Special Issues

Proof of Sun's conjectural supercongruence involving Catalan numbers

  • Received: 01 January 2020 Revised: 01 April 2020
  • Primary: 11A07, 11B65; Secondary: 05A19, 33C20

  • We confirm a conjectural supercongruence involving Catalan numbers, which is one of the 100 selected open conjectures on congruences of Sun. The proof makes use of hypergeometric series identities and symbolic summation method.

    Citation: Ji-Cai Liu. Proof of Sun's conjectural supercongruence involving Catalan numbers[J]. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054

    Related Papers:

  • We confirm a conjectural supercongruence involving Catalan numbers, which is one of the 100 selected open conjectures on congruences of Sun. The proof makes use of hypergeometric series identities and symbolic summation method.



    加载中


    [1] V. J. W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a $q$-microscope, Adv. in Appl. Math., 116 (2020). doi: 10.1016/j.aam.2020.102016
    [2] $q$-Analogues of two Ramanujan-type formulas for $1/\pi$. J. Difference Equ. Appl. (2018) 24: 1368-1373.
    [3] The Rodriguez-Villegas type congruences for truncated $q$-hypergeometric functions. J. Number Theory (2017) 174: 358-368.
    [4] V. J. W. Guo and M. J. Schlosser, A family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, preprint, arXiv: 1909.10294.
    [5] V. J. W. Guo and M. J. Schlosser, Some new $q$-congruences for truncated basic hypergeometric series: Even powers, Results Math., 75 (2020), 15pp. doi: 10.1007/s00025-019-1126-4
    [6] (2008) An Introduction to the Theory of Numbers.Oxford University Press.
    [7] On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. of Math. (2) (1938) 39: 350-360.
    [8] On Van Hamme's (A.2) and (H.2) supercongruences. J. Math. Anal. Appl. (2019) 471: 613-622.
    [9] Semi-automated proof of supercongruences on partial sums of hypergeometric series. J. Symbolic Comput. (2019) 93: 221-229.
    [10] J.-C. Liu and F. Petrov, Congruences on sums of $q$-binomial coefficients, Adv. in Appl. Math., 116 (2020), 11pp. doi: 10.1016/j.aam.2020.102003
    [11] New congruences involving products of two binomial coefficients. Ramanujan J. (2019) 49: 237-256.
    [12] A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory (2003) 99: 139-147.
    [13] Supercongruences between truncated ${}_2F_1$ hypergeometric functions and their Gaussian analogs. Trans. Amer. Math. Soc. (2003) 355: 987-1007.
    [14] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in Calabi-Yau Varieties and Mirror Symmetry, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003,223–231.
    [15] C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin., 56 (2006/07), 36pp.
    [16] (1966) Generalized Hypergeometric Functions.Cambridge University Press.
    [17] R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999. doi: 10.1017/CBO9780511609589
    [18] Super congruences involving Bernoulli polynomials. Int. J. Number Theory (2016) 12: 1259-1271.
    [19] Super congruences and Euler numbers. Sci. China Math. (2011) 54: 2509-2535.
    [20] On congruences related to central binomial coefficients. J. Number Theory (2011) 131: 2219-2238.
    [21] $p$-adic congruences motivated by series. J. Number Theory (2014) 134: 181-196.
    [22] Open conjectures on congruences. Nanjing Univ. J. Math. Biquarterly (2019) 36: 1-99.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(170) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog