[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics, J.A. Goldstein Eds., Lecture Notes in Mathematics, Vol. 446. Springer, Berlin, German, (1975), 5–49.
0427837

[2]

Bao X., Li W.T. (2020) Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. Nonlinear Anal. Real World Appl. 51: 102975, 26 pp.

[3]

Bao X., Li W.T., Shen W., Wang Z.C. (2018) Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems. J. Differential Equations 265: 30483091.

[4]

P. W. Bates, On some nonlocal evolution equations arising in materials science, In: Nonlinear Dynamics and Evolution Equations (Ed. by H. Brunner, X.Q. Zhao, X. Zou), Fields Inst. Commun., 48 (2006), 13–52, AMS, Providence.
2223347

[5]

Coville J., Dupaigne L. (2007) On a nonlocal equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A 137: 725755.

[6]

Ding W., Liang X. (2015) Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media. SIAM J. Math. Anal. 47: 855896.

[7]

Ducrot A. (2013) Convergence to generalized transition waves for some HollingTanner preypredator reactiondiffusion system,. J. Math. Pures Appl. 100: 115.

[8]

Ducrot A. (2016) Spatial propagation for a two component reactiondiffusion system arising in population dynamics. J. Differ. Equations 260: 83168357.

[9]

A. Ducrot, J. S. Guo, G. Lin and S. Pan, The spreading speed and the minimal wave speed of a predatorprey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), Art. 146, 25 pp.
10.1007/s000330191188x
3999344

[10]

Dunbar S. R. (1983) Travelling wave solutions of diffusive LotkaVolterra equations. J. Math. Biol. 17: 1132.

[11]

Fagan W. F., Bishop J. G. (2000) Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens. Amer. Nat. 155: 238251.

[12]

Fang J., Zhao X. Q. (2014) Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46: 36783704.

[13]

P. Fife, Some nonclassical trends in parabolic and paraboliclike evolutions, In: Trends in Nonlinear Analysis (Ed. by M. Kirkilionis, S. Kr$\ddot{o}$mker, R. Rannacher, F. Tomi), 153–191, Springer: Berlin, 2003.
1999098

[14]

L. Hopf, Introduction to Differential Equations of Physics, Dover: New York, 1948.
0025035

[15]

Jin Y., Zhao X. Q. (2009) Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22: 11671189.

[16]

X. Li and S. Pan, Traveling wave solutions of a delayed cooperative system, Mathematics, 7 (2019), ID: 269.
10.3390/math7030269

[17]

X. Li, S. Pan and H. B. Shi, Minimal wave speed in a dispersal predatorprey system with delays, Boundary Value Problems, 2018 (2018), Paper No. 49, 26 pp.
10.1186/s1366101809662
3782680

[18]

Liang X., Zhao X. Q. (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math. 60: 140.

[19]

Lin G. (2011) Spreading speeds of a LotkaVolterra predatorprey system: the role of the predator. Nonlinear Analysis 74: 24482461.

[20]

Lin G. (2012) Asymptotic spreading fastened by interspecific coupled nonlinearities: A cooperative system. Physica D 241: 705710.

[21]

Lin G., Li W. T. (2012) Asymptotic spreading of competition diffusion systems: The role of interspecific competitions. Eur. J. Appl. Math. 23: 669689.

[22]

Lin G., Li W. T., Ruan S. (2011) Spreading speeds and traveling waves of a competitive recursion. J. Math. Biol. 62: 165201.

[23]

Lin G., Pan S., Yan X. P. (2019) Spreading speeds of epidemic models with nonlocal delays. Mathe. Biosci. Eng. 16: 75627588.

[24]

Lin G., Ruan S. (2014) Traveling wave solutions for delayed reactiondiffusion systems and applications to LotkaVolterra competitiondiffusion models with distributed delays. J. Dyn. Differ. Equ. 26: 583605.

[25]

Liu X. L., Pan S. (2019) Spreading speed in a nonmonotone equation with dispersal and delay. Mathematics 7: 291.

[26]

Lui R. (1989) Biological growth and spread modeled by systems of recursions. Ⅰ. Mathematical theory. Math. Biosci. 93: 269295.

[27]

Martin R. H., Smith H. L. (1990) Abstract functional differential equations and reactiondiffusion systems,. Trans. Amer. Math. Soc. 321: 144.

[28]

J. D. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications., Third edition, Interdisciplinary Applied Mathematics, 18, SpringerVerlag: New York, 2003.
1952568

[29]

Owen M. R., Lewis M. A. (2001) How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63: 655684.

[30]

Pan S. (2013) Asymptotic spreading in a LotkaVolterra predatorprey system. J. Math. Anal. Appl. 407: 230236.

[31]

S. Pan, Convergence and traveling wave solutions for a predatorprey system with distributed delays, Mediterr. J. Math., 14 (2017), Art. 103, 15 pp.
10.1007/s000090170905y
3633363

[32]

Pan S. (2017) Invasion speed of a predatorprey system. Appl. Math. Lett. 74: 4651.

[33]

Pan S., Lin G., Wang J. (2019) Propagation thresholds of competitive integrodifference systems. J. Difference Equ. Appl. 25: 16801705.

[34]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press: Oxford, UK, 1997.

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS: Providence, RI, USA, 1995.
1319817

[36]

Wang M., Zhang Y. (2018) Dynamics for a diffusive preypredator model with different free boundaries. J. Differential Equations 264: 35273558.

[37]

Weinberger H. F. (1982) Longtime behavior of a class of biological model. SIAM J. Math. Anal. 13: 353396.

[38]

Weinberger H. F., Lewis M. A., Li B. (2002) Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45: 183218.

[39]

Weng P., Zhao X. Q. (2006) Spreading speed and traveling waves for a multitype SIS epidemic model. J. Differential Equations 229: 270296.

[40]

Ye Q., Li Z., Wang M., Wu Y. (2011) Introduction to Reaction Diffusion Equations.Science Press. 
[41]

Yu Z., Yuan R. (2011) Travelling wave solutions in nonlocal convolution diffusive competitivecooperative systems. IMA J. Appl. Math. 76: 493513.

[42]

Zhang G., Li W. T., Lin G. (2009) Traveling waves in delayed predatorprey systems with nonlocal diffusion and stage structure. Math. Comput. Model. 49: 10211029.

[43]

X. Q. Zhao, Spatial dynamics of some evolution systems in biology, In Recent Progress on ReactionDiffusion Systems and Viscosity Solutions, Y. Du, H. Ishii, W.Y. Lin, Eds.; World Scientific: Singapore, 2009,332–363.
10.1142/9789812834744_0015
2532932
