]12[lnf(a)+lnf(b)].

    Consequently, we get the inequality

    [a+b2Iα,λf(b)Iα,λa+b2f(a)]Γ(α)2γλ(α,ba2)f(a)f(b).

    This ends the proof.

    Next, we are going to establish several integral inequalities concerning the multiplicative tempered fractional integral operators. To this end, we present the following lemma.

    Lemma 1. Let f:IRR+ be a differentiable mapping on I, a,bI with a<b. If f is integrable on [a,b], then we have

    f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)=10[f(ta+(1t)b)η(γλ(ba)(α,t)γλ(ba)(α,1t))]dt, (2.10)

    where

    η=(ba)α2γλ(α,ba). (2.11)

    Proof. Applying the multiplicative integration by parts, we have

    10[f(ta+(1t)b)η(γλ(ba)(α,t)γλ(ba)(α,1t))]dt=f(a)ηγλ(ba)(α,1)f(b)ηγλ(ba)(α,1)110(f(ta+(1t)b)η(tα1eλ(ba)t+(1t)α1eλ(ba)(1t)))dt=[f(a)f(b)]ηγλ(ba)(α,1)exp{10ηlnf(ta+(1t)b)tα1eλ(ba)tdt+10ηlnf(ta+(1t)b)(1t)α1eλ(ba)(1t)dt}=[f(a)f(b)]ηγλ(α,ba)(ba)αexp{I1+I2}.

    Utilizing the changed variable, we obtain

    I1=η10lnf(ta+(1t)b)tα1eλ(ba)tdt=η(ba)αbalnf(u)(bu)α1eλ(bu)du=ηΓ(α)(ba)αIα,λa+lnf(b),

    and

    I2=η10lnf(ta+(1t)b)(1t)α1eλ(ba)(1t)dt=η(ba)αbalnf(u)(ua)α1eλ(ua)du=ηΓ(α)(ba)αIα,λblnf(a).

    Then, we have

    10[f(at+(1t)b)η(γλ(ba)(α,t)γλ(ba)(α,1t))]dt=f(a)f(b)exp{Γ(α)2γλ(α,ba)[Iα,λa+lnf(b)+Iα,λblnf(a)]}=f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba).

    This ends the proof.

    Remark 4. Considering Lemma 1, we have the following conclusions:

    (i) If we take λ=0, then we have

    f(a)f(b)[aIαf(b)Iαbf(a)]Γ(α+1)2(ba)α=10(f(ta+(1t)b)12[tα(1t)α])dt. (2.12)

    (ii) If we take λ=0 and α=1, then we have

    f(a)f(b)ba(f(u)1ba)du=10(f(ta+(1t)b)12(2t1))dt. (2.13)

    It is worth mentioning that, to the best of our knowledge, the identities (2.12) and (2.13) obtained here are new in the literature.

    Theorem 7. Let f:IRR+ be a differentiable mapping on I, a,bI with a<b. If |f| is multiplicatively convex on [a,b], then we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|[|f(a)||f(b)|]ηδ, (2.14)

    where η is defined by (2.11) in Lemma 1 and

    δ=γλ(α,ba)(ba)αγλ(α,ba2)(ba)α+2γλ(α+1,ba2)(ba)α+1γλ(α+1,ba)(ba)α+1. (2.15)

    Proof. Making use of Lemma 1, we deduce

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|=|10[f(at+(1t)b)η(γλ(ba)(α,t)γλ(ba)(α,1t))]dt|exp{10|lnf(at+(1t)b)η[γλ(ba)(α,t)γλ(ba)(α,1t)]|dt}=exp{10|η[γλ(ba)(α,t)γλ(ba)(α,1t)]||lnf(at+(1t)b)|dt}. (2.16)

    As t[0,1], we can know

    |γλ(ba)(α,t)γλ(ba)(α,1t)|={ 1ttuα1eλ(ba)udu,0t12,t1tuα1eλ(ba)udu,12<t1. (2.17)

    Since |f| is multiplicatively convex, we get

    |lnf(ta+(1t)b)|tln|f(a)|+(1t)ln|f(b)|. (2.18)

    If we apply (2.17) and (2.18) to the inequality (2.16), we obtain

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{η120 1ttuα1eλ(ba)udu[tln|f(a)|+(1t)ln|f(b)|]dt+η112t1tuα1eλ(ba)udu[tln|f(a)|+(1t)ln|f(b)|]dt}=exp{ηln|f(a)|1201tttuα1eλ(ba)ududt+ηln|f(b)|1201tt(1t)uα1eλ(ba)ududt+ηln|f(a)|112t1ttuα1eλ(ba)ududt+ηln|f(b)|112t1t(1t)uα1eλ(ba)ududt}=exp{η(ln|f(a)|Δ1+ln|f(b)|Δ2+ln|f(a)|Δ3+ln|f(b)|Δ4)}.

    Here, let's evaluate an integral by changing the order of it.

    Δ1=1201tttuα1eλ(ba)ududt=120u0tuα1eλ(ba)udtdu+1121u0tuα1eλ(ba)udtdu=12[120uα+1eλ(ba)udu+112(u22u+1)uα1eλ(ba)udu]=12[γλ(ba)(α+2,12)+112uα+1eλ(ba)udu2112uαeλ(ba)udu+112uα1eλ(ba)udu]=12{γλ(ba)(α+2,12)+[γλ(ba)(α+2,1)γλ(ba)(α+2,12)]2[γλ(ba)(α+1,1)γλ(ba)(α+1,12)]+[γλ(ba)(α,1)γλ(ba)(α,12)]}. (2.19)

    Analogously, we can get

    Δ2=12{2γλ(ba)(α+1,12)γλ(ba)(α+2,12)+[γλ(ba)(α,1)γλ(ba)(α,12)][γλ(ba)(α+2,1)γλ(ba)(α+2,12)]}, (2.20)
    Δ3=12{2γλ(ba)(α+1,12)γλ(ba)(α+2,12)+[γλ(ba)(α,1)γλ(ba)(α,12)][γλ(ba)(α+2,1)γλ(ba)(α+2,12)]}, (2.21)

    and

    Δ4=12{γλ(ba)(α+2,12)+[γλ(ba)(α+2,1)γλ(ba)(α+2,12)]2[γλ(ba)(α+1,1)γλ(ba)(α+1,12)]+[γλ(ba)(α,1)γλ(ba)(α,12)]}. (2.22)

    Consequently,

    ln|f(a)|Δ1+ln|f(b)|Δ2+ln|f(a)|Δ3+ln|f(b)|Δ4=[ln|f(a)|+ln|f(b)|][γλ(α,ba)(ba)αγλ(α,ba2)(ba)α+2γλ(α+1,ba2)(ba)α+1γλ(α+1,ba)(ba)α+1].

    Thus, we deduce

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{η[ln|f(a)|+ln|f(b)|][γλ(α,ba)(ba)αγλ(α,ba2)(ba)α+2γλ(α+1,ba2)(ba)α+1γλ(α+1,ba)(ba)α+1]}=exp{ηδ[ln|f(a)|+ln|f(b)|]}=[|f(a)||f(b)|]ηδ.

    The proof is completed.

    Theorem 8. Let f:IRR+ be a differentiable mapping on I, a,bI with a<b. For q>1 with p1+q1=1, if |f|q is multiplicatively convex on [a,b], then we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{ητ1p(ln|f(a)|q+ln|f(b)|q2)1q}, (2.23)

    where η is defined by (2.11) in Lemma 1 and

    τ=10|γλ(ba)(α,t)γλ(ba)(α,1t)|pdt.

    Proof. Making use of Lemma 1 and Hölder's inequality, we deduce

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|=|10[f(at+(1t)b)η(γλ(ba)(α,t)γλ(ba)(α,1t))]dt|exp{10|lnf(at+(1t)b)η[γλ(ba)(α,t)γλ(ba)(α,1t)]|dt}=exp{10|η[γλ(ba)(α,t)γλ(ba)(α,1t)]lnf(at+(1t)b)|dt}=exp{10|η[γλ(ba)(α,t)γλ(ba)(α,1t)]||lnf(at+(1t)b)|dt}. (2.24)

    Due to the Hölder's inequality, we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{η(10|γλ(ba)(α,t)γλ(ba)(α,1t)|pdt)1p×(10|lnf(ta+(1t)b)|qdt)1q}. (2.25)

    By virtue of the multiplicative convexity of |f|q, we obtain

    10|lnf(at+(1t)b)|qdt10[tln|f(a)|q+(1t)ln|f(b)|q]dt=ln|f(a)|q+ln|f(b)|q2. (2.26)

    Combining (2.26) with (2.25), we know that Theorem 8 is true. Thus the proof is completed.

    Remark 5. Considering Theorem 8, we have the following conclusions:

    (i) If we choose λ=0, then we have

    |f(a)f(b)[aIαf(b)Iαbf(a)]Γ(α+1)2(ba)α|exp{12(10|tα(1t)α|pdt)1p(ln|f(a)|q+ln|f(b)|q2)1q}exp{12(1αp+1(212αp1))1p(ln|f(a)|q+ln|f(b)|q2)1q}.

    To prove the second inequality above, we use the fact

    [(1t)αtα]p(1t)αptαp,

    for t [0,12] and

    [tα(1t)α]ptαp(1t)αp,

    for t [12,1], which follows from (AB)q AqBq for any AB0 and q1.

    (ii) If we choose λ=0 and α=1, then we have

    f(a)f(b)ba(f(u)1ba)duexp{12(1p+1)1p(ln|f(a)|q+ln|f(b)|q2)1q}.

    Theorem 9. Let f:IRR+ be a differentiable mapping on I, a,bI with a<b. If |f|q, q>1, is multiplicatively convex on [a,b], then we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{211qηδ(ln|f(a)|q+ln|f(b)|q)1q}, (2.27)

    where η is defined by (2.11) in Lemma 1 and δ is defined by (2.15) in Theorem 7, respectively.

    Proof. Continuing from the inequality (2.24) in the proof of Theorem 8, using the power-mean inequality, we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{η(10|γλ(ba)(α,t)γλ(ba)(α,1t)|dt)11q×(10|γλ(ba)(α,t)γλ(ba)(α,1t)||lnf(at+(1t)b)|qdt)1q}.

    For the convenience of expression, let us define the quantities

    J1=10|γλ(ba)(α,t)γλ(ba)(α,1t)|dt,

    and

    J2=10|γλ(ba)(α,t)γλ(ba)(α,1t)||lnf(at+(1t)b)|qdt.

    According to the equalities (2.17), we have

    J1=1201ttuα1eλ(ba)ududt+112t1tuα1eλ(ba)ududt=2{2γλ(ba)(α+1,12)+[γλ(ba)(α,1)γλ(ba)(α,12)]γλ(ba)(α+1,1)}. (2.28)

    Utilizing the multiplicative convexity of |f|q, we obtain

    J210|γλ(ba)(α,t)γλ(ba)(α,1t)|[tln|f(a)|q+(1t)ln|f(b)|q]dt=1201ttuα1eλ(ba)u[tln|f(a)|q+(1t)ln|f(b)|q]dudt+112t1tuα1eλ(ba)u[tln|f(a)|q+(1t)ln|f(b)|q]dudt=ln|f(a)|q1201tttuα1eλ(ba)ududt+ln|f(b)|q1201tt(1t)uα1eλ(ba)ududt+ln|f(a)|q112t1ttuα1eλ(ba)ududt+ln|f(b)|q112t1t(1t)uα1eλ(ba)ududt=ln|f(a)|qΔ1+ln|f(b)|qΔ2+ln|f(a)|qΔ3+ln|f(b)|qΔ4,

    where Δi(i=1,2,3,4) are given by (2.19)–(2.22) in the proof of Theorem 7, respectively.

    Consequently,

    ln|f(a)|qΔ1+ln|f(b)|qΔ2+ln|f(a)|qΔ3+ln|f(b)|qΔ4=[ln|f(a)|q+ln|f(b)|q][γλ(α,ba)(ba)αγλ(α,ba2)(ba)α+2γλ(α+1,ba2)(ba)α+1γλ(α+1,ba)(ba)α+1]. (2.29)

    Combining (2.28) with (2.29), we have

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|exp{η(2δ)11q(δ(ln|f(a)|q+ln|f(b)|q))1q}=exp{211qηδ(ln|f(a)|q+ln|f(b)|q)1q}.

    The proof is completed.

    The main point of the results established in this paper is that the calculation of the right-hand side is much easier than that of the left-hand side. To show this, three interesting examples are demonstrated below.

    Example 1. Let the log-convex function f: (0,)(0,) be defined by f(x)=2x23. If we take a=1,b=2, α=12 and λ=14, then all assumptions in Theorem 5 are satisfied.

    The left-hand side term of (2.3) is

    f(a+b2)=f(1+22)=2340.5946.

    The middle term of (2.3) is

    [aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)=[eI12,141+lnf(2)eI12,142lnf(1)]Γ(12)2γ14(12,1)=[e21(u23)ln2(2u)12e14(2u)du+21(u23)ln2(u1)12e14(u1)du]1210u12e14udu0.6461.

    The right-hand side term of (2.3) is

    f(a)f(b)=f(1)f(2)=2120.7071.

    It is clear that 0.5946<0.6461<0.7071, which demonstrates the result described in Theorem 5.

    Example 2. Let the log-convex function f: (0,)(0,) be defined by f(x)=ex2. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 6 are satisfied.

    The left-hand side term of (2.7) is

    f(a+b2)=f(1+22)=e949.4877.

    The middle term of (2.7) is

    [a+b2Iα,λf(b)Iα,λa+b2f(a)]Γ(α)2γλ(α,ba2)=[eI12,1232+lnf(2)eI12,1232lnf(1)]Γ(12)2γ12(12,12)=[e232u2(2u)12e12(2u)du+321u2(u1)12e12(u1)du]12120u12e12udu10.9088.

    The right-hand side term of (2.7) is

    f(a)f(b)=f(1)f(2)=e5212.1825.

    It is clear that 9.4877<10.9088<12.1825, which demonstrates the result described in Theorem 6.

    Example 3. Let the log-convex function f(x)f(x): (0,)(0,) be defined by f(x)f(x)=1x. We can get f(x)=e1x, f(x)=x. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 7 are satisfied.

    The left-hand side term of (2.14) is

    |f(a)f(b)[aIα,λf(b)Iα,λbf(a)]Γ(α)2γλ(α,ba)|=|f(1)f(2)[eI12,121+lnf(2)eI12,122lnf(1)]Γ(12)2γ12(12,1)|=|2[e21lnu(2u)12e12(2u)du+21lnu(u1)12e12(u1)du]12γ12(12,1)|0.9702.

    The right-hand side term of (2.14) is

    [|f(a)||f(b)|]ηδ=(e32)12γ12(12,1)[γ12(12,1)γ12(12,12)+2γ12(32,12)γ12(32,1)]1.1480.

    It is clear that 0.9702<1.1480, which demonstrates the result described in Theorem 7.

    To the best of our knowledge, this is a first pervasive work on the multiplicative tempered fractional Hermite–Hadamard type inequalities via the multiplicatively convex functions. Two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals are hereby established. An integral identity for differentiable mappings is presented. By using it, some estimates of the upper bounds pertaining to trapezoid type inequalities via the multiplicative tempered fractional integral operators are obtained. Inequalities obtained in this paper generalize some results given by Budak and Tunç (2020) and Ali et al. (2019). Also, three examples show that the calculation of the right-hand side is much easier than that of the left-hand side. The ideas and techniques of this article may inspire further research in this field. This promising field about the multiplicative tempered fractional inequalities is worth further exploration.

    The authors would like to thank the reviewer for his/her valuable comments and suggestions.

    The authors declare no conflict of interest.



    [1] C. Peng, J. Li, M. Fei, Resilient event-triggering H load frequency control for multi-area power systems with energy-limited dos attacks, IEEE Trans. Power Syst., 32 (2016), 4110–4118. https://doi.org/10.1109/TPWRS.2016.2634122 doi: 10.1109/TPWRS.2016.2634122
    [2] Y. Güler, I. Kaya, Load frequency control of single-area power system with PI–PD controller design for performance improvement, J. Electr. Eng. Technol., 18 (2023), 2633–2648. https://doi.org/10.1007/s42835-022-01371-1 doi: 10.1007/s42835-022-01371-1
    [3] J. C. Vinitha, G. Ramadas, P. U. Rani, PSO based fuzzy logic controller for load frequency control in EV charging station, J. Electr. Eng. Technol., 19 (2024), 193–208. https://doi.org/10.1007/s42835-023-01568-y doi: 10.1007/s42835-023-01568-y
    [4] Y. Xue, X. Lei, F. Xue, C. Yu, C. Dong, F. Wen, et al., Comment on the impact of wind power uncertainty on power system, Proc. CSEE, 34 (2014), 5029–5040. https://doi.org/10.13334/j.0258-8013.pcsee.2014.29.004 doi: 10.13334/j.0258-8013.pcsee.2014.29.004
    [5] S. Wang, K. Tomsovic, Fast frequency support from wind turbine generators with auxiliary dynamic demand control, IEEE Trans. Power Syst., 34 (2019), 3340–3348. https://doi.org/10.1109/TPWRS.2019.2911232 doi: 10.1109/TPWRS.2019.2911232
    [6] D. Katipoğlu, S. Soylu, Design of optimal FOPI controller for two-area time-delayed load frequency control system with demand response, J. Electr. Eng. Technol., 19 (2024), 4073–4085. https://doi.org/10.1007/s42835-024-01900-0 doi: 10.1007/s42835-024-01900-0
    [7] V. Lakshmanan, M. Marinelli, J. Hu, H. W. Bindner, Provision of secondary frequency control via demand response activation on thermostatically controlled loads: solutions and experiences from denmark, Appl. Energy, 173 (2016), 470–480. https://doi.org/10.1016/j.apenergy.2016.04.054 doi: 10.1016/j.apenergy.2016.04.054
    [8] Q. Zhu, L. Jiang, W. Yao, C. Zhang, C. Luo, Robust load frequency control with dynamic demand response for deregulated power systems considering communication delays, Electr. Power Compon. Syst., 45 (2017), 75–87. https://doi.org/10.1080/15325008.2016.1233300 doi: 10.1080/15325008.2016.1233300
    [9] N. Li, X. Wang, Research of air conditioners providing frequency controlled reserve for microgrid, Power Syst. Prot. Control, 43 (2015), 101–105.
    [10] D. S. Callaway, Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy, Energy Convers. Manage., 50 (2009), 1389–1400. https://doi.org/10.1016/j.enconman.2008.12.012 doi: 10.1016/j.enconman.2008.12.012
    [11] N. Lu, D. P. Chassin, S. E. Widergren, Modeling uncertainties in aggregated thermostatically controlled loads using a state queueing model, IEEE Trans. Power Syst., 20 (2005), 725–733. https://doi.org/10.1109/TPWRS.2005.846072 doi: 10.1109/TPWRS.2005.846072
    [12] Z. Cai, Z. Zhang, Y. Yan, S. Liu, Multistage coordinated control risk dispatch considering the uncertainty of source-network, in 2022 4th International Conference on Power and Energy Technology (ICPET), (2022), 1305–1311. https://doi.org/10.1109/ICPET55165.2022.9918528
    [13] B. Pang, X. Jin, Q. Zhang, Y. Tang, K. Liao, J. Yang, et al., Transient ac overvoltage suppression orientated reactive power control of the wind turbine in the lcc-hvdc sending grid, CES Trans. Electr. Mach. Syst., 8 (2024), 152–161. https://doi.org/10.30941/CESTEMS.2024.00020 doi: 10.30941/CESTEMS.2024.00020
    [14] T. Li, Y. Li, Y. Zhu, Research on the voltage supporting capability of multi-VSC-HVDC subsystems operation strategy to receiving-end LCC-HVDC network in weakAC grid, CES Trans. Electr. Mach. Syst., 7 (2023), 11–20. https://doi.org/10.30941/CESTEMS.2023.00007 doi: 10.30941/CESTEMS.2023.00007
    [15] A. Kazemy, J. Lam, X. Zhang, Event-triggered output feedback synchronization of master–slave neural networks under deception attacks, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 952–961. https://doi.org/10.1109/TNNLS.2020.3030638 doi: 10.1109/TNNLS.2020.3030638
    [16] X. Zhang, Q. Han, B. Zhang, X. Ge, D. Zhang, Accumulated-state-error-based event-triggered sampling scheme and its application to H control of sampled-data systems, Sci. China Inf. Sci., 67 (2024), 162206. https://doi.org/10.1007/s11432-023-4038-3 doi: 10.1007/s11432-023-4038-3
    [17] R. Ji, S. S. Ge, Event-triggered tunnel prescribed control for nonlinear systems, IEEE Trans. Fuzzy Syst., 32 (2023), 90–101. https://doi.org/10.1109/TFUZZ.2023.3290934 doi: 10.1109/TFUZZ.2023.3290934
    [18] G. Zhang, S. Yin, C. Huang, W. Zhang, J. Li, Structure synchronized dynamic event-triggered control for marine ranching AMVs via the multi-task switching guidance, IEEE Trans. Intell. Transp. Syst., 2024. https://doi.org/10.1109/TITS.2024.3463181 doi: 10.1109/TITS.2024.3463181
    [19] Y. Xiao, W. Che, Event-triggered fully distributed H containment control for MASs, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 2676–2684. https://doi.org/10.1109/TSMC.2023.3342410 doi: 10.1109/TSMC.2023.3342410
    [20] J. P. Farwell, R. Rohozinski, Stuxnet and the future of cyber war, Survival, 53 (2011), 23–40. https://doi.org/10.1080/00396338.2011.555586 doi: 10.1080/00396338.2011.555586
    [21] D. Ding, Z. Wang, Q. Han, G. Wei, Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Trans. Syst. Man Cybern.: Syst., 48 (2016), 779–789. https://doi.org/10.1109/TSMC.2016.2616544 doi: 10.1109/TSMC.2016.2616544
    [22] W. Xu, W. Trappe, Y. Zhang, T. Wood, The feasibility of launching and detecting jamming attacks in wireless networks, in MobiHoc '05: Proceedings of the 6th ACM International Symposium on Mobile ad hoc Networking and Computing, (2005), 46–57. https://doi.org/10.1145/1062689.1062697
    [23] H. S. Foroush, S. Martinez, On event-triggered control of linear systems under periodic denial-of-service jamming attacks, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 2551–2556. https://doi.org/10.1109/CDC.2012.6425868
    [24] C. De Persis, P. Tesi, Input-to-state stabilizing control under denial-of-service, IEEE Trans. Autom. Control, 60 (2015), 2930–2944. https://doi.org/10.1109/TAC.2015.2416924 doi: 10.1109/TAC.2015.2416924
    [25] L. Jin, Y. He, C. Zhang, X. Shangguan, L. Jiang, M. Wu, Equivalent input disturbance-based load frequency control for smart grid with air conditioning loads, Sci. China Inf. Sci., 65 (2022), 122205. https://doi.org/10.1007/s11432-020-3120-0 doi: 10.1007/s11432-020-3120-0
    [26] D. Yue, E. Tian, Q. Han, A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Autom. Control, 58 (2012), 475–481. https://doi.org/10.1109/TAC.2012.2206694 doi: 10.1109/TAC.2012.2206694
    [27] X. Zhang, Q. Han, B. Zhang, An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems, IEEE Trans. Ind. Inf., 13 (2016), 4–16. https://doi.org/10.1109/TII.2016.2607150 doi: 10.1109/TII.2016.2607150
    [28] W. P. M. H. Heemels, M. C. F. Donkers, A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Autom. Control, 58 (2012), 847–861. https://doi.org/10.1109/TAC.2012.2220443 doi: 10.1109/TAC.2012.2220443
    [29] H. Zhang, J. Liu, S. Xu, H-infinity load frequency control of networked power systems via an event-triggered scheme, IEEE Trans. Ind. Electron., 67 (2019), 7104–7113. https://doi.org/10.1109/TIE.2019.2939994 doi: 10.1109/TIE.2019.2939994
    [30] C. De Persis, P. Tesi, Resilient control under denial-of-service, IFAC Proc. Volumes, 47 (2014), 134–139. https://doi.org/10.3182/20140824-6-ZA-1003.02184 doi: 10.3182/20140824-6-ZA-1003.02184
    [31] K. Lu, G. Zeng, X. Luo, J. Weng, Y. Zhang, M. Li, An adaptive resilient load frequency controller for smart grids with DoS attacks, IEEE Trans. Veh. Technol., 69 (2020), 4689–4699. https://doi.org/10.1109/TVT.2020.2983565 doi: 10.1109/TVT.2020.2983565
    [32] Y. Qi, S. Yuan, B. Niu, Asynchronous control for switched T–S fuzzy systems subject to data injection attacks via adaptive event-triggering schemes, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2021), 4658–4670. https://doi.org/10.1109/TSMC.2021.3100481 doi: 10.1109/TSMC.2021.3100481
    [33] H. Sun, C. Peng, D. Yue, Y. L. Wang, T. Zhang, Resilient load frequency control of cyber-physical power systems under QoS-dependent event-triggered communication, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2020), 2113–2122. https://doi.org/10.1109/TSMC.2020.2979992 doi: 10.1109/TSMC.2020.2979992
    [34] E. Tian, K. Wang, X. Zhao, S. Shen, J. Liu, An improved memory-event-triggered control for networked control systems, J. Franklin Inst., 356 (2019), 7210–7223. https://doi.org/10.1016/j.jfranklin.2019.06.041 doi: 10.1016/j.jfranklin.2019.06.041
    [35] C. Peng, S. Ma, X. Xie, Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication, IEEE Trans. Cybern., 47 (2017), 2279–2287. https://doi.org/10.1109/TCYB.2017.2659698 doi: 10.1109/TCYB.2017.2659698
  • This article has been cited by:

    1. Zhengmao Chen, A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure, 2023, 31, 2688-1594, 840, 10.3934/era.2023042
    2. Yu Peng, Hao Fu, Tingsong Du, Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels, 2022, 2194-6701, 10.1007/s40304-022-00285-8
    3. Badreddine Meftah, Maclaurin type inequalities for multiplicatively convex functions, 2023, 0002-9939, 10.1090/proc/16292
    4. Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, 2023, 8, 2473-6988, 3885, 10.3934/math.2023193
    5. Artion Kashuri, Soubhagya Kumar Sahoo, Munirah Aljuaid, Muhammad Tariq, Manuel De La Sen, Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals, 2023, 15, 2073-8994, 868, 10.3390/sym15040868
    6. Tingsong Du, Yun Long, The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals, 2025, 541, 0022247X, 128692, 10.1016/j.jmaa.2024.128692
    7. Yu Peng, Tingsong Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, 2023, 37, 0354-5180, 9497, 10.2298/FIL2328497P
    8. Muhammad Ali, On Simpson’s and Newton’s type inequalities in multiplicative fractional calculus, 2023, 37, 0354-5180, 10133, 10.2298/FIL2330133A
    9. Abdul Mateen, Serap Özcan, Zhiyue Zhang, Bandar Bin-Mohsin, On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis, 2024, 8, 2504-3110, 541, 10.3390/fractalfract8090541
    10. Mohammed Bakheet Almatrafi, Wedad Saleh, Abdelghani Lakhdari, Fahd Jarad, Badreddine Meftah, On the multiparameterized fractional multiplicative integral inequalities, 2024, 2024, 1029-242X, 10.1186/s13660-024-03127-z
    11. YU PENG, TINGSONG DU, ON MULTIPLICATIVE (s,P)-CONVEXITY AND RELATED FRACTIONAL INEQUALITIES WITHIN MULTIPLICATIVE CALCULUS, 2024, 32, 0218-348X, 10.1142/S0218348X24500488
    12. Jianqiang Xie, Ali Muhammad, Sitthiwirattham Thanin, Some new midpoint and trapezoidal type inequalities in multiplicative calculus with applications, 2023, 37, 0354-5180, 6665, 10.2298/FIL2320665X
    13. Tingsong Du, Yu Peng, Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals, 2024, 440, 03770427, 115582, 10.1016/j.cam.2023.115582
    14. Meriem Merad, Badreddine Meftah, Abdelkader Moumen, Mohamed Bouye, Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions, 2023, 7, 2504-3110, 879, 10.3390/fractalfract7120879
    15. Yu Peng, Serap Özcan, Tingsong Du, Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals, 2024, 183, 09600779, 114960, 10.1016/j.chaos.2024.114960
    16. Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117
    17. Wen Sheng Zhu, Badreddine Meftah, Hongyan Xu, Fahd Jarad, Abdelghani Lakhdari, On parameterized inequalities for fractional multiplicative integrals, 2024, 57, 2391-4661, 10.1515/dema-2023-0155
    18. Assia Frioui, Badreddine Meftah, Ali Shokri, Abdelghani Lakhdari, Herbert Mukalazi, Parametrized multiplicative integral inequalities, 2024, 2024, 2731-4235, 10.1186/s13662-024-03806-7
    19. Ziyi Zhou, Tingsong Du, Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals, 2024, 189, 09600779, 115715, 10.1016/j.chaos.2024.115715
    20. Muhammad Aamir Ali, Michal Fečkan, Chanon Promsakon, Thanin Sitthiwirattham, A new Approach of Generalized Fractional Integrals in Multiplicative Calculus and Related Hermite–Hadamard-Type Inequalities with Applications, 2024, 74, 0139-9918, 1445, 10.1515/ms-2024-0105
    21. Dawood Khan, Saad Ihsan Butt, Youngsoo Seol, Properties and integral inequalities of P-superquadratic functions via multiplicative calculus with applications, 2024, 2024, 1687-2770, 10.1186/s13661-024-01978-5
    22. YUN LONG, TINGSONG DU, ANALYSIS ON MULTIPLICATIVE k-ATANGANA–BALEANU FRACTIONAL INTEGRALS WITH APPLICATION TO VARIOUS MERCER-TYPE INEQUALITIES, 2025, 33, 0218-348X, 10.1142/S0218348X25500033
    23. Artion Kashuri, Arslan Munir, Hüseyin Budak, Fatih Hezenci, Novel generalized tempered fractional integral inequalities for convexity property and applications, 2025, 75, 0139-9918, 113, 10.1515/ms-2025-0009
    24. Hüseyin Budak, Büşra Betül Ergün, On multiplicative conformable fractional integrals: theory and applications, 2025, 2025, 1687-2770, 10.1186/s13661-025-02026-6
    25. Abdelghani Lakhdari, Djaber Chemseddine Benchettah, Badreddine Meftah, Fractional multiplicative Newton-type inequalities for multiplicative s-convex positive functions with application, 2025, 465, 03770427, 116600, 10.1016/j.cam.2025.116600
    26. Xiaohua Zhang, Yu Peng, Tingsong Du, (k,s)-fractional integral operators in multiplicative calculus, 2025, 195, 09600779, 116303, 10.1016/j.chaos.2025.116303
    27. DAWOOD KHAN, SAAD IHSAN BUTT, YOUNGSOO SEOL, ANALYSIS ON MULTIPLICATIVELY (P,m)-SUPERQUADRATIC FUNCTIONS AND RELATED FRACTIONAL INEQUALITIES WITH APPLICATIONS, 2025, 33, 0218-348X, 10.1142/S0218348X24501299
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(773) PDF downloads(25) Cited by(0)

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog