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Abstract: Accurate forecasting of daily potential evapotranspiration (ET,) is vital for efficient
irrigation scheduling, sustainable water resource management, and optimal crop yield, especially in
arid regions. In this study, we present a novel, large-scale comparison of three advanced machine
learning models, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene
Expression Programming (GEP), for ET, prediction at the Ahvaz synoptic station in Iran. The work is
distinctive in using one of the longest ET, datasets available (1979-2023; 16,084 records),
incorporating a sensitivity analysis for input selection, and applying the Developed Discrepancy Ratio
(DDR) as an advanced performance metric. The ANN model (MLP 4-9-1 architecture) demonstrated
the highest prediction accuracy, achieving an R? of 0.9806, RMSE of 0.4122, and DDRmax of 3.27 in
the training phase, and an R? of 0.9779, RMSE of 0.4327, and DDRmax of 3.22 during validation. In
comparison, SVM and GEP models showed lower accuracy across all phases. These results highlight
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the superior capability of the ANN model for ET, forecasting and its potential as a reliable tool for
irrigation planning and water resource management in arid regions like Ahvaz.

Keywords: climate; artificial intelligence; dry region; water cycle; performance assessment

1. Introduction

Water is the lifeblood of our planet, and its efficient management is crucial for sustainable
agriculture, ecosystem health, and human consumption. One of the key components of the water cycle
is evapotranspiration (ET), the process by which plants release water vapor into the atmosphere.
Accurate ET prediction is essential to optimize irrigation systems, predict crop yields, and mitigate the
impacts of droughts and floods. However, traditional methods of estimating ET are often labor-
intensive, costly, and prone to errors. This is where machine learning models come in, offering a
powerful tool for predicting ET with unprecedented accuracy and precision. By leveraging the power
of MLMs, it can unlock new insights into the complex relationships between climate, soil, and plant
variables, and develop more effective strategies for managing our precious water resources. In this
paper, we delve into the exciting world of daily potential ET (ET,) prediction using MLMs, and explore
the innovative approaches and techniques that are revolutionizing the field of hydrology. Given the
critical importance of accurately forecasting changes in weather conditions and the significant role of
models in simulating and predicting key parameters within the hydrological cycle, numerous studies
have been undertaken to evaluate and compare the performance of various predictive models across
diverse research domains [1-3].

Reference Involved model(s) Predicted variable Country Findings
[4] RF, MARS Dew point Iran The MARS model showed
temperature precise outputs.
[5] ANN-AR, ANN-RF, ANN-REPtree, ANN- ET, India ANN-MS5P showed the highest
MS5P, ANN-Bagging accuracy
[6] ANN ET, Greece  Accurate output was obtained.
[7] MVMD-RR, MVMD-KELM, MVMD- ET, India Their hybrid MVMD-RR-KELM
RR-KELM model was superior.
[8] AR, MA, ARMA, ARIMA, LSSVM, ET, Iran The ARMA model was more
ANFIS, GRNN accurate.
[9] FFNN, RBFNN, GEP ET, The FFNN model emerged as the
best
[10] GRNN T India The model had the best output.
[11] MLP, Empirical equations Solar radiation The model provided accurate
outcome.
[12] ANN, ANFIS, SVM, Empirical equations  Air temperature =~ Turkey =~ ANFIS outperformed other the
others.
[13] MGGP, Empirical equations Solar radiations ~ Turkey = The MGGP was more successful.
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Reference Involved model(s) Predicted variable Country Findings
[14] ANNSs, SVMs, ANN-PA, SVM-PA Daily solar The hybrid SVM-PA exhibited
radiation more accurate.
[15] SVM, MLP, GRNN, CCNN, GMDH ET, Pakistan SVM was the most efficient.
[16] XGBoost, MLP, M5 model tree, XGBoost- ET, China  XGBOOST-GWO outperformed
GWO the others.
[17] ANN, ANFIS-GP, ANFIS-SC, GRNN, Wind speed Iran GRNN showed the highest
GEP, MARS predictive performance

[18] ANN, ANN-GP, Empirical equations Solar radiation Iran ANN-GP model had accurate
output.

[19] GEP, empirical equations ET, Iran, GEP was the best.

Spain

[20] SVM, GEP, MARS, and empirical models ET, Iran MARS and SVM-RBF models
showing superior performance

[21] ANN, SVR ET, India SVR had more accurate outputs.

[22] ANN, GEP, WR, and empirical models Solar radiation ANNS s outperformed other
models

[23] GEP, Empirical equations ET, Spain  GEP yielded the best results

[24] ANN, ANFIS, GEP ET, Iran GEP showed precise outcome.

[25] GEP, ANFIS ET, Iran GEP was more accurate.

[26] GEP ET, Burkina The most efficient outputs were

Faso obtained using GEP.

[27] HYDRUS-1D, ANN, GP Canada GP model was the accurate
model.

[28] LGP, GEP ET, Iran LGP was more precise than GEP.

[29] GA, GRNN, GRNN-GA ET, Korea  Hybrid GRNN-GA achieved the

highest performance.

Notes: Adaptive Neuro-Fuzzy Inference System (ANFIS); Random Forest (RF); Multivariate Adaptive Regression
Splines (MARS); Artificial Neural Network (ANN); Multivariate Variational Mode Decomposition (MVMD) With Ridge
Regression (RR) And Kernel Extreme Learning Machine (KELM); Feed Forward Neural Network (FFNN), Radial Basis
Function Neural Network (RBFNN), Gene Expression Programing (GEP); Generalized Regression Neural Network
(GRNN); Multi-Gene Genetic Programming (MGGP); Procrustes Analysis (PA); Extreme Gradient Boosting (Xgboost);
Grey Wolf Optimizer (GWO) Algorithm; Linear Genetic Programming (LGP); Group Method Of Data Handling
(GMDH); Cascade Correlation Neural Network (CCNN); Subtractive Clustering (SC)

As highlighted, ET,, as an integral component of the hydrological water cycle, plays a pivotal
role in water resources management. A comprehensive review of literature underscores the
significance of precise estimation and prediction of ET,, garnering considerable attention from
researchers. Consequently, diverse methodologies have been evaluated to achieve accurate predictions
and estimations. Notably, recent advancements in climatology have witnessed the emergence of MLMs
as viable tools for this purpose. These models, capable of discerning intricate and latent relationships
between input and output variables without necessitating specialized expertise, offer promising
avenues for accurate predictions. In this context, the Ahvaz synoptic station, in southwest Iran,
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represents a key site for studying ET, estimation due to its hot, arid climate and critical dependence on
efficient water management for agriculture. Here, we explore the efficacy of three MLMs, including
SVM, GEP, and ANN, in estimating ET, at this representative location.

2. Materials and methods
2.1. Case study

In this study, data from the Ahvaz synoptic station in Iran, spanning the statistical years 1979 to
2023, were utilized. The Ahvaz station is at a latitude of 31.3442° and a longitude of 48.7442°. The
elevation of this station is 22.5 meters above sea level, and it is characterized by a dry climate. The
station's location is depicted in Figure 1. The daily recorded statistics at this station include minimum,
maximum, and average temperatures (Tmin, Tmax, and Tave, respectively), minimum, maximum, and
average humidity levels (RHmin, RHmax, and RHaye, respectively), wind speed (WS), the number of
sunny hours (SHs), precipitation amounts (P), and the reference values of ET,. A summary of the
statistical properties of each measured parameter is provided in Table 1. Table 2 presents the correlation
coefficients among the variables measured at the station. Evidently, there is a positive correlation
between ET, and temperature, a negative correlation between ET, and humidity, a positive correlation
between ET, and wind speed, and a negative correlation between ET, and precipitation.
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Figure 1. The geographical coordinates and elevation of the station under study.
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Table 1. A synopsis of the statistical properties for each measured parameter.

Dat Property
ata
N total Mean Standard Deviation Sum Minimum  Median Maximum
T(min) 18.95 8.31 304816.70 -1.20 19.50 37.00
T(max) 33.52 10.92 539168.42 0.00 34.60 53.70
T(ave) 26.24 9.47 421992.31 0.00 27.00 43.75
RH(min) 61.64 22.78 991456.47 0.00 61.63 100.00
RH(max) 16084 25.51 18.05 410271.29 0.00 19.00 98.00
RH(ave) 43.58 19.36 700863.88 0.00 40.50 99.00
WS 1.51 0.85 24306.74 0.00 1.40 6.54
SH 8.56 343 137628.83 0.00 9.60 14.01
P 0.64 3.87 10299.10 0.00 0.00 100.00
ETo 5.11 2.95 82233.12 0.56 4.80 16.06
Table 2. The correlation coefficient matrix of measured values.
Tmin Tmax Tave Rh(min) Rh(max) Rh(ave) WS SH ETO
Pearson
Tmin c 1.0000 09369 09794 -0.7191 -0.6343 -0.7187 0.3289 0.4220 -0.1056 0.8509
OIT.
Pearson
Tmax c 0.9369 1.0000 0.9881 -0.7795 -0.7810 -0.8226 0.2327 0.5841 -0.1908 0.8641
OIT.
Pearson
Tave c 0.9794 0.9881 1.0000 -0.7653 -0.7290 -0.7900 0.2786 0.5222 -0.1564 0.8720
OIT.
Pearson -
Rhmin) -0.7191 -0.7795 -0.7653 1.0000 0.7963 09594  -0.3019 -0.5100 0.2194
OIT. 0.7767
Pearson -
Rhmax) -0.6343 -0.7810 -0.7290 0.7963 1.0000 09346 -0.1866 -0.6594 0.3398
OIT. 0.7269
Pearson -
Rhave) -0.7187 -0.8226 -0.7900 0.9594 0.9346 1.0000 -0.2646 -0.6073 0.2875
OIT. 0.7957
Pearson
WS c 0.3289 0.2327 0.2786 -0.3019 -0.1866 -0.2646 1.0000 0.0513 0.0407 0.5860
OIT.
Pearson
SH c 0.4220 0.5841 0.5222 -0.5100 -0.6594 -0.6073 0.0513 1.0000 -0.2548 0.5896
OIT.
Pearson -
P -0.1056 -0.1908 -0.1564 0.2194 0.3398 0.2875 0.0407 -0.2548 1.0000
Corr. 0.1712
Pearson
ET, c 0.8509 0.8641 0.8720 -0.7767 -0.7269 -0.7957 0.5860 0.5896 -0.1712 1.0000
OIT.

2.2. An introduction to MLMs involved

2.2.1.

AIMS Environmental Science
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ANNs represent a class of computational models inspired by the structure and function of
biological neural networks in the human brain. ANNs are widely used in various fields, including
pattern recognition, classification, regression, and time-series prediction. The structure of an ANN
consists of interconnected processing units called neurons or nodes, organized in layers. The three
major types of layers in an ANN are the input layer, hidden layer(s), and output layer. The mathematical
representation of an ANN involves the propagation of signals through the network and the adjustment
of weights to minimize errors during training. The forward propagation is a simple feedforward neural
network, where signals propagate from the input layer through one or more hidden layers to the output
layer. During forward propagation, the input signals x1, X2, ..., xn are passed through the network, and
the weighted sum of inputs is computed for each neuron in the hidden layers and output layer. This
process is mathematically represented as:

Zj:z (,Oini +b_] (1)

where z; is the weighted sum at neuron j, ®;; is the weight connecting input neuron i to hidden

ij
neuron j, X;j is the input signal at neuron 1, and bj is the bias term for neuron j. The weighted sum is then
passed through an activation function f, which introduces non-linearity into the network. Common

activation functions include sigmoid, tanh, and ReLU (Rectified Linear Unit):
a;=1(z) (2)

The outputs a; of the activation functions become the input signals for the next layer. After forward
propagation, the output of the network is compared to the true target values, and the error is calculated
using a loss function such as mean squared error (MSE):

1
E= ﬁ z (Yi-}A’i)z (3)

where yi is the true target value and §; is the predicted value. Backpropagation is then used to
update the weights of the network to minimize this error. The gradients of the loss function with respect
to the weights are computed using the chain rule of calculus and are used to update the weights through
optimization algorithms like stochastic gradient descent (SGD) or Adam. The following are the
simulation steps of the ANN: (i) Initialization: Initialize the weights and biases of the network
randomly or using predefined strategies; (ii) Forward Propagation: Pass the input data through the
network to obtain predictions; (iii) Compute the error between the predicted and actual values using a
suitable loss function; (iv) Compute the gradients of the loss function with respect to the weights and
biases using backpropagation; (v) Weight Update: Update the weights and biases of the network using
optimization algorithms to minimize the error; and (vi) Iteration: Repeat steps 2—5 for a specified
number of iterations or until convergence criteria are met. By iteratively adjusting the weights and
biases based on the error signal, ANNs can learn complex patterns and relationships in data, enabling
them to make accurate predictions and classifications in various applications (Fuladipanah et al., [30];
Sajindra et al. [31]; Jayathilake et al. [32]; Azamathulla et al. [33]).

2.2.2.  Overview of GEP
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Gene Expression Programming (GEP) is a powerful evolutionary algorithm used for symbolic
regression and function optimization tasks. It combines principles from genetics and computational
biology to evolve computer programs that solve complex problems. GEP operates by evolving
populations of symbolic expressions represented as linear chromosomes, where each chromosome
consists of multiple genes encoding sub-expressions or terminals. A GEP chromosome is composed of
a fixed-length string of genes, with each gene encoding a segment of the program. These genes are
then translated into hierarchical structures known as expression trees, representing the computer
programs. Expression trees consist of nodes representing functions and terminals, with functions
performing operations and terminals representing variables, constants, or other input data. Each gene
within the chromosome encodes a segment of the expression, which can be a function or a terminal
symbol. Mathematically, this can be represented as:

Gi:(silasi%'“a Sin) (4)

where Gi is the i gene, and sjj represents the jth symbol in the gene. The genes are translated into
expression trees, where the hierarchical structure is determined by the sequence of genes.
Mathematically, this process involves parsing the genes according to a predefined grammar to generate
the expression tree. The fitness of each individual in the population is evaluated based on its ability to
solve the problem at hand. This typically involves executing the evolved program and comparing its
output to a target value using an appropriate fitness function. The simulation steps are as following: (i)
Initialization: Generate an initial population of individuals, each represented by a chromosome
encoding a symbolic expression; (i1) Evaluation: Evaluate the fitness of each individual in the
population by executing its corresponding expression and comparing the output to the target values
using a fitness function; (ii1) Selection: Select individuals from the population to serve as parents for
the next generation based on their fitness. Common selection methods include tournament selection
and roulette wheel selection; (iv) Recombination: Apply genetic operators such as crossover and
mutation to the selected parents to produce offspring for the next generation. Crossover involves
exchanging genetic material between parents, while mutation introduces random changes to the
offspring's genes; (v) Replacement: Replace some individuals in the current population with the
offspring to maintain the population size; and (vi) Termination: Repeat steps 2—5 for a specified
number of generations or until a termination condition is met, such as reaching a satisfactory fitness
level or a predefined number of generations. By iteratively evolving the population through selection,
recombination, and mutation, GEP can efficiently search the solution space and discover symbolic
expressions that accurately model the underlying relationship in the data (Leon et al. [34]; Fuladipanah
et al. [35]; Gharehbaghi et al. [36]; Azamathulla et al. [37]).

2.2.3.  Overview of the SVM

Developed by Cortes and Vapnik [38], the Support Vector Machine (SVM) is a robust supervised
learning algorithm employed for classification and regression tasks. It functions by identifying the
optimal hyperplane that separates data points into distinct classes while maximizing the margin
between them. Given a set of training data (X, y;) where X denotes the input features and y; represents
the corresponding class label (for classification) or target value (for regression), SVM strives to find
the optimal hyperplane described by the equation:
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WTX+b=0 (5)

Here, W is the weight vector orthogonal to the hyperplane, b is the bias term, and X denotes the
input features. For linearly separable data, the optimization problem can be expressed as:

1
minyg, 5 [IWIP (6)
subject to:
y.(W'X;b)=1 (7)

For data that are not linearly separable, SVM employs the kernel trick to map the input features
into a higher-dimensional space where the data points become linearly separable. The revised
optimization problem is:

N
1
minyy 5 IWIP+C Y &, (8)
i=1
subject to:
Y (W X)) +b)=1-§, )
£=0 (10)

where ®(X;) is the feature mapping function, C is the regularization parameter, and & are the
slack variables. The simulation steps of the SVM are as following: (1) Data Preprocessing: Prepare the
training dataset by scaling the features and encoding the class labels or target values; (ii)) Model
Training: Choose a kernel function (e.g., linear, polynomial, radial basis function) and tune the
hyperparameters (e.g., regularization parameter C, kernel parameters) using cross-validation, and train
the SVM model on the training data; (iii)) Model Evaluation: Assess the performance of the trained
model on a separate validation dataset using appropriate metrics; (iv) Model Tuning: Adjust the model
hyperparameters based on the validation results to enhance performance; and (v) Model Deployment:
Once satisfactory performance is attained, deploy the trained SVM model to make predictions on new,
unseen data. By following these simulation steps, SVM can efficiently classify or regress data by
finding the optimal hyperplane or decision boundary that maximizes the margin between classes or
minimizes the error for regression tasks (Kumar et al. [39]; Fuladipanah et al. [35]; Rathnayake et al.
[40]).

2.3. Evaluation metrics

In the realm of predictive modeling and statistical analysis, quantifying the accuracy and
reliability of models is paramount. Several metrics are widely used to evaluate the performance of
models, each providing different insights into the model's strengths and weaknesses. Among these,
RMSE, MAE, and R? are commonly utilized. Additionally, DDR is an advanced metric offering a
nuanced assessment of model performance. The RMSE is a measure of the differences between

AIMS Environmental Science Volume 12, Issue 5, 770-794.



778

predicted and observed values. It is particularly sensitive to large errors, making it useful for detecting
models with occasional large deviations. The RMSE is defined mathematically as:

(11

n
1
RMSE= [~ (7,9’
i=1

where y; represents the observed value for the ith data point, §. denotes the predicted value for
the ith data point, and n signifies the total number of data points. RMSE is expressed in the same units
as the observed values, which aids in the interpretability of the results. The MAE quantifies the average
magnitude of errors in a set of predictions without considering their direction. It provides a
straightforward measure of prediction accuracy. The MAE is given by:

n
1
MAEZHZ|yi—§/i| (12)
i=1

where | | denotes the absolute value function. The MAE is also expressed in the same units as the
data, making it directly interpretable. The R* assesses the proportion of variance in the dependent
variable that is predictable from the independent variables. It provides an indication of the goodness-
of-fit of a model. The R? value ranges from 0 to 1, where 1 indicates perfect prediction and 0 indicates
no explanatory power. Mathematically, R? is defined as:

) ?=1 (Yi'}A’i)z

R%=1 . L
izl(yi'Y)

(13)

where y is the mean of the observed values. A higher R? value indicates a better fit of the model
to the data. In addition to traditional evaluation metrics such as RMSE, MAE, and R?, the Developed
Discrepancy Ratio (DDR) index was used to provide a more nuanced assessment of model
performance. The DDR index, proposed by Noori et al. [41], is a statistical tool designed to evaluate
the degree of agreement between observed and predicted values by comparing the distribution of
absolute errors to a theoretical distribution derived from the Gaussian (normal) function. The key
advantage of the DDR lies in its ability to highlight both central tendency and spread of prediction
errors, capturing not only average performance but also the frequency and magnitude of larger
deviations. The DDR is calculated based on the probability density function (PDF) of standardized
residuals, enabling a visual and quantitative comparison of prediction error distributions. By
transforming the residuals into a standardized normal space, the DDR enables the identification of how
well the prediction error pattern aligns with an ideal normal distribution centered around zero. This is
particularly helpful for assessing the robustness and consistency of machine learning models across
operational conditions. DDRax, or the maximum value of the discrepancy ratio, represents the highest
concentration of errors at a particular standardized value. It serves as an indicator of the peak alignment
(or misalignment) between the predicted and observed datasets. A higher DDRmax value typically
reflects better model performance, indicating that a larger proportion of prediction errors are
concentrated near the zero-error line. Conversely, a lower DDRmax suggests that errors are more widely
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scattered, indicating weaker model reliability. In this study, the DDR and DDRmax metrics were used
alongside RMSE, MAE, and R? to evaluate the predictive strength of the machine learning models.
This approach ensures a comprehensive understanding of not only average error magnitude but also
the distribution and extremity of prediction errors, which is particularly important in hydrological
modeling, where localized errors can have significant implications for decision-making. The DDR
index is calculated as follows:

B Predicted value

DDR: (14)

~ Observed value

As mentioned, in order to enhance interpretation and visualization, it is essential to convert the
Gaussian distribution of DDR values into a standard normal distribution. This process involves a two-
step approach. Initially, the DDR values (referred to as variable x) are standardized, resulting in the
calculation of the normalized DDR value (x(ppr)) using a Gaussian function. Following this, a visual
representation is generated, where X(ppr) values are compared with their standardized counterparts
(Zppr). In the graphical representation of Zppr versus X(ppr), a greater alignment of error distribution
towards the central tendency and higher xppr) values signify improved accuracy.

2.4. Sensitivity analysis

According to Koncar [42], the Gamma test constitutes a non-parametric statistical technique
utilized for output estimation by identifying the optimal input-output dataset configurations based on
minimal mean square error values. This technique is proposed as an appropriate method for
determining the most efficacious combination of various input variables to precisely characterize the

output. In this methodology, the dataset is represented as {(xi,yi), 1<i<M)}, where the input vectors

x;€ER™ are m dimensional vectors, and the corresponding outputs y,€R are scalars. The input vector
x influences the output y. The relationship between the input and output variables is defined by the
following equation:

y=Gx+T (15)

Here, Gand I' denote the gradient and the intercept of the regression line where x=0, respectively,
and y is the output. Lower values of G and I" suggest that the respective input variables are more

appropriate. In addition to these two criteria, an indicator denoted as V—RatloZGz—(y), where T’

represents the gamma function and c%(y) is the output variance, is utilized to identify the optimal
input parameters. The values of the V-Ratio range from 0 to 1. A V-Ratio value closer to zero for each
input parameter indicates the effectiveness of that particular input. The various combinations of input
variables have been delineated following the format introduced by Mask (Malik et al. [43]). Table 2
encompasses nine parameters, with the mask representation employing an eight-digit binary sequence
corresponding to these variables: Tmin, Tmax, Tave, RHmin, RHmax, RHave, WS, SHs, and P, respectively.
Within this representation, the binary digits '1' and '0' denote the inclusion or exclusion of a parameter.
For instance, '11111111' denotes the inclusion of all parameters, while '01111111" indicates the
exclusion of the first parameter, Tmin, from the sensitivity analysis. As previously indicated, the optimal
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model is distinguished by the lowest values of T, G, and V-Ratio. Several permutations were conducted
to assess the sensitivity of the parameters involved in the ET, simulation. An illustrative instance of
this analysis, comprising 25 alternatives, is delineated in Table 3. Based on the findings, the optimal
and most efficacious input configuration for forecasting and simulating ET, consists of the digit
combination 001010110 (the raw of no. 19). In essence, in employing MLMs, the pertinent parameters
encompass Tave, RHmin, WS, and HS. While Figure 2-i illustrates the variation of I'-c for all
combinations, a scatter plot of I' and o for the opted and optimized 001010110 combination is
presented in Figure 2-ii.

Table 3. Examining Sensitivity in Model Input Parameters.

No. r G Standard Error V-Ratio Mask

1 0.297427 0.053459 0.015277 0.034097 111010111
2 0.254336 0.06074 0.012875 0.029157 011010111
3 0.258858 0.060585 0.013181 0.029676 101010111
4 0.218563 0.11027 0.008443 0.025056 011010110
5 0.263779 0.071748 0.01422 0.03024 101001111
6 0.221845 0.110694 0.009479 0.025432 101010110
7 0.266067 0.068812 0.016094 0.030502 011001111
8 0.223812 0.069941 0.010285 0.025658 001010111
9 0.225671 0.083949 0.011749 0.025871 001001111
10 0.272215 0.089098 0.012347 0.031207 111000111
11 0.272409 0.084766 0.011072 0.031229 111010110
12 0.321378 0.059071 0.016096 0.036843 111001111
13 0.234125 0.115905 0.010518 0.02684 101001110
14 0.235387 0.111817 0.011329 0.026985 011001110
15 0.235348 0.08894 0.014931 0.02698 010001111
16 0.287649 0.055306 0.017668 0.032976 110010111
17 0.245963 0.190428 0.008102 0.028197 111000110
18 0.242758 0.074345 0.012789 0.02783 010010111
19 0.198678 0.146447 0.006912 0.022777 001010110
20 0.29955 0.086101 0.012207 0.034341 111001110
21 0.350276 0.050867 0.016257 0.040156 011101111
22 0.201923 0.155379 0.006354 0.023149 001001110
23 0.252361 0.083384 0.010932 0.028931 110001110
24 0.306033 0.061923 0.016555 0.035084 110001111
25 0.255086 0.092136 0.009796 0.029243 101000111

AIMS Environmental Science
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Figure 2. Outcomes of I'-test, (1) I' vs. o; (i1) a 3D histogram of I'-6-Frequency for the
001010110.

3. Results and discussion
3.1. Models’ performance metrics

Upon determining the effective input parameters, the ANN, SVM, and GEP models were each
implemented using a data partitioning strategy comprising 70% for training (11,260 data points), 15%
for testing (2,412 data points), and 15% for validation (2,412 data points). The performance evaluation
of these three models was conducted utilizing the performance metrics outlined in the preceding
section. The overall results of the simulation, based on the optimal parameter configurations for each
of the three machine learning models, are presented in Table 4.
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Table 4. A summary of the statistical performance of the MLMs involved.

Training phase

Model name 5 )
RMSE MAE R DDR max Bias
SVM 0.9026 0.6604 0.9138 2.5773 -0.0513
GEP 0.7048 0.5591 0.9444 1.5953 0.0647
MLP (4-9-1) 0.4122 0.3207 0.9806 3.2694 0.0004
Model name Testing phase
SVM 1.0654 0.7882 0.8824 2.19 -0.1265
GEP 0.7048 0.5640 0.9443 1.59 0.0516
MLP (4-9-1) 0.4308 0.3333 0.9789 3.29 -0.0120
Model name Validation phase
SVM 0.9213 0.6790 0.9216 2.64 0.2153
GEP 1.0501 0.7918 0.8863 2.25 -0.0260
MLP (4-9-1) 0.4327 0.3342 0.9779 3.22 0.0083

3.2. SVM's outputs

The SVM model, optimized with an RBF kernel (C=19, ¢=0.1, y=0.25), demonstrated moderate
performance across all phases. During training, it achieved reasonable accuracy but exhibited a slight
tendency toward underestimation. This underestimation became more pronounced in the testing phase,
where the model showed increased error magnitudes and reduced stability compared to training. In
validation, while predictive consistency partially recovered relative to testing, the model maintained
higher errors than other phases and displayed a shift to systematic overestimation. Throughout all
phases, SVM maintained moderate explanatory power for ET, variability, though its error distribution
indicated less reliability in extreme value prediction compared to ANN.

3.3. GEP s outputs

The GEP model, configured with the parameters detailed in Table 5, demonstrated reliable
performance during the training and testing phases, showing consistent accuracy in modeling ET,. The
evolved expression tree incorporated mathematical functions such as cosine, arctangent, square root,
cube root, and basic arithmetic operators, reflecting the model's flexibility in capturing complex
relationships. However, the model's accuracy declined during the validation phase, indicating its
reduced ability to generalize to unseen data. This outcome may be attributed to the complexity of the
symbolic expression generated, which, while effective in fitting training data, led to overfitting and
decreased predictive reliability when applied to new observations. The tree expression of the GEP
model output is depicted in Figure 3, where the constants in the equation are G1C0=0.563538, G1C1=-
0.381042, G2C0=-7.928467, G2C1=-0.861634, G3C0=4.249603, and G3C1=-7.235016.
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Table 5. Tuning parameters of the GEP.

Parameters Values
Head size 8
Chromosomes numbers 45
Number of genes 3
Mutation rate 0.044
Inversion rate 0.1

One-point recombination rate 0.3

Two-point recombination 0.3
rate

Gene recombination rate 0.1
Gene transposition rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1

Fitness function error type RMSE
Linking function +

Figure 3. Expression tree of the GEP model.
3.4. ANNs outputs

The MLP model with a 4-9-1 architecture, utilizing Tanh and Identity activation functions for the
hidden and output layers, respectively, and optimized with the BFGS 358 algorithm, achieved the best
overall performance among the models tested. It provided highly accurate predictions and maintained
strong agreement with observed ETo values throughout the training, testing, and validation phases.
The model’s consistent performance across these phases highlights its capacity to capture the complex
nonlinear relationships between the climatic variables and ETo, and its ability to generalize eftectively
to new data. This robustness makes the MLP model a reliable tool for ETo prediction in arid climates
like that of Ahvaz. Based on the performance indices RMSE, MAE, R?, and DDR, the MLP 4-9-1
model achieved consistently better results across all phases. For example, in the validation phase, the
MLP achieved an R? of 0.9779, compared to 0.9216 for SVM and 0.8863 for GEP. Similarly, RMSE
values were 0.4327 for MLP, 0.9213 for SVM, and 1.0501 for GEP, indicating the MLP model provided
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more accurate predictions. These differences demonstrate the superior predictive capability of the MLP
model over SVM and GEP.

3.5. Graphical performance criteria

| 0 SVM o GEP o MLP(4-9-1) | | 0SVM o GEP ® MLP(4-9-1) |

Calibration phase

Testing phase

(ETe(DDRY))
(ETo(DDR))

Standardized Gaussian function values

Standardized Gaussian function values

-10 -5 0 3 10 15 -5 0 5 10

Standardized DDR values, ZDDR | [ Standardized DDR values, ZDDR
| o SVM oGEP oMLPE(4-8-1) |

Prediction phase

(ETo(DDRY)

Standardized Gaussian function values

Standardized DDR. values, ZDDR

Figure 4. The distribution of the DDR index for involved MLMs.

To assess model performance through a graphical depiction, Figure 4 and Figure 5 were generated.
Figure 4 illustrates the models' functionality based on the DDR index. Evidently, across all phases of
training, testing, and prediction, the MLP 4-9-1 model exhibits notably superior performance compared
to SVM and GEP, as indicated by its significantly higher peak point on the curve. The SVM model
occupies a secondary or intermediate position in the DDR distribution curve, denoted by its blue
coloration, while the GEP model is relegated to the lowest rank. These graphical findings align with
the numerical results presented in Table 4. Figure 5 displays the scatter plot of observed versus
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predicted data, serving as a visual representation of the Coefficient of Determination (R?) index. The

inclusion of'a 1:1 line (the bisector of the first quadrant of the coordinate plane) aids in assessing model

performance; closer alignment of data points to this line signifies superior model performance. It is

evident from the graphs that the MLP 4-9-1 model consistently outperforms the other two models.
Figure 6 illustrates the distribution of the measured and the MLMs’ output data. Box plots of measured

and predicted values are also included.
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Figure 5. Scatter plot of the MLMs’ outputs involved vs. measured data.
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Figure 6. Distribution of the measured vs. outputs of the MLMs involved.

The performance of the MLMs are presented using the Taylor Diagram in Figure 7. The Taylor
diagram visually assesses how well models or datasets compare to a reference so that (i) the radial
distance from the origin represents its standard deviation, and (ii) the azimuthal angle represents its
correlation coefficient with the reference. The diagram enables quick visual comparison and
quantification of skill scores. In Figure 7, Taylor diagrams across training, testing, and prediction
stages show the MLP 4-9-1 model consistently aligns closely with observational data. This proximity
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demonstrates the MLP model's superior performance in replicating the reference data compared to
other models.
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Figure 7. The Taylor diagram of the MLMs’ outputs.

Figure 8 illustrates the alignment between the simulation results generated by the Multilayer
Perceptron (MLP) during the prediction phase and the empirical data. It is evident that there is a high
degree of concordance between the two time series, despite discrepancies that predominantly appear
at the extremities.
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Figure 8. Measured vs. predicted values of ET, during the validation phase.

It can be discussed that the superior performance of the MLP model in this study can be attributed
to several interrelated factors that enhance its capability in modeling complex hydrological
phenomena, ET,. First and foremost, the MLP model is inherently well-suited for capturing highly
nonlinear relationships between input variables (e.g., temperature, humidity, wind speed, and sunshine
hours) and the target output (ET,). Given the complex and dynamic interactions among climatic
parameters in arid environments like Ahvaz, linear or weakly nonlinear models often fail to detect
subtle dependencies. In contrast, the layered structure of MLP, combined with nonlinear activation
functions (e.g., Tanh), enables it to approximate arbitrary nonlinear functions with high precision, as
supported by the universal approximation theorem. Moreover, MLPs are generally more robust to
noise in large datasets when appropriately regularized and trained. In this study, the performance of
the MLP model remained consistent across training, testing, and validation datasets, suggesting strong
generalization ability and limited overfitting. The use of the BFGS optimization algorithm further
enhanced convergence and reduced the likelithood of becoming trapped in local minima, which can
degrade performance in noisy or high-dimensional settings. On the other hand, the relatively lower
performance of the GEP model may be partly due to overfitting during the training phase. As an
evolutionary algorithm, GEP is highly flexible in fitting training data but is also prone to generating
overly complex symbolic expressions, especially in the absence of strong constraints on expression
tree size or depth. This can result in models that perform well on training data but generalize poorly to
unseen data, as indicated by the drop in performance during the validation phase. Additionally, SVM-
while effective at identifying optimal hyperplanes in transformed feature space- may be less adaptable
to capturing highly nonlinear or intricate time-dependent patterns when compared to MLP, particularly
in the presence of interacting climate variables with non-Gaussian distributions. In summary, the MLP
model outperformed GEP and SVM due to its superior ability to model nonlinear relationships, robust
optimization framework, and strong generalization capacity, making it particularly well-suited for
forecasting ET, in complex, data-rich, and environmentally variable regions such as Ahvaz.
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4. Conclusion

We investigated the use of three MLMs, namely MLP, SVM, and GEP, to predict daily ET, at
the Ahvaz synoptic station. All models successfully captured the relationship between climatic
variables and ET,, demonstrating their potential for hydrological modeling in arid environments.
Although all three MLMs demonstrated acceptable accuracy in predicting daily ET, values, the MLP
model consistently showed higher performance. For instance, in the prediction phase, the MLP
achieved an R? 0f 0.9779, outperforming SVM (0.9216) and GEP (0.8863), with correspondingly lower
RMSE (0.4327 for MLP versus 0.9213 for SVM and 1.0501 for GEP). These statistical comparisons
highlight the advantage of using the MLP model for ETo prediction in this study. Overall, given the
increasing demand for efficient water use in arid regions like Ahvaz, the superior performance of the
MLP model highlights its value for supporting irrigation scheduling and water resource planning under
variable climate conditions.

The superior performance of the ANN model, specifically the MLP (4-9-1) architecture, can be
attributed to its inherent ability to capture complex nonlinear relationships between climatic inputs and
ET,. Unlike other MLMs, MLP’s multi-layered structure, combined with nonlinear activation
functions such as Tanh, enables it to approximate arbitrary nonlinear functions with high precision, as
supported by the universal approximation theorem. This property is particularly valuable in
hydrological modeling, where the relationships between temperature, humidity, wind speed, and solar
radiation are often non-additive, seasonally variable, and highly interactive. Furthermore, the MLP
model demonstrated strong generalization capability, evidenced by the consistent performance across
training, testing, and validation phases, which suggests effective learning of the underlying data
structure without overfitting. This robustness can be partially credited to the use of the BFGS
optimization algorithm, which promotes smooth convergence and avoids entrapment in local minima
during training. Additionally, the ANN’s structure enables it to implicitly optimize the interactions
among multiple input variables, something that models like GEP (which evolve symbolic expressions)
or SVM (which map inputs to high-dimensional feature spaces) handle less flexibly. While SVM and
GEP have their respective strengths, such as GEP’s interpretability and SVM’s margin maximization,
neither offers the same level of adaptive learning and noise tolerance in high-volume, nonlinear
datasets as the MLP. These factors collectively explain why the ANN model consistently outperformed
the other two models in capturing the complex dynamics of ET, under arid climate conditions.

While our results of demonstrate the high predictive performance of the MLP model compared to
SVM and GEP for ET, forecasting, several limitations must be acknowledged. First, like most machine
learning models, MLPs require large volumes of high-quality, well-distributed data to ensure optimal
performance. In regions with sparse or inconsistent climatic data, the model may underperform due to
insufficient representation of local environmental variability. Second, although the MLP architecture
captures complex nonlinear relationships, it operates as a black box, meaning the internal reasoning
behind its predictions is not easily interpretable. This lack of transparency can be a drawback for
decision-makers who prefer models with explicit functional forms or physically based formulations.
Third, while the MLP model generalized well within the data from Ahvaz, its transferability to other
geographic regions with different climatic regimes may be limited. Retraining and hyperparameter
adjustment would be required for application in new locations, which can be computationally
expensive and time-consuming. Moreover, model performance can be sensitive to the choice of
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architecture (e.g., number of hidden layers, neurons), activation functions, and optimization algorithms.
Without careful tuning, MLPs may overfit or underfit the data. Similarly, evolutionary algorithms like
GEP can be prone to overfitting if expression tree complexity is not adequately controlled, while SVMs
may require kernel selection and parameter tuning that are not always straightforward. These
limitations highlight the importance of combining MLMs with domain knowledge and using model
ensembles or hybrid approaches in future research to improve accuracy, interpretability, and robustness
under varying data conditions.
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