We outline the construction of special functions in terms of Fredholm determinants to solve boundary value problems of the string spectral problem. Our motivation is that the string spectral problem is related to the spectral equations in Lax pairs of at least three nonlinear evolution equations from mathematical physics.
Citation: Feride Tığlay. Integrating evolution equations using Fredholm determinants[J]. Electronic Research Archive, 2021, 29(2): 2141-2147. doi: 10.3934/era.2020109
[1] | Mary J. Bravo, Marco Caponigro, Emily Leibowitz, Benedetto Piccoli . Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks and Heterogeneous Media, 2015, 10(3): 559-578. doi: 10.3934/nhm.2015.10.559 |
[2] | Abdul M. Kamareddine, Roger L. Hughes . Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465 |
[3] | Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram . Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15(3): 405-426. doi: 10.3934/nhm.2020025 |
[4] | Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039 |
[5] | Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579 |
[6] | Andreas Schadschneider, Armin Seyfried . Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545 |
[7] | Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004 |
[8] | Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried . Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425 |
[9] | Dirk Hartmann, Isabella von Sivers . Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8(4): 985-1007. doi: 10.3934/nhm.2013.8.985 |
[10] | Daniel Roggen, Martin Wirz, Gerhard Tröster, Dirk Helbing . Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Networks and Heterogeneous Media, 2011, 6(3): 521-544. doi: 10.3934/nhm.2011.6.521 |
We outline the construction of special functions in terms of Fredholm determinants to solve boundary value problems of the string spectral problem. Our motivation is that the string spectral problem is related to the spectral equations in Lax pairs of at least three nonlinear evolution equations from mathematical physics.
[1] |
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) (1966) 16: 319-361. ![]() |
[2] |
An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. (1993) 71: 1661-1664. ![]() |
[3] |
On isospectral deformations of an inhomogeneous string. Comm. Math. Phys. (2016) 348: 771-802. ![]() |
[4] |
A sufficient condition for the convergence of an infinite determinant. SIAM J. Appl. Math. (1970) 18: 652-657. ![]() |
[5] |
Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D (1981/82) 4: 47-66. ![]() |
[6] |
Dynamics of director fields. SIAM J. Appl. Math. (1991) 51: 1498-1521. ![]() |
[7] | On the spectral functions of the string. Amer. Math. Soc. Transl. (1974) 103: 19-102. |
[8] |
Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. (2008) 342: 617-656. ![]() |
[9] |
Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. (2003) 176: 116-144. ![]() |
[10] | B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009. |
[11] |
A. A. Kirillov, Infinite-dimensional Lie groups: Their orbits, invariants and representations. The geometry of moments, Lect. Notes in Math., Springer-Verlag, New York, 970 (1982), 101–123. doi: 10.1007/BFb0066026
![]() |
[12] |
Kähler geometry of the infinite-dimensional homogeneous space |
[13] |
S. Lang, Differential Manifolds, Second edition. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4684-0265-0
![]() |
[14] |
Integrable evolution equations on spaces of tensor densities and their peakon solutions. Comm. Math. Phys. (2010) 299: 129-161. ![]() |
[15] |
Fredholm determinants and the Camassa-Holm hierarchy. Comm. Pure Appl. Math. (2003) 56: 638-680. ![]() |
[16] |
Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. (2004) 57: 416-418. ![]() |
[17] |
M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2
![]() |
[18] |
Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications. Lett. Math. Phys. (2011) 97: 45-60. ![]() |
1. | Amandine Aftalion, Emmanuel Trélat, Pace and motor control optimization for a runner, 2021, 83, 0303-6812, 10.1007/s00285-021-01632-z | |
2. | Benedetto Piccoli, Multiscale approaches to crowd dynamics and the reliability of data from experiments, 2016, 18, 15710645, 46, 10.1016/j.plrev.2016.08.003 |