Some properties for almost cellular algebras

  • Received: 01 April 2020 Revised: 01 June 2020 Published: 24 August 2020
  • 16W70, 20C08

  • In this paper, we will investigate some properties for almost cellular algebras. We compare the almost cellular algebras with quasi-hereditary algebras, which are known to carry any homological and categorical structures. We prove that any almost cellular algebra is the iterated inflation and obtain some sufficient and necessary conditions for an almost cellular algebra $ \mathrm{A} $ to be quasi-hereditary.

    Citation: Yongjie Wang, Nan Gao. Some properties for almost cellular algebras[J]. Electronic Research Archive, 2021, 29(1): 1681-1689. doi: 10.3934/era.2020086

    Related Papers:

  • In this paper, we will investigate some properties for almost cellular algebras. We compare the almost cellular algebras with quasi-hereditary algebras, which are known to carry any homological and categorical structures. We prove that any almost cellular algebra is the iterated inflation and obtain some sufficient and necessary conditions for an almost cellular algebra $ \mathrm{A} $ to be quasi-hereditary.



    加载中


    [1] Quantum walled Brauer-Clifford superalgebras. J. Algebra (2016) 454: 433-474.
    [2] Howe duality for quantum queer superalgebras. J. Algebra (2020) 547: 358-378.
    [3] Based algebras and standard bases for quasi-hereditary algebras. Trans. Amer. Math. Soc. (1998) 350: 3207-3235.
    [4] M. Ehrig and D. Tubbenhauer, Relative cellular algebras, Transform. Groups, (2019). doi: 10.1007/s00031-019-09544-5
    [5] Cellularity of cyclotomic Birman-Wenzl-Murakami algebras. J. Algebra (2009) 321: 3299-3320.
    [6] Cellular algebras. Invent. Math. (1996) 123: 1-34.
    [7] Almost cellular algebras. J. Pure Appl. Algebra (2015) 219: 4105-4116.
    [8] The representation theory of cyclotomic Temperley-Lieb algebras. Comment. Math. Helv. (2004) 79: 427-450.
    [9] Affine highest weight categories and affine quasihereditary algebras. Proc. Lond. Math. Soc. (3) (2015) 110: 841-882.
    [10] S. König and C. Xi, On the structure of cellular algebras, in Algebras and Modules, II, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998,365–385.
    [11] When is a cellular algebra quasi-hereditary?. Math. Ann. (1999) 315: 281-293.
    [12] Cellular algebras: Inflations and Morita equivalences. J. London Math. Soc. (2) (1999) 60: 700-722.
    [13] Affine cellular algebras. Adv. Math. (2012) 229: 139-182.
    [14] On the quasi-heredity of Birman-Wenzl algebras. Adv. Math. (2000) 154: 280-298.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1230) PDF downloads(448) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog