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ASYMPTOTIC SPREADING IN A DELAYED DISPERSAL
PREDATOR-PREY SYSTEM WITHOUT
COMPARISON PRINCIPLE

SHUXIA PAN

(Communicated by Wan-Tong Li)

ABSTRACT. This paper deals with the initial value problem of a predator-prey
system with dispersal and delay, which does not admit the classical comparison
principle. When the initial value has nonempty compact support, the initial
value problem formulates that two species synchronously invade the same habi-
tat in population dynamics. By constructing proper auxiliary equations and
functions, we confirm the faster invasion speed of two species, which equals to
the minimal wave speed of traveling wave solutions in earlier works.

1. INTRODUCTION

Spatial propagation dynamics of parabolic type systems has been widely inves-
tigated in literature, and two important indices on spatial propagation are minimal
wave speed and spreading speed. Here, the minimal wave speed is the threshold
on the existence of specific traveling wave solutions and the spreading speed of a
nonnegative function u(z,t),z € R, ¢ > 0 is defined as follows [1].

Definition 1.1. Assume that u(zx,t) is a nonnegative function for z € R,¢ > 0.
Then ¢ is called the spreading speed of u(z,t) if

a): limy— o0 SUP|4 |5 (ape) w(z, t) = 0 for any given e > 0;

b): liminf; o inf|)<@—ey¢ u(z,t) > 0 for any given € € (0,¢).

From the viewpoint of mathematical biology, the above speed characterizes the
spatial expansion of the individuals [28, 34]. In the past decades, some important
results on these two thresholds have been established for monotone semiflows, see
[12, 18, 26, 37, 38] and a survey paper by Zhao [43]. When some special cooperative
systems are concerned, it has been proven that all components governed by a system
have the same spreading speed that is also the minimal wave speed of traveling
wave solutions [18, 26, 38]. At the same time, it has been shown that different
components may have different spreading speeds in several noncooperative systems
[19, 20, 21, 22, 30, 33], and at least the spreading speed of one species equals to the
minimal wave speed of traveling wave solutions.

Recently, Li et al. [17] investigated the following nonmonotone system

W W = dy[J1 xur](z,t) + rug (z, €) Fy (ug, ug) (2, ),
% — dol o * us)(x, £) + ratn(x, £) Fa(us, us) (x, 1),
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where © € R,t > 0, (uj,uz) € R2, 71,79,d1,dy are positive constants, Fy, Fy are
defined by

Fi(uy,ug)(x,t) = 1—wuy(z,t)
0 0
—bl/_ ul(x,t+s)dn11(s)—a1/_ uz(x,t + s)dni2(s),
Fy(uy,ug)(x,t) = 1—uz(z,t)

0 0
—b2/ uQ(x,t+s)dn22(8)+a2/ up(x,t + 5)dnoi(s)

—T —T

with constants by > 0,b2 > 0,a; > 0,a2 > 0,7 > 0 and
;5 (s) is nondecreasing on [—7,0] and 7;;(0) — n;;(—7) =1, i,j =1, 2.

In this system, [J1 * ui](x,t), [J2 * us](x,t) reflecting the spatial dispersal indicate
the long distance effect and nonadjacent contact among individuals [4, 13, 14], and
are defined by

;% i)z, 1) = / Ji(e — 9)us(yt) — il D)dy,i = 1,2,

where J;,7 = 1,2, play the role of probability kernel functions about the random
walk of individuals and satisfy the following assumptions:

(J1): J; is nonnegative and continuous for each i = 1,2;
(J2): for any A € R, [ Ji(y)eMdy < oo,i=1,2;
(I3): [pJily)dy =1, Ji(y) = Ji(—y),y € R,i = 1,2.

Clearly, (1) is a predator-prey system in population dynamics. In Li et al. [17],
Yu and Yuan [41], Zhang et al. [42], the authors investigated its traveling wave
solutions connecting (0,0) with the positive steady state, which reflect the process
that these two species invade a new habitat from the viewpoint of biology invasion.
In particular, Li et al. [17] obtained the minimal wave speed defined by ¢* =
max{c}, c5} with

d; [ Ji(y)e vdy — 1] +
o — gt Sl S@eNdy = b
A>0 A

From the viewpoint of initial value problem, let any fixed time be the initial time,
the traveling wave solutions in [17, 41, 42] indicate the initial size of habitat of both
species is infinite, which contradicts to some natural phenomena because the initial
invasion often begins in finite domain. The purpose of this paper is to explore the
dynamics when the initial habitats of two invaders are finite and investigate the
long time behavior of

% = di[J1 * ur](@, 1) + riun (2, 8) i (un, u2) (2, 1),
(2) % = dafJo * ua](2, 1) + raua (@, ) Fa(un, u2) (2, 1),

ui(x, 8) = ¢i(x,8),x € Rt > 0,8 € [-7,0],i = 1,2,

in which ¢;(z, s) satisfies
(I): For i = 1,2, ¢;(x,s),z € R, s € [—7,0], is nonnegative, bounded and
continuous such that

¢1(ZL’,S) = Oa |$| > L,S € [*7_7 0}7¢z(xu0) >0
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for some L > 0,z; € R. Moreover, they satisfy
0 < ¢1(z,s) <1,0 < pa(z,8) <1+ag,zeR,;se[-T7,0]

Since (2) involves delay effect of intraspecific competition if by + by > 0, it does
not satisfy the comparison principle of classical predator-prey systems or mono-
tone semiflows [40]. Therefore, the spreading speeds can not be investigated by the
abstract results mentioned above. In this paper, we shall estimate the spreading
speeds of these two species. By constructing proper auxiliary equations and func-
tions, we confirm that either the predator or the prey invades the new habitat at
the rough speed ¢* while the spreading speed of the other species may be smaller
than c*.

2. MAIN RESULTS

In this section, we shall give and prove the main results on (2). Before giving
the main results, we first define some positive constants as follows

inf dl [IR Jl(y)eAydy - 1] + 7’1(1 - a1(1 + ag))

C1 )
A>0 A
d J. Ny — 1 1
¢ = inf 2 UR 2(y)eVdy ] +ra(1+ a2)’
A>0 A
. g J2(y)er¥dy — 1] + o
C2 = )\2 5

in which the existence and uniqueness of Ag > 0 is due to (J2)-(J3) and the convex
of dy [ [ J2(y)e*dy — 1] — cA+ 72 in A > 0 for every ¢ > 0. Using these constants,
we present the following conclusion.

Theorem 2.1. Assume that the mild solution (ui(x,t),us(x,t)) is defined by (2).
Then it satisfies

(3) (0,0) < (u1(z,t),uz(x,t)) < (1,14 as2),z € R, ¢t > 0.
Moreover, (u1(x,t),us(z,t)) satisfies the following properties.
(1): If 1 > co is true, then ¢* is the spreading speed of ui(x,t) while the

spreading speed of us(x,t) is not larger than co.
(2): Further suppose that

(4) dy [/ J1(y)etVdy — 1} —ciha + 11 <0.
R

If ¢f < ¢k is true, then c* is the spreading speed of us(x,t) while the spread-
ing speed of uy(x,t) is not larger than cj.

We now prove the above theorem by several lemmas. Let X be the Banach space
of uniformly continuous and bounded functions equipped with supremum norm.
For each i € {1,2}, we see that d;[J; * v](z) : X — X is a bounded linear operator
by (J1), so

Ou;(x,t)
ot
generates a positive Cy semigroup T;(t) : X — X, t > 0 (see [39, Lemma 3.1]), and
the mild solution of the above initial value problem is denoted as

wi(,t) = Tu(t)us(2,0) = Ty(t — s)u;(w,s)

=d;[J; *w;](z,t),u;(x,0) € X
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for any 0 < s < t < oo. Moreover, for any given kernel function J satisfying (J1)-
(J3), it also generates a positive Cy semigroup T'(t) : X — X, ¢ > 0. Consider the
following initial value problem

(5) {aé’ = d[J * u](z, t) +ulx,t) [r — u(z, )],

u(z,0) = x(z) € X,z € R,
where J satisfies (J1)-(J3), d > 0 and r > 0 are constants. Also define

(6) ¢ = inf d U]R J(y)e)‘ydy - 1] tr
A>0 A '

By Jin and Zhao [15], we have the following conclusion.

Lemma 2.2. Assume that 0 < x(z) < 1. Then (5) admits a solution u(-,t) € X
for all t > 0, which also satisfies

u(z,t) =Tt — s)u(x, s) + / Tt — 0)]u(x,0)[r — u(z,0)]]do

forx e R,0<s <t <oo. Ifw(,t)€ X,t >0 is nonnegative and bounded such that
Qulel) > (K)d[J * w)(x,t) +w(@, t) [r — w(@,t)] ,z € Rt >0,
2 (Sx(z), = €R,
or
t
Wl ) 2 (DTt~ s)ule.s) + [ T(e = 0){w(e O  w(z,0)]ds
forx e R,0<s<t< oo, then
w(z,t) > (Su(z,t),z € Rt > 0.
If x(x) has nonempty support, then for any ¢ < ¢, we have

liminf inf w(z,t) =limsup sup u(x,t) =r.
t—oo |z|<ct t—oo  |z|<ct

If x(z) has compact support, then

lim sup wu(z,t) =0,c>c.
=00 |z >ct

Remark 1. By the positivity of the semigroup, if

Quilal) > GLT 5wy (z, t) + wi(z, t) [r — wi(z, 1)),z € R,t > 0,
wi(z,0) > x(x),z € R

for i € {1,2,3}, then
min{wi (z,t), wa(z,t), ws(x,t)} > u(z,t),z € Rt > 0.
On the existence of mild solution of (1), we have the following result.

Lemma 2.3. The positive mild solution (u1(-,t),us(-,t)) € X? exists for all t > 0
and satisfies (3).
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Proof. The local existence is evident by the theory of abstract functional differential
equations [27], here the mild solution is defined by

ui(z,t) = Ti(t—0)ui(x,0) —|—/€ Ty (t — s) [riug(x, 8)Fy (u1, u2)(x, s)] ds,

ug(z,t) = To(t — O)us(x,H) —1—/0 To(t — s) [rouz(x, 8)Fa(u1, uz)(x, s)] ds

for 0 < 0 <t < T with some T € (0,00]. If T = oo, then the global existence is
true.

Further by the quasipositivity in uj F, us Fo, we see the mild solution is nonneg-
ative. If ui(x,t) only exists for ¢ € [0,T") with bounded T such that

lim supu(x,t) = oo,
t—=T— rcR

then
up(x,t) < Ty(t — O)uy(z,0) + /(: Ty (t — s) [riui(x, $)[1 —uy(z, s)]] ds

for 0 <0 <t < T, and the comparison principle (Lemma 2.2) implies
0<wui(z,t) <1,z eR,t€0,T).
A contradiction occurs. The proof is complete by similar discussion on ug(z,t). O

To continue the discussion, we investigate the following scalar equation

) % = d[J x v](x,t) + rv(x,t) [1 —v(z,t) — beT vz, t+ s)dn(s)] ,

v(x,s) =v(z,s),
where z € R;t > 0,s € [—7,0], J satisfies (J1)-(J3), d > 0,7 > 0,b > 0,
n(s) is nondecreasing on [—7,0] such that n(0) — n(—7) = 1.

Furthermore, v(z,s) > 0 is uniformly continuous and bounded. Evidently, the
global existence of mild solution of (7) is true by Lemma 2.3.

Lemma 2.4. Assume that v(x,t) is the mild solution defined by (7). If v(x,0) ad-
mits nonempty compact support such that 0 < v(x,0) < 1,2 € R, then its spreading
speed is ¢’ defined by (6).

Proof. We now prove it by the idea in Liu and Pan [25]. If

0
b/ v(z,t + s)dn(s) = bu(x,t),

-7

then the result is clear by Lemma 2.2. Otherwise, the positivity implies that
t
v(z,t) <T(t— s)v(z,s) + / Tt —0)[rv(z,0)[1 — v(z, 0)]]do

for any 0 < s <t < 0o, then Lemma 2.2 implies v(x,t) < 1 and

lim sup v(z,t) =0,c>c.
=00 |z >ct

For any fixed ¢ < ¢, it suffices to prove that

liminf inf w(z,t) > 0.
t—oo |z|<ct
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For the purpose, we select € > 0 such that

d[f, Jy)ervdy — 1 1—4
o [J J(y)ervdy — 1] + r( 6),
A>0 A

and 7" € (0,7) such that
0
b/ dn(s) < e.

—7!

If bf::/ v(z, t+ s)dn(s) < 2, then
0

rv(x,t) {1 —v(z,t) — b/ v(z,t+ s)dn(s)} > rv(x,t)[1 — 3¢ — v(z,1)].
When bf::, v(x,t + s)dn(s) > 2¢, there exists sg € [—7, —7'] such that

2¢
>
’U(I,So) = bT,

and the uniform continuity implies
€

’U(ysz) > Ea |1' - y| <o
for some o > 0. Consider the initial value problem
5) WBL) 41wl 1) + v, 1)1~ b — (e, 1),
v(z,0) = v(z),

where v(z) is a continuous function satisfying

(1): pv(z) = 57, |e] <o0/2;

(2): v(z) =0,]z| > o3

(3): v(z) is even and decreasing in z € [0/2, ).
By the positivity of T'(¢t) and the property of continuous functions, we see that
v(0,t) is positive in ¢ > 0, and there exists p > 0 such that v(0,t) > p,t € [17,7]
and so

0 bp

b/ v(z,t+s)dn(s) <b=— <

—T

v(z,t).

o

That is, v(z,t) satisfies
v(z,t) > Tt — s)v(z,s) + / Tt —6)[rv(z,0)[1 —3e — (1 + b/p)v(zx,0)]]do

for all 0 < s <t < co. The proof is complete by Lemma 2.2. O

Lemma 2.5. If ¢y > co is true, then ¢* is the spreading speed of uy(x,t) while the
spreading speed of ua(x,t) is not larger than co.

Proof. By (3), us satisfies

t
uz(x,t) < To(t — O)ug(z,0) + / To(t — s) [roua(x, $)[1 + az — ua(z, s)]] ds
0
for 0 < 0 <t < 00, so Lemma 2.2 implies that the spreading speed of us(x,t) is not
larger than co, which also leads to

(9) lim sup sup uz(x,t) = 0.
t—00  3|z|>(2c2+c1)t
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Again by (3), we see that

(e t) = T =)+ [ Tit=9) o)

0
[1—a1(1+az)—ui(z,s)—b / ui(x, s +v)dni(v)]| ds

—T

for all 0 < 0 <t < o0, and Lemma, 2.4 or its proof implies

(10) lim inf inf ui(z,t) > 0.
t—oo 3lz|<(ca+2c1)t

We now verify that ¢* is the spreading speed of u;(x,t). Because of Lemma 2.2
and

ur(x,t) < Ti(t — O)uy(z,0) + /(: Ty (t — s) [riui(x, $)[1 —ui(z, s)]] ds

for all 0 < 0 <t < o0, it suffices to confirm that
(11) liminf inf w;(x,t) >0

t—=oo |z|<ct
for any given ¢ < ¢*. We now fix 3¢ > co + 2¢; and € > 0 such that
dlf, J(y)eMdy — 1 1-2
o < i LRI@ENMdy —1] +7(1 —2¢)
A>0 A
By (9) and (10), there exists 7' > 0 such that

sup ug(z,t) < et >T
2|z|>(cater)t

and

inf inf uy(z,t) >0,
t>T 2|z|<(cztc1)t

which implies that there exists M > 0 depending on € such that

w(@,t) > Tt - 0)u(z,0) + /0 Tyt - s)

0
riur(x, $)[1 — e — Muq(z, s) —b1/

—T

un( s+ wdnn(v)]} s

for any T' < 6 < t. Clearly, the spreading speed is not less than that of

ov(z, t 0
UE;;, ) =d[J xv](z,t) + rv(z,t) [1 —e— Mo(z,t) — b/ v(x,t + s)dn(s)]
by repeating the proof of Lemma 2.4. The proof is complete. O

Lemma 2.6. Assume that (4) is true. If ¢f < ¢k is true, then ¢* is the spreading
speed of ua(x,t) while the spreading speed of ui(x,t) is not larger than c5.

Proof. By the positivity of (3), ui(x,t) satisfies
t
up(z,t) < Ty (t — Ouq(x,0) + / Ty (t — s) [riui(x, $)[1 — ui(z, s)] ds
0

for any 0 < s < t, the spreading speed of u;(z,t) is not larger than ¢ by Lemma
2.2.
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On the other hand, us(x,t) satisfies
u2(l‘,t) Z TQ(t - G)UQ(Ia '9) +
t 0
/ To(t — s) {r2u2(z, s) [1 —ug(x,s) — bg/ ug(x, s + 'y)dngg('y)” ds
9 —T

for any 0 < s < t, and Lemma 2.4 implies that the spreading speed of us(x,t) is
not less than ¢*. Now, we shall prove that

limsup sup wug(z,t) =0
t—o0 |z|>ct

for any fixed ¢ > ¢*. By the positivity, we obtain
ug(x,t) < To(t — O)ua(z,0) +
t
[ 7att =9 [ravatens) 1= s+ 0n [
0

-7

i ui (@, s + 7)d7}21(7)” ds,

and the result is true if the spreading speed of the following equation is ¢*
Oug(z, 1)

ot
(12) +rous(z,t) [1 —ug(x,t) + ag /

-7

da[Jo * us(z, 1)

0
w (z, s)dngl(s)] ,

where uy(z,0) = uz(x,0), Ui (x,s) = ¢1(x, s),s <0, and Ty (x,t),t > 0 is defined by

uy (z,t) = Th(t)ur(x,0) + /0 Ty (t — s) [r1wi(x, $)[1 — @y (z, s)]] ds.

The main reason why the above claim is true is that the above equation (12) is
monotone and admits comparison principle.
By Remark 1 and (4), we see that there exists T} > 0 such that

1 (x,t) < min {e’\Q(‘T“QHTl), er2(matett i) 1} ,r eRt>0.

In fact, let @y (z,t) = er2(@te2t+Ti) op era(—oteat+Th) then
Oty (x,t N ~
% Z d1 [Jl * U1]($,t) + r1u1(z,t),
and R
ouy (z,t)
ot
if uy (z,t) = 1. Further select 75 > T such that

2 (2=Th) as

2 dl[Jl * ﬂl](x,t) + rlﬂl(:c,t)[l - ﬂl(a:,t)]

and

min {ekz(mﬂﬂ?_c”), er(metTe—car) 1 4 ag} > sup ¢a(x,s),x €R.
s€[—7,0]

Then Remark 1 implies that
ug(z,t) < min {e)‘z(gHCQHTz), era(moteattTz) 4 ag} ,t €Rt>0
because Uz (z,t) = er2(@teat+Ta) (eAa(—ateat4T) 1 4 gy) implies

Otia (1)
ot

0
> do[Ja * U] (x,t) + ralia(x, ) [1 — Uy (w,t) + az/ Uy (2, 8)dn21(s)

-7
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The proof is complete. O

3. DISCUSSION

The propagation dynamics of predator-prey systems has important ecology back-
ground, one typical case is the evolution of insect herbivores and lupins on Mount St
Helens, see [11, 29]. Another related topic is the asymptotic spreading in epidemic
models because of the similar monotone conditions. In literature, much attention
has been paid to the traveling wave solutions since the work of Dunbar [10]. How-
ever, there are a few results on asymptotic spreading of predator-prey systems, see
part results by Ducrot [7, 8], Ducrot et al. [9], Lin [19], Lin et al. [23], Pan [30, 32],
Wang and Zhang [36].

The model in this paper admits nonlocal dispersal and time delays, the mech-
anism has significant biological reasons and other backgrounds [4, 5, 13, 14, 28],
and the monotone case has been widely studied, see some recent works by [2, 3, 6].
Similar to that in [16, 24], the model in this paper is not a monotone system [35]
and time delay is not small enough. When the diffusion is of the classical Ficker
type in (1), Pan [31] studied its minimal wave speed of traveling wave solutions
connecting trivial steady state with the positive one.

In this paper, we show that ¢* may be the spreading speed of u; or us, which
is the minimal wave speed in [17]. It is possible to study the asymptotic spreading
of the model in [31] by our idea. Both thresholds in this paper and [17] formulate
that two species invade a new habitat. From our results, we see that the predator
and the prey may have different spreading speeds, but it is difficult to estimate
these spreading speeds. To answer these questions, more properties on the nonlocal
operator and delayed systems are necessary. We shall further investigate these
questions in our future research.
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