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Abstract. In this paper, we will investigate some properties for almost cel-

lular algebras. We compare the almost cellular algebras with quasi-hereditary
algebras, which are known to carry any homological and categorical structures.

We prove that any almost cellular algebra is the iterated inflation and obtain

some sufficient and necessary conditions for an almost cellular algebra A to be
quasi-hereditary.

1. Introduction. Cellular algebras were introduced by J. Graham and G. Lehrer
in [6]. Their definition is based on the existence of a certain basis with some special
properties motivated by KazhdanšCLusztig bases of Hecke algebras and is applicable
to other families of algebras like Brauer algebras [6], cyclotomic Temperley-Lieb
algebras [6, 8], cyclotomic Birman-Murakami-Wenzl algebras [5, 14], and so on.
An equivalent definition of the cellular algebra was given by S. König and C.C.
Xi in terms of cell ideals and a filtration by two-sided ideals [10] . Two different
equivalent definitions have different advantages. The first one can be used to check
concrete examples. The second one, however, is often more handy for theoretical
and structural purposes (see [10], [11] and their references). One of the advantages
of the concept of cellularity is that it provides a way to parametrize irreducible
modules. The problem of determining a parameter set for, or even constructing
bases of irreducible modules, is in this way reduced (but of course not solved in
general) to questions of linear algebra. The relation between the cellular algebras
and quasi-hereditary algebras was investigated by S. König and C.C. Xi. Precisely
they obtained some sufficient and necessary conditions for a cellular algebra to be
quasi-hereditary (More details could be found in [11, Theorem 3.1]).

There are several generalizations of cellular algebras. For example, affine cellular
algebras if we extend the framework of cellular algebras to algebras that need not
be finite dimensional over a field [13], relative cellular algebras if we allow different
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partial orderings relative to fixed idempotents [4], standardly based algebra by
constructing a nice bases satisfy some conditions [3] and almost cellular algebras if
we remove the compatible anti-involution from the definition of cellularity [7]. In
this paper, we focus on the third generalization. Motivated by Schur-Weyl duality,
the authors introduce the quantum walled Brauer-Clifford superalgebras BCr,s(q),
the quantum deformation of the walled Brauer-Clifford superalgebra BCr,s, which
is the centralizer superalgebra of the action of Uq(q(n)) on the mixed tensor space
under some mild condition [1]. The Howe duality for quantum queer superalgebras
was given [2]. Because of their similarity with Hecke-Clifford (super)algebras, the
quantum walled Brauer-Clifford (super)algebras are not the cellular algebras since
the absence of an anti-involution with the property that it fixes isomorphism classes
of irreducible modules. However, these algebras also have many of the properties
of cellular algebras, which belong to a large class of algebras, removing the anti-
involution from the definition of cellularity, called almost cellular algebras1 [7].

The aim of this paper is to study the structure of almost cellular algebras and
determine some sufficient and necessary conditions for an almost cellular algebra to
be quasi-hereditary, which is inspired by S. König and C. C. Xi’s papers [10, 11]. In
section two we review the definition of almost cellular algebras, and some examples.
We end this section by determining the possibilities for a factor J ⊆ A of an almost
cellular algebra A. In last section, we give a list of homological properties of a factor
and show the difference between cellular algebras and almost cellular algebras see
Proposition 3.4, we prove that the determinant of the Cartan matrix C of an almost
algebra A is a positive integer, and obtain some sufficient and necessary conditions
for an almost cellular algebra to be quasi-hereditary.

2. Definitions and basic properties. Throughout the paper the symbols R and
k stand for an arbitrary Noetherian commutative integral domain and a field, re-
spectively. Denote the abelian group of two elements by Z2 = {0, 1}.

Definition 2.1. Suppose A,A1, . . . ,Ak are unital associative rings. We say A has
a sandwich filtration over A1, . . . ,Ak if it has a filtration by two-sided ideals

0 = J0 ( J1 ( . . . ( Jk = A

such that Ji/Ji−1 ∼= Vi ⊗Ai
Wi as an (A,A)-bimodule for some nonzero (A,Ai)-

bimodule Vi and (Ai,A)-bimodule Wi, both free of finite rank over Ai. We call
Vi ⊗Ai Wi the factors of A. In particular, a factor J ⊆ A means the first layer in
a sandwich filtration, that is, J is a two-sided ideal of A and J ∼= V1 ⊗A1 W1 as
(A,A)-bimodules. If the rings A1, . . . ,Ak all coincide, we simply say that A has a
sandwich filtration over A1. If A admits a sandwich filtration, we call A an almost
cellular algebra.

Remark 2.2. The relationship between almost cellular algebras and cellular al-
gebras is as follows: a cellular algebra admits a sandwich filtration over the base
field and has a compatible anti-involution. The definition above is analogous to
the iterated inflations in [12], since it allows each Ai to be an arbitrary ring. It is
interesting to find an equivalent definition based on the bases for an almost cellular
algebra, which can help us to determine whether an algebra is an almost cellular
algebra or not?

1When equipped with a compatible anti-involution, the almost cellular algebras are cellular
algebras, so called them almost cellular algebras.
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Typical examples of almost cellular algebras can be found in [7].

Example 2.3. Cellular algebras and affine cellular algebras are almost cellular
algebras.

Example 2.4. The finite Hecke-Clifford algebra HCn(q) is the unital associative
algebra over C(q) generated by elements ti for 1 6 i 6 n − 1 and elements ci for
1 6 i 6 n which satisfy the relations:

(ti − q)(ti + q−1) = 0, i = 1, · · · , n− 1, titj = tjti, |i− j| > 2,

titi+1ti = ti+1titi+1, i = 1, · · · , n− 2,

c2i = −1, cicj = −cjci, 1 6 i 6= j 6 n,

tici = ci+1ti, titj = tjti, j 6= i, i+ 1.

Example 2.5. The q-walled Brauer-Clifford algebra WBCr,s(q) is the unital asso-
ciative algebra over R generated by elements

t1, . . . , tr−1, c1, . . . cr, t1, . . . , ts−1, c1, . . . , cs, and e.

The elements t1, . . . , tr−1, c1, . . . cr satisfy the relations of finite Hecke-Clifford al-
gebra HCr(q), and the elements t1, . . . , ts−1, c1, . . . , cs satisfy the relations of finite
Hecke-Clifford algebra HCs(q) except that c2i = 1. Moreover t1, . . . , tr−1, c1, . . . cr
supercommute with t1, . . . , ts−1, c1, . . . , cs. The generator e commutes with

t1, . . . , tr−2, c1, . . . cr−1, t2, . . . , ts−1, c2, . . . , cs,

and satisfies

e2 = 0, etr−1e = e = et1e, cre = c1e, ecr = ec1, ecre = 0,

et−1r−1t1etr−1 = et−1r−1t1et1, tr−1et
−1
r−1t1e = t1et

−1
r−1t1e.

Remark 2.6. 1. The Hecke-Clifford algebra HCn(q) and the q-walled Brauer-
Clifford algebra WBCr,s(q) are almost cellular algebras. Moreover, roughly
speaking, the q-walled Brauer-Clifford algebra WBCr,s(q) has a sandwich fil-
tration over the finite Hecke-Clifford algebras HCr−l(q) ⊗ HCs−l(q) for 0 6
l 6 min(r, s).

2. The finite Hecke-Clifford algebra HCn(q) and the q-walled Brauer-Clifford
algebra WBCr,s(q) become Z2-graded algebras if we define |ti| = |tj | = |e| = 0̄
and |ck| = |cl| = 1̄ for all possible i, j, k, l.

Lemma 2.7. ([7, Lemma 2]) Let R be a Noetherian commutative integral domain
and A be an R-algebra. Suppose we have an (A,A)- bimodule injection V⊗RW→ A,
where V is an (A, R)-bimodule, W is an (R,A)-bimodule, and V and W are both
free over R. Then the multiplication map

(V ⊗R W)⊗A (V ⊗R W)→ V ⊗R W

induced by this injection is given by

(v′ ⊗R w)(v ⊗R w′) = v′ϕ(w ⊗ v)⊗R w′,
where ϕ : W⊗A V→ R is an (R,R)-bimodule homomorphism uniquely determined
by this formula.

Proposition 2.8. Let A be an almost cellular algebra over a field k and J ⊆ A a
factor of A. Then J satisfies one of the following conditions

1. J has square zero.
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2. There exists a primitive idempotent e ∈ A such that J ∼= AeA ∼= Ae ⊗eAe eA
as (A,A)-bimodules, and eAe ∼= k. In particular, J = J2 is a heredity ideal.

Proof. By assumption, we may write J ∼= V ⊗k W as (A,A)-bimodules, where V is
a left A-module, W is a right A-module, V and W are finite-dimensional k-vector
spaces. By Lemma 2.7, if ϕ(w ⊗ v) = 0 for all w ∈W and v ∈ V, then we have the
situation (i).

Thus we may assume that there exists one ϕ(w⊗v) 6= 0 for some w ∈W, v ∈ V.
Then there exists a non-zero k0 ∈ k such that (v ⊗ w)(v ⊗ w) = k0(v ⊗ w). Hence
J contains a primitive idempotent e, and Ae is a left ideal which is contained in J.
Then J ∼= V⊕(dimkW) as a left A-module. However, Ae is a submodule of J, and so
J = Ae⊕ J(1− e). It follows that V = Ae⊕M for some left A-module M , and we
can decompose J = (Ae)m ⊕Mm, where m = dimkW. Since (Ae)m is contained in
the trace X of Ae inside J, it follows that it is contained in the trace AeA of Ae in
A. But the dimension of AeA is less than or equal to the product of the dimension
of Ae with the dimension of eA. This implies dimkW 6 dimk(eA).

On the other hand, eA is a right ideal which is contained in J. Then J ∼=
W⊕(dimkV) as a right A-module. Thus J = (1 − e)J ⊕ eA. It follows that W =
N ⊕ eA for some right A-module N and we can decompose J = Nn⊕ (eA)n, where
n = dimkV. Since (eA)n is contained in the trace AeA of eA in A, we get that
dimkV 6 dimk(Ae). By above arguments, we have the following inequalities

dimkAe 6 dimkV 6 dimkAe, dimkeA 6 dimkW 6 dimkeA.

Hence, dimkV = dimkAe and dimkW = dimkeA. This means that V = Ae and
W = eA. Since the multiplication Ae ⊗k eA −→ AeA is always surjective and
dim(Ae)m ≤ dimAeA, it must be an isomorphism. Hence J ∼= AeA and eAe ∼=
k.

Remark 2.9. The proof of this proposition is a slight difference with the corre-
sponding one of cellular algebra [10, Proposition 4.1].

The following corollary is immediately given.

Corollary 2.10. Let A be an almost cellular k-algebra with a sandwich filtration

0 = J0 ( J1 ( . . . ( Jn = A, and Ji/Ji−1 ∼= Vi ⊗k Wi.

If all the square of Ji/Ji−1 are nonzero in A/Ji−1, then A is a quasi-hereditary
algebra and above sandwich filtration yields a heredity chain of A.

Proof. By definition Ji/Ji−1 ⊆ A/Ji−1 is a factor of A/Ji−1 and Ji/Ji−1 is an
(A/Ji−1,A/Ji−1) -bimodule. By induction on the length of the sandwich filtration
and Proposition 2.8 we get that A is a quasi-hereditary algebra and above sandwich
filtration yields a heredity chain of A.

3. Some homological properties. In section two, we have seen that for a factor
J ⊆ A of an almost cellular algebra A there is exactly two possibilities, i.e., J2 = 0
or J2 = J. In this section, we investigate some homological properties for an almost
cellular algebra A.

Lemma 3.1. ([10, Proposition 6.1]) For any ideal J in a k-algebra A, the following
two assertions are equivalent:

1. J2 = 0,
2. TorA2 (A/J,A/J) ∼= J⊗A J.
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Proposition 3.2. Let A be an almost cellular k-algebra and J ⊆ A a nilpotent
factor of A such that J ∼= V ⊗k W as (A,A)-bimodules. Let D := Homk(−,k).

Then the space TorA2 (A/J,A/J) is not zero if and only if HomA(V,DW) 6= 0. In

particular, if W = DV, then TorA2 (A/J,A/J) 6= 0.

Proof. Note from Lemma 3.1 that J2 = 0 if and only if TorA2 (A/J,A/J) ∼= J ⊗A J.
Since J is isomorphic to V⊗k W, we get an isomorphism of k-vector spaces J⊗A J ∼=
V ⊗k (W ⊗A V) ⊗k W. Thus the Tor space TorA2 (A/J,A/J) 6= 0, provided that
W⊗A V is not zero. Since the latter space is the k-dual of HomA(V,DW), it shows
the assertion.

In particular, if W = DV, then 0 6= idV ∈ HomA(V,DW). Thus TorA2 (A/J,A/J)
6= 0.

Lemma 3.3. Let A be a k-algebra with an anti-involution i and J ∼= ∆⊗k i(∆) be
a cell ideal of A, where ∆ ⊆ J is a left ideal of A. Let e be an idempotent of A such
that ∆ ⊂ Je. Then eJe is a cell ideal of eAe with eJe ∼= e∆⊗k i(e∆).

Proof. Since i2 = idA, we have that i can be regarded as an anti-involution of
eAe, and i(eJe) = eJe. By assumptions ∆ is finite-dimensional and ∆ ⊂ Je, we
obtain that e∆ is finite-dimensional and e∆ ⊂ eJe. Moreover, eJe ∼= eA ⊗A ∆ ⊗k
i(∆)⊗A Ae ∼= e∆⊗k i(e∆) making the following diagram commutative, where α is
the isomorphism J ∼= ∆⊗k i(∆),

eJe

i

��

eαe // e∆⊗k i(e∆)

ex⊗ye7−→i(ye)⊗i(ex)
��

eJe
eαe // e∆⊗k i(e∆)

Remark 3.4. It is known from [10, Proposition 4.3] that given a cellular algebra
(A, i) and an idempotent e with i(e) = e, then (eAe, i) is a cellular algebra. It does
mean that eAe is not necessarily cellular, which we also refer to [12, Section 7].
For example: let k be a commutative ring and A be the k-algebra of two-by-two
matrices. Let i be an involution of A given by

i

(
a b
c d

)
=

(
d b
c a

)
.

Then the k-algebra A together with the involution i is cellular. Note that a two-by-

two matrix is an idempotent matrix if and only if

(
a b
c d

)
=

(
a b
c d

)2

if and only

if the following equations are satisfied

a = a2 + bc, b = b(a+ d), c = c(a+ d), d = d2 + bc.

Therefore, there is no idempotent matrix fixed by the above involution i when the
character of k is 2, in this case, the k-algebra A together with the involution i is
not a cellular algebra. In the case of the character of k is not 2, then the matrix

e =

(
2−1 2−1

2−1 2−1

)
is a primitive idempotent matrix which also fixed by the involution

i, thus the k-algebra A together with the involution i is a cellular algebra.

The next proposition shows the difference with those of almost cellular algebras.
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Proposition 3.5. Let A,A1,A2, · · · ,An be k-algebras. Let A be an almost cellular
algebra with a sandwich filtration

0 = J0 ( J1 ( . . . ( Jn = A, and Ji/Ji−1 ∼= Vi ⊗Ai
Wi,

for all 1 ≤ i ≤ n. Let e be an idemponent of A. Then eAe is an almost cellular
algebra.

Proof. Let s be the biggest integer such that eJse = 0 and let t be the smallest
integer such that eJte = eJt+1e. Then

eJle/eJl−1e ∼= e(Jl/Jl−1)e ∼= eVl ⊗Al
Wle, for all s+ 1 6 l 6 t.

Note that eVl is an (eAe,Al)-bimodule and Wle is an (Al, eAe)-bimodule, both free
of finite rank over Al. Thus by above arguments eAe is an almost cellular algebra
with a sandwich filtration

0 = eJse ( eJs+1e ( . . . ( eJte = eAe, and eJie/eJi−1e ∼= eVi ⊗Ai
Wie,

for all s+ 1 6 l 6 t.

From now on, we assume that R is a Noetherian commutative integral domain.
Given an associative R-algebra B, two finitely generated free R-modules V and W,
and a bilinear form ϕ : V ⊗R W −→ B with values in B, we define an associative
algebra A as follows: as an R-module, A = V ⊗R W ⊗R B. The multiplication is
defined by

(a⊗ b⊗ x)(c⊗ d⊗ y) := a⊗ d⊗ xϕ(c, b)y. (1)

Proposition 3.6. This definition makes A into an associative R-algebra.

Proof. Since B is an associative algebra, we have(
(a⊗ b⊗ x)(c⊗ d⊗ y)

)
(e⊗ f ⊗ z) =(a⊗ d⊗ xϕ(c, b)y)(e⊗ f ⊗ z)

=a⊗ f ⊗ xϕ(c, b)yϕ(e, d)z

equals to

(a⊗ b⊗ x)
(
(c⊗ d⊗ y)(e⊗ f ⊗ z)

)
=(a⊗ b⊗ x)(c⊗ f ⊗ yϕ(e, d)z)

=a⊗ f ⊗ xϕ(c, b)yϕ(e, d)z.

Lemma 3.7. Let A be an R-algebra with a factor J = A. Then A is isomorphic to
a full matrix ring over the ground ring R.

Proof. By the assumption A = V ⊗R W for some free R-modules V and W. So
there is an R-bimodule isomorphism

A ∼= HomA(A,A) ∼= HomA(V ⊗R W,A) ∼= HomR(W,HomA(V,A))

Denote the R-ranks of the free R-module V and W by n and m respectively. Then
A has R-rank n×m, and as a left module, A is isomorphic to m copies of V. Hence,
HomA(V,A) has R-rank at least n. But by the above isomorphism it can not have
larger rank. This means that the A-endomorphism ring E of V has rank one and
is exactly R. We complete the proof.

Definition 3.8. Let C be any algebra and let B be an algebra of the form V ⊗R
W ⊗R R with the multiplication defined in (3.1). Let A = C ⊕ B such that B is a
factor of A and A/B is isomorphic to C. Then we call A an inflation of C along B.
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Theorem 3.9. Any almost cellular algebra A over R with a sandwich filtration is
the iterated inflation of finitely many copies of R.

Proof. First we regard a factor J ⊆ A as an algebra, which is always an inflation of
the ground ring R. In fact, by Lemma 2.7 there exists an (R,R)-bimodule morphism
ϕ : W⊗A V −→ R and we can identify J with L⊗RL′⊗RR for two free R-modules
L and L′ having the same R-rank as V and W, respectively. Thus we can write J
as an inflation.

Now we prove the theorem by induction on the length of the sandwich filtration.
An almost cellular R-algebra A which is a factor in itself is just a full matrix ring
over R of size n×m by Lemma 3.7. Choose L and L′ to be free R-modules of rank
n and m respectively, which we identify with V = Ae and W = eA, where e is a
primitive idempotent. In this case, we identify eAe with R.

Using the above observation, we can rewrite matrix multiplication A⊗RA −→ A
as

A⊗R A ∼= (Ae⊗R eA)⊗R (Ae⊗R eA) −→ Ae⊗R eAe⊗R eA ∼= Ae⊗R eA ∼= A,
(2)

where all maps are (A,A)-bimodule homomorphisms. Thus, it provides us a bilinear
form ϕ : L′ ⊗R L −→ R and also shows how to write A as inflation of R along L
and L′.

Now we assume that A is an almost cellular algebra with a sandwich chain of
length greater than 1. We fix a factor J ⊆ A. By induction, the quotient algebra
B = A/J is an iterated inflation of copies of R. Now we claim that A is an inflation
of B along J. Indeed, we use the facts that J is an inflation of R by the first
paragraph and J ⊆ A is a factor of A.

In the following subsection, we show sufficient and necessary conditions for an
almost cellular algebra A to be quasi-hereditary.

Denote the simple A-modules L(1), . . . ,L(m) and their projective covers by P(1),
. . . , P(m). Let C = (cij) be the Cartan matrix of an algebra A, where the entry
cij is the composition multiplicity [P(i) : L(j)]. The determinant of C is called the
Cartan determinant. In general this can be any integer. But the Cartan determinant
of a cellular algebra is a positive integer. For our situation, we also have

Proposition 3.10. Let A,A1, · · · ,An be R-algebras over R. Let A be an almost
cellular algebra with a sandwich filtration

0 = J0 ( J1 ( . . . ( Jn = A, and Ji/Ji−1 ∼= Vi ⊗Ai
Wi = ∆(i).

Then the determinant det(C) of the Cartan matrix C of A is a positive integer.

Proof. Denote the number of isomorphism classes of simple Ai-modules by mi.
Then the number of isomorphism classes of simple A-modules is m ≤ m1+· · ·mn by
[7, Theorem 3] and Vi is of finite Ai-rank. Let da,b = [∆(a) : L(b)], the composition
multiplicity of the simple module L(b) in the standard module ∆(a), and D = (da,b)
the corresponding matrix. Then D is an n×m-matrix with integer entries. By the

characterization of simple A-modules, we may assume that D =

(
D1

D2

)
, where D1

and D2 are integer matrices and D2 (whose rows correspond to those indices i such
that J2

i 6⊂ Ji−1) is a square matrix by again by [7, Theorem 3]. Note that D2 is
a lower triangular matrix with all diagonal entries equal to one. This implies that
det(D2) = 1.
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The Cartan matrix C of A satisfies C = DTD, where DT is the transpose matrix
of D. Indeed, the composition multiplicity [∆(a) : L(b)] equals to dimkWae(b),
where e(b) is the primitive idempotent corresponding to L(b). Now,

CT =
(
DT

1 DT
2

)(D1

D2

)
= (DT

1 D1 +DT
2 D2),

so hence det(C) = det(I + (DT
2 D2)−1DT

1 D1) by det(DT
2 D2) = 1. Note that DT

2 D2

is positive definitive and DT
1 D1 is positive semi-definitive. Then we can decom-

pose DT
2 D2 with DT

2 D2 = Z2 for some symmetric matrix Z, and furthermore,
B = Z−1DT

1 D1Z
−1 and (DT

2 D2)−1DT
1 D1 have the same eigenvalues. Since B

is symmetric and its eigenvalues λ are non-negative real numbers, it follows that
C = I+(DT

2 D2)−1DT
1 D1 has the eigenvalues of the form 1+λ, and therefore det(C)

is a positive integer.

König and Xi obtained some equivalent conditions for a cellular algebra to be
quasi-hereditary (see [11, Theorem 3.1]). Inspired by their work and combined with
the above proposition, we have the following theorem.

Theorem 3.11. Let A,A1, · · · ,An be R-algebras over R. Let A be an almost
cellular algebra. Then the following are equivalent:

1. There is a sandwich filtration of A over A1, · · ·An whose length equals the sum
of the numbers of isomorphism classes of simple Ai-modules.

2. The determinant det(C) of Cartan matrix C of A is equal to one.

In particular, if R is a field, then det(C) = 1 if and only if each Ai = R and A is
quasi-hereditary algebra with the sandwich filtration to be exactly the heredity chain.

Proof. From Proposition 3.10 we get that det(C) is equal to one if λ = 0 if and only
if for the given sandwich filtration we have n = m. This means that (i)⇐⇒ (ii).

If R is a field, then from [7, Theorem 3] we get that the statement (i) holds if
and only if each Ai = R. Thus we complete the proof.

Future Directions There are a number of interesting questions yet to be con-
sidered. For example, is there an equivalent definition based on the bases for an
almost cellular algebra, which can help us to determine whether an algebra is an
almost cellular algebra or not? An affine quasi-hereditary algebra with a balanced
split involution is an affine cellular algebra [9, Proposition 9.8], and given an affine
cellular algebra with an affine cell chain of ideals, one can ask how to decide whether
it is affine quasi-hereditary? Furthermore, when is an almost cellular algebra with
a sandwich filtration to be affine quasi-hereditary? So far as the authors are aware,
this theory has yet to be developed.
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