Accurate forecasting of daily potential evapotranspiration (ETo) is vital for efficient irrigation scheduling, sustainable water resource management, and optimal crop yield, especially in arid regions. In this study, we present a novel, large-scale comparison of three advanced machine learning models, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene Expression Programming (GEP), for ETo prediction at the Ahvaz synoptic station in Iran. The work is distinctive in using one of the longest ETo datasets available (1979–2023; 16,084 records), incorporating a sensitivity analysis for input selection, and applying the Developed Discrepancy Ratio (DDR) as an advanced performance metric. The ANN model (MLP 4-9-1 architecture) demonstrated the highest prediction accuracy, achieving an R2 of 0.9806, RMSE of 0.4122, and DDRmax of 3.27 in the training phase, and an R2 of 0.9779, RMSE of 0.4327, and DDRmax of 3.22 during validation. In comparison, SVM and GEP models showed lower accuracy across all phases. These results highlight the superior capability of the ANN model for ETo forecasting and its potential as a reliable tool for irrigation planning and water resource management in arid regions like Ahvaz.
Citation: Jamshid Bani Feri, Aslan Egdernezhad, Ali Mokhtaran, Mahdi Asadilour, Davoud Khodadadi Dehkordi. Improving potential evapotranspiration prediction accuracy using advanced machine learning models: a case study in Ahvaz, Iran[J]. AIMS Environmental Science, 2025, 12(5): 770-794. doi: 10.3934/environsci.2025034
Accurate forecasting of daily potential evapotranspiration (ETo) is vital for efficient irrigation scheduling, sustainable water resource management, and optimal crop yield, especially in arid regions. In this study, we present a novel, large-scale comparison of three advanced machine learning models, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene Expression Programming (GEP), for ETo prediction at the Ahvaz synoptic station in Iran. The work is distinctive in using one of the longest ETo datasets available (1979–2023; 16,084 records), incorporating a sensitivity analysis for input selection, and applying the Developed Discrepancy Ratio (DDR) as an advanced performance metric. The ANN model (MLP 4-9-1 architecture) demonstrated the highest prediction accuracy, achieving an R2 of 0.9806, RMSE of 0.4122, and DDRmax of 3.27 in the training phase, and an R2 of 0.9779, RMSE of 0.4327, and DDRmax of 3.22 during validation. In comparison, SVM and GEP models showed lower accuracy across all phases. These results highlight the superior capability of the ANN model for ETo forecasting and its potential as a reliable tool for irrigation planning and water resource management in arid regions like Ahvaz.
| [1] |
Braddock RD, Kremmer ML, Sanzogni, L (1998) Feed‐forward artificial neural network model for forecasting rainfall run‐off. Environmetrics 9: 419–432. https://doi.org/10.1002/(SICI)1099-095X(199807/08)9:4<419::AID-ENV312>3.0.CO;2-D doi: 10.1002/(SICI)1099-095X(199807/08)9:4<419::AID-ENV312>3.0.CO;2-D
|
| [2] |
Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climatechange scenarios: a support vector machine approach. J hydrol 330: 621–640. https://doi.org/10.1016/j.jhydrol.2006.04.030 doi: 10.1016/j.jhydrol.2006.04.030
|
| [3] |
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part Ⅰ—A discussion of principles. J hydrol 10: 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 doi: 10.1016/0022-1694(70)90255-6
|
| [4] |
Zhang G, Bateni SM, Jun C, Khoshkam H, Band SS, Mosavi A (2022) Feasibility of random forest and multivariate adaptive regression splines for predicting long-term mean monthly dew point temperature. Front Environ Sci 10: 826165. https://doi.org/10.3389/fenvs.2022.826165 doi: 10.3389/fenvs.2022.826165
|
| [5] |
Elbeltagi A, Kushwaha NL, Rajput J, et al. (2022) Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stoch Environ Res Risk Assess 36: 3311–3334. https://doi.org/10.1007/s00477-022-02196-0 doi: 10.1007/s00477-022-02196-0
|
| [6] |
Dimitriadou S, Nikolakopoulos KG (2022) Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece. Water 14: 2027. https://doi.org/10.3390/w14132027 doi: 10.3390/w14132027
|
| [7] |
Malik A, Jamei M, Ali M, et al. (2022) Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection. Agr Water Manage 272: 107812. https://doi.org/10.1016/j.agwat.2022.107812 doi: 10.1016/j.agwat.2022.107812
|
| [8] |
Aghelpour P, Norooz-Valashedi R (2022) Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stoch Environ Res Risk A 36: 4133–4155. https://doi.org/10.1007/s00477-022-02249-4 doi: 10.1007/s00477-022-02249-4
|
| [9] |
Achite M, Jehanzaib M, Sattari MT, et al. (2022) Modern techniques to modeling reference evapotranspiration in a semiarid area based on ANN and GEP models. Water 14: 1210. https://doi.org/10.3390/w14081210 doi: 10.3390/w14081210
|
| [10] |
Sanikhani H, Deo RC, Samui P, et al. (2018) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput Electron Agr 152: 242–260. https://doi.org/10.1016/j.compag.2018.07.008 doi: 10.1016/j.compag.2018.07.008
|
| [11] |
Bellido-Jiménez JA, Gualda JE, García-Marín AP, (2021) Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. Appl Energ 298: 117211. https://doi.org/10.1016/j.apenergy.2021.117211 doi: 10.1016/j.apenergy.2021.117211
|
| [12] |
Yakut E, Süzülmüş S (2020) Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Network Comp Neural 31: 1–36. https://doi.org/10.1080/0954898X.2020.1759833 doi: 10.1080/0954898X.2020.1759833
|
| [13] |
Citakoglu H, Babayigit B, Haktanir NA, (2020) Solar radiation prediction using multi-gene genetic programming approach. Theor Appl Climatol 142: 885–897. DOI: 10.1007/s00704-020-03356-4 doi: 10.1007/s00704-020-03356-4
|
| [14] |
Biazar SM, Rahmani V, Isazadeh M, et al. (2020) New input selection procedure for machine learning methods in estimating daily global solar radiation. Arab J Geosci 13: 1–17. https://doi.org/10.1007/s12517-020-05437-0 doi: 10.1007/s12517-020-05437-0
|
| [15] |
Raza A, Shoaib M, Faiz MA, et al. (2020). Comparative assessment of reference evapotranspiration estimation using conventional method and machine learning algorithms in four climatic regions. Pure Appl Geophys 177: 4479–4508. https://doi.org/10.1007/s00024-020-02473-5 doi: 10.1007/s00024-020-02473-5
|
| [16] |
Lu X, Fan J, Wu L, et al. (2020) Forecasting multi-step ahead monthly reference evapotranspiration using hybrid extreme gradient boosting with grey wolf optimization algorithm. Comp Model Eng Sci 125: 699–723. https://doi.org/10.32604/cmes.2020.011004 doi: 10.32604/cmes.2020.011004
|
| [17] |
Maroufpoor S, Sanikhani H, Kisi O, et al. (2019) Long‐term modelling of wind speeds using six different heuristic artificial intelligence approaches. Int J Climatol 39: 3543–3557. https://doi.org/10.1002/joc.6037 doi: 10.1002/joc.6037
|
| [18] |
Jahani B, Mohammadi B, (2019) A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theor Appl Climatol 137: 1257–1269. https://doi.org/10.1007/s00704-018-2666-3 doi: 10.1007/s00704-018-2666-3
|
| [19] |
Kiafar H, Babazadeh H, Marti P, et al. (2017) Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theor Appl Climatol 130: 377–389. https://doi.org/10.1007/s00704-016-1888-5 doi: 10.1007/s00704-016-1888-5
|
| [20] |
Mehdizadeh S, Behmanesh J, Khalili K (2017) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agr 139: 103–114. https://doi.org/10.1016/j.compag.2017.05.002 doi: 10.1016/j.compag.2017.05.002
|
| [21] |
Tezel G, Buyukyildiz M (2016). Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor Appl Climatol 124: 69–80. https://doi.org/10.1007/s00704-015-1392-3 doi: 10.1007/s00704-015-1392-3
|
| [22] |
Sharifi SS, Rezaverdinejad V, Nourani V (2016) Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. J Atmos Sol-Terr Phys 149: 131–145. https://doi.org/10.1016/j.jastp.2016.10.008 doi: 10.1016/j.jastp.2016.10.008
|
| [23] |
Martí P, González-Altozano P, López-Urrea R, et al. (2015) Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agr Water Manage 149: 81–90. https://doi.org/10.1016/j.agwat.2014.10.028 doi: 10.1016/j.agwat.2014.10.028
|
| [24] |
Kisi O, Sanikhani H, Zounemat-Kermani M, et al. (2015) Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput Electron Agr 115: 66–77. https://doi.org/10.1016/j.compag.2015.04.015 doi: 10.1016/j.compag.2015.04.015
|
| [25] |
Shiri J, Marti P, Kisi O, et al. (2013) Evaluation of different data management scenarios for estimating daily reference evapotranspiration. Hydrol Res 44: 1058–1070. https://doi.org/10.2166/nh.2013.154 doi: 10.2166/nh.2013.154
|
| [26] |
Traore S, Guven A, (2012) Regional-specific numerical models of evapotranspiration using gene-expression programming interface in sahel. Water Resour Manag 26: 4367–4380. https://doi.org/10.1007/s11269-012-0149-3 doi: 10.1007/s11269-012-0149-3
|
| [27] |
Izadifar Z, Elshorbagy A, (2010) Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrol Process 24: 3413–3425. https://doi.org/10.1002/hyp.7771 doi: 10.1002/hyp.7771
|
| [28] |
Kisi O, Guven A, (2010) Evapotranspiration modeling using linear genetic programming technique. J Irrig Drain Eng 136: 715–723. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000244 doi: 10.1061/(ASCE)IR.1943-4774.0000244
|
| [29] |
Kim S, Kim HS, (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351. https://doi.org/10.1016/j.jhydrol.2007.12.014 doi: 10.1016/j.jhydrol.2007.12.014
|
| [30] |
Fuladipanah M, Azamathulla HM, Kisi O, et al. (2024) Quantitative forecasting of bed sediment load in river engineering: an investigation into machine learning methodologies for complex phenomena. Water Supply 24: 585-600. https://doi.org/10.2166/ws.2024.017 doi: 10.2166/ws.2024.017
|
| [31] |
Sajindra H, Abekoon T, Wimalasiri EM, et al. (2023) An Artificial Neural Network for Predicting Groundnut Yield Using Climatic Data. Agri Engineering 5 1713-1736. https://doi.org/10.3390/agriengineering5040106 doi: 10.3390/agriengineering5040106
|
| [32] |
Jayathilake T, Sarukkalige R, Hoshino Y, et al. (2022) Wetland water level prediction using artificial neural networks-A case study in the Colombo flood detention area, Sri Lanka. Climate 11. https://doi.org/10.3390/cli11010001 doi: 10.3390/cli11010001
|
| [33] |
Azamathulla HM, Rathnayake U, Shatnawi A (2018) Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia. Appl Water Sci 8: 1-7. https://doi.org/10.1007/s13201-018-0831-6 doi: 10.1007/s13201-018-0831-6
|
| [34] |
Leon LP, Azamathulla HM, Felix P, et al. (2023). Prediction of stiffness modulus of bituminous mixtures using the applications of multi-expression programming and gene expression programming. Road Mater Pavement Des 24: 2192-2208. https://doi.org/10.1080/14680629.2022.2126383 doi: 10.1080/14680629.2022.2126383
|
| [35] |
Fuladipanah M, Hazi MA, Kisi O, (2023) An in-depth comparative analysis of data-driven and classic regression models for scour depth prediction around cylindrical bridge piers. Appl Water Sci 13: 231. https://doi.org/10.1007/s13201-023-02022-0 doi: 10.1007/s13201-023-02022-0
|
| [36] |
Gharehbaghi A, Ghasemlounia R, Afaridegan E, et al. (2023) A comparison of artificial intelligence approaches in predicting discharge coefficient of streamlined weirs. J Hydroinform 25: 1513-1530. https://doi.org/10.2166/hydro.2023.063 doi: 10.2166/hydro.2023.063
|
| [37] |
Azamathulla HM (2012). Gene-expression programming to predict scour at a bridge abutment. J Hydroinform 14: 324-331. https://doi.org/10.2166/hydro.2011.135 doi: 10.2166/hydro.2011.135
|
| [38] |
Cortes C., Vapnik V. (1995). Support-vector networks. Mach learn 20: 273-297. https://doi.org/10.1007/BF00994018 doi: 10.1007/BF00994018
|
| [39] |
Kumar V, Azamathulla HM, Sharma KV, et al. (2023) The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management. Sustainability 15: 10543. https://doi.org/10.3390/su151310543 doi: 10.3390/su151310543
|
| [40] |
Rathnayake N, Rathnayake U, Dang TL, et al. (2023) Water level prediction using soft computing techniques: A case study in the Malwathu Oya, Sri Lanka. Plos one 18: e0282847. https://doi.org/10.1371/journal.pone.0282847 doi: 10.1371/journal.pone.0282847
|
| [41] |
Noori R, Khakpour A, Omidvar B, et al. (2010) Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics. Expert Syst Appl 37: 5856-5862. https://doi.org/10.1016/j.eswa.2010.02.020 doi: 10.1016/j.eswa.2010.02.020
|
| [42] | Koncar N, (1997). Optimization methodologies for direct inverse neurocontrol. (Publication No., SW72BZ) [Doctoral dissertation, London University, Englan]. |
| [43] |
Malik A, Tikhamarine Y, Al-Ansari N, et al. (2021) Daily pan-evaporation estimation in different agroclimatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test. Eng Appl Comp Fluid Mech 15: 1075-1094. https://doi.org/10.1080/19942060.2021.1942990 doi: 10.1080/19942060.2021.1942990
|