Research article

Modeling and analysis of release strategies of sterile mosquitoes incorporating stage and sex structure of wild ones

  • Received: 01 March 2023 Revised: 20 April 2023 Accepted: 04 May 2023 Published: 15 May 2023
  • This paper proposes and studies a switched interactive model of wild and sterile mosquitoes with stage and sex structure. Sterile males are released periodically and impulsively and remain sexually active for time $ \bar{T} $. We investigate the dynamical behavior of the system when the release period $ T $ is shorter than the sexual lifespan $ \bar{T} $, corresponding to a relatively frequent release. We first determine two important thresholds, $ m_1^* $ and $ m_2^* $, for the release amount $ m $ and prove the exponential asymptotic stability of the extinction equilibrium. Using fixed point theory, we establish the existence of positive periodic solutions for $ 0 < m < m_1^* $ and $ m_1^*\leq m < m_2^* $. Furthermore, by applying the comparison theorem of monotone systems, we demonstrate that the extinction equilibrium is globally asymptotically stable when $ m\geq m_2^* $. Finally, numerical examples are presented to confirm our theoretical results.

    Citation: Mingzhan Huang, Xiaohuan Yu, Shouzong Liu. Modeling and analysis of release strategies of sterile mosquitoes incorporating stage and sex structure of wild ones[J]. Electronic Research Archive, 2023, 31(7): 3895-3914. doi: 10.3934/era.2023198

    Related Papers:

  • This paper proposes and studies a switched interactive model of wild and sterile mosquitoes with stage and sex structure. Sterile males are released periodically and impulsively and remain sexually active for time $ \bar{T} $. We investigate the dynamical behavior of the system when the release period $ T $ is shorter than the sexual lifespan $ \bar{T} $, corresponding to a relatively frequent release. We first determine two important thresholds, $ m_1^* $ and $ m_2^* $, for the release amount $ m $ and prove the exponential asymptotic stability of the extinction equilibrium. Using fixed point theory, we establish the existence of positive periodic solutions for $ 0 < m < m_1^* $ and $ m_1^*\leq m < m_2^* $. Furthermore, by applying the comparison theorem of monotone systems, we demonstrate that the extinction equilibrium is globally asymptotically stable when $ m\geq m_2^* $. Finally, numerical examples are presented to confirm our theoretical results.



    加载中


    [1] H. M. Al-Solami, A. M. Alhebshi, H. Abdo, S. R. Mahmuod, A. S. Alwabli, N. Alkenani, A bio-mathematical approach to control the Anopheles mosquito using sterile males technology, Int. J. Biomath., 15 (2022), 2250037. https://doi.org/10.1142/S1793524522500371 doi: 10.1142/S1793524522500371
    [2] H. J. Barclay, M. Mackuer, The sterile insect release method for pest control: a density dependent model, Environ. Entomol., 9 (1980), 810–817. https://doi.org/10.1093/ee/9.6.810 doi: 10.1093/ee/9.6.810
    [3] H. J. Barclay, Pest population stability under sterile releases, Popul. Ecol., 24 (1982), 405–416. https://doi.org/10.1007/BF02515585 doi: 10.1007/BF02515585
    [4] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833. https://doi.org/10.1371/journal.ppat.1000833 doi: 10.1371/journal.ppat.1000833
    [5] F. Gazori, M. Hesaaraki, Three-dimensional spread analysis of a Dengue disease model with numerical season control, Int. J. Biomath., 14 (2021), 2150066. https://doi.org/10.1142/S1793524521500662 doi: 10.1142/S1793524521500662
    [6] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9
    [7] Z. Zhao, L. Pang, X. Song, D. Wang, Q. Li, Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes, J. Appl. Math. Comput., 68 (2022), 1527–1544. https://doi.org/10.1007/s12190-021-01569-y doi: 10.1007/s12190-021-01569-y
    [8] P. A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva, Implementation of control strategies for sterile insect techniques, Math. Biosci., 314 (2019), 43–60, https://doi.org/10.1016/j.mbs.2019.06.002 doi: 10.1016/j.mbs.2019.06.002
    [9] M. Strugarek, H. Bossin, Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations, Appl. Math. Modell., 68 (2019), 443–470. https://doi.org/10.1016/j.apm.2018.11.026 doi: 10.1016/j.apm.2018.11.026
    [10] A. Lupica, A. Palumbo, The coexistence of fast and slow diffusion processes in the life cycle of Aedes aegypti mosquitoes, Int. J. Biomath., 14 (2021), 2050087. https://doi.org/10.1142/S1793524520500874 doi: 10.1142/S1793524520500874
    [11] Z. Zhu, Y. Shi, R. Yuan, L. Hu, Periodic orbits of a mosquito suppression model based on sterile mosquitoes, Mathematics, 10 (2022), 462. https://doi.org/10.3390/math10030462 doi: 10.3390/math10030462
    [12] M. Huang, J. Luo, L. Hu, B. Zheng, J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11. https://doi.org/10.1016/j.jtbi.2017.12.012 doi: 10.1016/j.jtbi.2017.12.012
    [13] Y. Hui, G. Lin, J. Yu, J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. - Ser. B, 25 (2020), 4659–4676. https://doi.org/10.3934/dcdsb.2020118 doi: 10.3934/dcdsb.2020118
    [14] Y. Hui, Z. Zhao, Q. Li, L. Pang, Asymptotic stability in a mosquito population suppression model with time delay, Int. J. Biomath., 16 (2023), 2250092. https://doi.org/10.1142/S1793524522500929 doi: 10.1142/S1793524522500929
    [15] Y. Hui, J. Yu, Global asymptotic stability in a non-autonomous delay mosquito population suppression model, Appl. Math. Lett., 124 (2022), 107599. https://doi.org/10.1016/j.aml.2021.107599 doi: 10.1016/j.aml.2021.107599
    [16] B. Zheng, J. Yu, J. Li, Existence and stability of periodic solutions in a mosquito population suppression model with time delay, J. Differ. Equations, 315 (2022), 159–178. https://doi.org/10.1016/j.jde.2022.01.036 doi: 10.1016/j.jde.2022.01.036
    [17] B. Zheng, J. Yu, J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 81 (2021), 718–740. https://doi.org/10.1137/20M1368367 doi: 10.1137/20M1368367
    [18] B. Zheng, J. Li, J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 65 (2022), 1749–1764. https://doi.org/10.1007/s11425-021-1891-7 doi: 10.1007/s11425-021-1891-7
    [19] B. Zheng, J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Differ. Equations, 65 (2022), 1–13. https://doi.org/10.1007/s10884-021-10125-y doi: 10.1007/s10884-021-10125-y
    [20] B. Zheng, Impact of releasing period and magnitude on mosquito population in a sterile release model with delay, J. Math. Biol., 85 (2022), 18. https://doi.org/10.1007/s00285-022-01785-5 doi: 10.1007/s00285-022-01785-5
    [21] R. Anguelov, Y. Dumont, I. Djeumen, Sustainable vector/pest control using the permanent sterile insect technique, Math. Methods Appl. Sci., 43 (2020), 10391–10412. https://doi.org/10.1002/mma.6385 doi: 10.1002/mma.6385
    [22] M. Huang, S. Liu, X. Song, Study of the sterile insect release technique for a two-sex mosquito population model, Math. Biosci. Eng., 18 (2021), 1314–1339. https://doi.org/10.3934/mbe.2021069 doi: 10.3934/mbe.2021069
    [23] M. Huang, L. You, S. Liu, X. Song, Impulsive release strategies of sterile mosquitos for optimal control of wild population, J. Biol. Dyn., 15 (2021), 151–176. https://doi.org/10.1080/17513758.2021.1887380 doi: 10.1080/17513758.2021.1887380
    [24] M. Huang, X. Song, J. Li, Modelling and analysis of impulsive release of sterile mosquitoes, J. Biol. Dyn., 11 (2017), 147–171. https://doi.org/10.1080/17513758.2016.1254286 doi: 10.1080/17513758.2016.1254286
    [25] J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917
    [26] J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 6193–6215. https://doi.org/10.1016/j.jde.2020.04.036 doi: 10.1016/j.jde.2020.04.036
    [27] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 10395–10415. https://doi.org/10.1016/j.jde.2020.07.019 doi: 10.1016/j.jde.2020.07.019
    [28] J. Yu, J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606–620. https://doi.org/10.1080/17513758.2019.1682201 doi: 10.1080/17513758.2019.1682201
    [29] G. Lin, Y. Hui, Stability analysis in a mosquito population suppression model, J. Biol. Dyn., 14 (2020), 578–589. https://doi.org/10.1080/17513758.2020.1792565 doi: 10.1080/17513758.2020.1792565
    [30] S. Ai, J. Li, J. Yu, B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. - Ser. B, 27 (2022), 3039–3052. https://doi.org/10.3934/dcdsb.2021172 doi: 10.3934/dcdsb.2021172
    [31] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet, Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16 (2019), 6274–6297. https://doi.org/10.3934/mbe.2019313 doi: 10.3934/mbe.2019313
    [32] D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, J. R. L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-Impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), 6274–6297. https://doi.org/10.1371/journal.pone.0121126 doi: 10.1371/journal.pone.0121126
    [33] S. Boyer, J. Gilles, D. Merancienne, G. Lemperiere, D. Fontenille, Sexual perfor-mance of male mosquito Aedes albopictus, Med. Vet. Entomol., 25 (2011), 454–459. https://doi.org/10.1111/j.1365-2915.2011.00962.x doi: 10.1111/j.1365-2915.2011.00962.x
    [34] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet, Optimal control strategies for the sterile mosquitoes technique, J. Differ. Equations, 311 (2022), 229–266. https://doi.org/10.1016/j.jde.2021.12.002 doi: 10.1016/j.jde.2021.12.002
    [35] K. Zhao, Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays, Appl. Math. Comput., 437 (2023), 127540. https://doi.org/10.1016/j.amc.2022.127540 doi: 10.1016/j.amc.2022.127540
    [36] K. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, 2022 (2022). https://doi.org/10.1080/00207179.2022.2078425 doi: 10.1080/00207179.2022.2078425
    [37] K. Zhao, Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales, Axioms, 12 (2023), 315. https://doi.org/10.3390/axioms12030315 doi: 10.3390/axioms12030315
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(545) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog