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Abstract: Accurate forecasting of daily potential evapotranspiration (ETo) is vital for efficient 

irrigation scheduling, sustainable water resource management, and optimal crop yield, especially in 

arid regions. In this study, we present a novel, large-scale comparison of three advanced machine 

learning models, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene 

Expression Programming (GEP), for ETo prediction at the Ahvaz synoptic station in Iran. The work is 

distinctive in using one of the longest ETo datasets available (1979–2023; 16,084 records), 

incorporating a sensitivity analysis for input selection, and applying the Developed Discrepancy Ratio 

(DDR) as an advanced performance metric. The ANN model (MLP 4-9-1 architecture) demonstrated 

the highest prediction accuracy, achieving an R² of 0.9806, RMSE of 0.4122, and DDRmax of 3.27 in 

the training phase, and an R² of 0.9779, RMSE of 0.4327, and DDRmax of 3.22 during validation. In 

comparison, SVM and GEP models showed lower accuracy across all phases. These results highlight 
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the superior capability of the ANN model for ETo forecasting and its potential as a reliable tool for 

irrigation planning and water resource management in arid regions like Ahvaz. 

Keywords: climate; artificial intelligence; dry region; water cycle; performance assessment 

 

1. Introduction  

Water is the lifeblood of our planet, and its efficient management is crucial for sustainable 

agriculture, ecosystem health, and human consumption. One of the key components of the water cycle 

is evapotranspiration (ET), the process by which plants release water vapor into the atmosphere. 

Accurate ET prediction is essential to optimize irrigation systems, predict crop yields, and mitigate the 

impacts of droughts and floods. However, traditional methods of estimating ET are often labor-

intensive, costly, and prone to errors. This is where machine learning models come in, offering a 

powerful tool for predicting ET with unprecedented accuracy and precision. By leveraging the power 

of MLMs, it can unlock new insights into the complex relationships between climate, soil, and plant 

variables, and develop more effective strategies for managing our precious water resources. In this 

paper, we delve into the exciting world of daily potential ET (ETo) prediction using MLMs, and explore 

the innovative approaches and techniques that are revolutionizing the field of hydrology. Given the 

critical importance of accurately forecasting changes in weather conditions and the significant role of 

models in simulating and predicting key parameters within the hydrological cycle, numerous studies 

have been undertaken to evaluate and compare the performance of various predictive models across 

diverse research domains [1–3].  

 

Reference Involved model(s) Predicted variable Country Findings 

[4] RF, MARS Dew point 

temperature 

Iran The MARS model showed 

precise outputs. 

[5] ANN-AR, ANN-RF, ANN-REPtree, ANN-

M5P, ANN-Bagging 

ETo India ANN-M5P showed the highest 

accuracy 

[6] ANN ETo Greece  Accurate output was obtained.   

[7] MVMD-RR, MVMD-KELM, MVMD-

RR-KELM 

ETo India Their hybrid MVMD-RR-KELM 

model was superior.  

[8] AR, MA, ARMA, ARIMA, LSSVM, 

ANFIS, GRNN  

ETo Iran The ARMA model was more 

accurate.  

[9] FFNN, RBFNN, GEP ETo  The FFNN model emerged as the 

best 

[10] GRNN T India The model had the best output.  

[11] MLP, Empirical equations  Solar radiation  The model provided accurate 

outcome. 

[12] ANN, ANFIS, SVM, Empirical equations  Air temperature Turkey  ANFIS outperformed other the 

others.  

[13] MGGP, Empirical equations  Solar radiations  Turkey  The MGGP was more successful.  
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Reference Involved model(s) Predicted variable Country Findings 

[14] ANNs, SVMs, ANN-PA, SVM-PA Daily solar 

radiation  

 The hybrid SVM-PA exhibited 

more accurate.  

[15] SVM, MLP, GRNN, CCNN, GMDH  ETo Pakistan  SVM was the most efficient.  

[16] XGBoost, MLP, M5 model tree, XGBoost-

GWO 

ETo China  XGBOOST-GWO outperformed 

the others.   

[17] ANN, ANFIS-GP, ANFIS-SC, GRNN, 

GEP, MARS 

Wind speed Iran  GRNN showed the highest 

predictive performance 

[18] ANN, ANN-GP, Empirical equations  Solar radiation  Iran  ANN-GP model had accurate 

output.  

[19] GEP, empirical equations ETo Iran, 

Spain  

GEP was the best.   

[20] SVM, GEP, MARS, and empirical models ETo Iran  MARS and SVM-RBF models 

showing superior performance 

[21] ANN, SVR ETo India  SVR had more accurate outputs.  

[22] ANN, GEP, WR, and empirical models Solar radiation   ANNs outperformed other 

models 

[23] GEP, Empirical equations  ETo Spain  GEP yielded the best results 

[24] ANN, ANFIS, GEP ETo Iran  GEP showed precise outcome.  

[25]  GEP, ANFIS ETo Iran  GEP was more accurate.  

[26] GEP ETo Burkina 

Faso 

The most efficient outputs were 

obtained using GEP. 

[27] HYDRUS-1D, ANN, GP   Canada  GP model was the accurate 

model. 

[28] LGP, GEP ETo Iran  LGP was more precise than GEP.  

[29] GA, GRNN, GRNN-GA ETo Korea Hybrid GRNN-GA achieved the 

highest performance.   

Notes: Adaptive Neuro‐Fuzzy Inference System (ANFIS); Random Forest (RF); Multivariate Adaptive Regression 

Splines (MARS); Artificial Neural Network (ANN); Multivariate Variational Mode Decomposition (MVMD) With Ridge 

Regression (RR) And Kernel Extreme Learning Machine (KELM); Feed Forward Neural Network (FFNN), Radial Basis 

Function Neural Network (RBFNN), Gene Expression Programing (GEP); Generalized Regression Neural Network 

(GRNN); Multi-Gene Genetic Programming (MGGP); Procrustes Analysis (PA); Extreme Gradient Boosting (Xgboost); 

Grey Wolf Optimizer (GWO) Algorithm; Linear Genetic Programming (LGP); Group Method Of Data Handling 

(GMDH); Cascade Correlation Neural Network (CCNN); Subtractive Clustering (SC) 

As highlighted, ETo, as an integral component of the hydrological water cycle, plays a pivotal 

role in water resources management. A comprehensive review of literature underscores the 

significance of precise estimation and prediction of ETo, garnering considerable attention from 

researchers. Consequently, diverse methodologies have been evaluated to achieve accurate predictions 

and estimations. Notably, recent advancements in climatology have witnessed the emergence of MLMs 

as viable tools for this purpose. These models, capable of discerning intricate and latent relationships 

between input and output variables without necessitating specialized expertise, offer promising 

avenues for accurate predictions. In this context, the Ahvaz synoptic station, in southwest Iran, 
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represents a key site for studying ETo estimation due to its hot, arid climate and critical dependence on 

efficient water management for agriculture. Here, we explore the efficacy of three MLMs, including 

SVM, GEP, and ANN, in estimating ETo at this representative location. 

2. Materials and methods 

2.1. Case study   

In this study, data from the Ahvaz synoptic station in Iran, spanning the statistical years 1979 to 

2023, were utilized. The Ahvaz station is at a latitude of 31.3442° and a longitude of 48.7442°. The 

elevation of this station is 22.5 meters above sea level, and it is characterized by a dry climate. The 

station's location is depicted in Figure 1. The daily recorded statistics at this station include minimum, 

maximum, and average temperatures (Tmin, Tmax, and Tave, respectively), minimum, maximum, and 

average humidity levels (RHmin, RHmax, and RHave, respectively), wind speed (WS), the number of 

sunny hours (SHs), precipitation amounts (P), and the reference values of ETo. A summary of the 

statistical properties of each measured parameter is provided in Table 1. Table 2 presents the correlation 

coefficients among the variables measured at the station. Evidently, there is a positive correlation 

between ETo and temperature, a negative correlation between ETo and humidity, a positive correlation 

between ETo and wind speed, and a negative correlation between ETo and precipitation. 

 

Figure 1. The geographical coordinates and elevation of the station under study. 
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Table 1. A synopsis of the statistical properties for each measured parameter.  

Data 
Property 

N total Mean Standard Deviation Sum Minimum Median Maximum 

T(min) 

16084 

18.95 8.31 304816.70 -1.20 19.50 37.00 

T(max) 33.52 10.92 539168.42 0.00 34.60 53.70 

T(ave) 26.24 9.47 421992.31 0.00 27.00 43.75 

RH(min) 61.64 22.78 991456.47 0.00 61.63 100.00 

RH(max) 25.51 18.05 410271.29 0.00 19.00 98.00 

RH(ave) 43.58 19.36 700863.88 0.00 40.50 99.00 

WS 1.51 0.85 24306.74 0.00 1.40 6.54 

SH 8.56 3.43 137628.83 0.00 9.60 14.01 

P 0.64 3.87 10299.10 0.00 0.00 100.00 

ETo 5.11 2.95 82233.12 0.56 4.80 16.06 

Table 2. The correlation coefficient matrix of measured values. 

  Tmin Tmax Tave Rh(min) Rh(max) Rh(ave) WS SH P ETo 

Tmin 
Pearson 

Corr. 
1.0000 0.9369 0.9794 -0.7191 -0.6343 -0.7187 0.3289 0.4220 -0.1056 0.8509 

Tmax 
Pearson 

Corr. 
0.9369 1.0000 0.9881 -0.7795 -0.7810 -0.8226 0.2327 0.5841 -0.1908 0.8641 

Tave 
Pearson 

Corr. 
0.9794 0.9881 1.0000 -0.7653 -0.7290 -0.7900 0.2786 0.5222 -0.1564 0.8720 

Rh(min) 
Pearson 

Corr. 
-0.7191 -0.7795 -0.7653 1.0000 0.7963 0.9594 -0.3019 -0.5100 0.2194 

-

0.7767 

Rh(max) 
Pearson 

Corr. 
-0.6343 -0.7810 -0.7290 0.7963 1.0000 0.9346 -0.1866 -0.6594 0.3398 

-

0.7269 

Rh(ave) 
Pearson 

Corr. 
-0.7187 -0.8226 -0.7900 0.9594 0.9346 1.0000 -0.2646 -0.6073 0.2875 

-

0.7957 

WS 
Pearson 

Corr. 
0.3289 0.2327 0.2786 -0.3019 -0.1866 -0.2646 1.0000 0.0513 0.0407 0.5860 

SH 
Pearson 

Corr. 
0.4220 0.5841 0.5222 -0.5100 -0.6594 -0.6073 0.0513 1.0000 -0.2548 0.5896 

P 
Pearson 

Corr. 
-0.1056 -0.1908 -0.1564 0.2194 0.3398 0.2875 0.0407 -0.2548 1.0000 

-

0.1712 

ETo 
Pearson 

Corr. 
0.8509 0.8641 0.8720 -0.7767 -0.7269 -0.7957 0.5860 0.5896 -0.1712 1.0000 

2.2. An introduction to MLMs involved 

2.2.1. Overview of ANNs 
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ANNs represent a class of computational models inspired by the structure and function of 

biological neural networks in the human brain. ANNs are widely used in various fields, including 

pattern recognition, classification, regression, and time-series prediction. The structure of an ANN 

consists of interconnected processing units called neurons or nodes, organized in layers. The three 

major types of layers in an ANN are the input layer, hidden layer(s), and output layer. The mathematical 

representation of an ANN involves the propagation of signals through the network and the adjustment 

of weights to minimize errors during training. The forward propagation is a simple feedforward neural 

network, where signals propagate from the input layer through one or more hidden layers to the output 

layer. During forward propagation, the input signals x1, x2, …, xn are passed through the network, and 

the weighted sum of inputs is computed for each neuron in the hidden layers and output layer. This 

process is mathematically represented as: 

zj=∑ωijxi +bj (1) 

where zj is the weighted sum at neuron j, ωij is the weight connecting input neuron i to hidden 

neuron j, xi is the input signal at neuron i, and bj is the bias term for neuron j. The weighted sum is then 

passed through an activation function f, which introduces non-linearity into the network. Common 

activation functions include sigmoid, tanh, and ReLU (Rectified Linear Unit): 

aj=f(zj) (2) 

The outputs aj of the activation functions become the input signals for the next layer. After forward 

propagation, the output of the network is compared to the true target values, and the error is calculated 

using a loss function such as mean squared error (MSE): 

E=
1

N
∑ (y

i
-ŷ

i
)
2
 (3) 

where yi is the true target value and ŷi is the predicted value. Backpropagation is then used to 

update the weights of the network to minimize this error. The gradients of the loss function with respect 

to the weights are computed using the chain rule of calculus and are used to update the weights through 

optimization algorithms like stochastic gradient descent (SGD) or Adam. The following are the 

simulation steps of the ANN: (i) Initialization: Initialize the weights and biases of the network 

randomly or using predefined strategies; (ii) Forward Propagation: Pass the input data through the 

network to obtain predictions; (iii) Compute the error between the predicted and actual values using a 

suitable loss function; (iv) Compute the gradients of the loss function with respect to the weights and 

biases using backpropagation; (v) Weight Update: Update the weights and biases of the network using 

optimization algorithms to minimize the error; and (vi) Iteration: Repeat steps 2–5 for a specified 

number of iterations or until convergence criteria are met. By iteratively adjusting the weights and 

biases based on the error signal, ANNs can learn complex patterns and relationships in data, enabling 

them to make accurate predictions and classifications in various applications (Fuladipanah et al., [30]; 

Sajindra et al. [31]; Jayathilake et al. [32]; Azamathulla et al. [33]). 

2.2.2. Overview of GEP 
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Gene Expression Programming (GEP) is a powerful evolutionary algorithm used for symbolic 

regression and function optimization tasks. It combines principles from genetics and computational 

biology to evolve computer programs that solve complex problems. GEP operates by evolving 

populations of symbolic expressions represented as linear chromosomes, where each chromosome 

consists of multiple genes encoding sub-expressions or terminals. A GEP chromosome is composed of 

a fixed-length string of genes, with each gene encoding a segment of the program. These genes are 

then translated into hierarchical structures known as expression trees, representing the computer 

programs. Expression trees consist of nodes representing functions and terminals, with functions 

performing operations and terminals representing variables, constants, or other input data. Each gene 

within the chromosome encodes a segment of the expression, which can be a function or a terminal 

symbol. Mathematically, this can be represented as: 

Gi=(si1,si2,⋯, sin)   (4) 

where Gi is the ith gene, and sij represents the jth symbol in the gene. The genes are translated into 

expression trees, where the hierarchical structure is determined by the sequence of genes. 

Mathematically, this process involves parsing the genes according to a predefined grammar to generate 

the expression tree. The fitness of each individual in the population is evaluated based on its ability to 

solve the problem at hand. This typically involves executing the evolved program and comparing its 

output to a target value using an appropriate fitness function. The simulation steps are as following: (i) 

Initialization: Generate an initial population of individuals, each represented by a chromosome 

encoding a symbolic expression; (ii) Evaluation: Evaluate the fitness of each individual in the 

population by executing its corresponding expression and comparing the output to the target values 

using a fitness function; (iii) Selection: Select individuals from the population to serve as parents for 

the next generation based on their fitness. Common selection methods include tournament selection 

and roulette wheel selection; (iv) Recombination: Apply genetic operators such as crossover and 

mutation to the selected parents to produce offspring for the next generation. Crossover involves 

exchanging genetic material between parents, while mutation introduces random changes to the 

offspring's genes; (v) Replacement: Replace some individuals in the current population with the 

offspring to maintain the population size; and (vi) Termination: Repeat steps 2–5 for a specified 

number of generations or until a termination condition is met, such as reaching a satisfactory fitness 

level or a predefined number of generations. By iteratively evolving the population through selection, 

recombination, and mutation, GEP can efficiently search the solution space and discover symbolic 

expressions that accurately model the underlying relationship in the data (Leon et al. [34]; Fuladipanah 

et al. [35]; Gharehbaghi et al. [36]; Azamathulla et al. [37]).    

2.2.3. Overview of the SVM 

Developed by Cortes and Vapnik [38], the Support Vector Machine (SVM) is a robust supervised 

learning algorithm employed for classification and regression tasks. It functions by identifying the 

optimal hyperplane that separates data points into distinct classes while maximizing the margin 

between them. Given a set of training data (Xi, yi) where Xi denotes the input features and yi represents 

the corresponding class label (for classification) or target value (for regression), SVM strives to find 

the optimal hyperplane described by the equation: 
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WTX+b=0 (5) 

Here, W is the weight vector orthogonal to the hyperplane, b is the bias term, and X denotes the 

input features. For linearly separable data, the optimization problem can be expressed as: 

minW,b

1

2
‖W‖2 (6) 

subject to: 

y
i
(WTXi+b)≥1 (7) 

For data that are not linearly separable, SVM employs the kernel trick to map the input features 

into a higher-dimensional space where the data points become linearly separable. The revised 

optimization problem is: 

minW,b

1

2
‖W‖2+C∑ ξ

i

N

i=1

 (8) 

subject to: 

y
i
(WTΦ(Xi)+b)≥1-ξ

i
 (9) 

ξ
i
≥ 0 (10) 

where Φ(Xi) is the feature mapping function, C is the regularization parameter, and ξ
i
 are the 

slack variables. The simulation steps of the SVM are as following: (i) Data Preprocessing: Prepare the 

training dataset by scaling the features and encoding the class labels or target values; (ii) Model 

Training: Choose a kernel function (e.g., linear, polynomial, radial basis function) and tune the 

hyperparameters (e.g., regularization parameter C, kernel parameters) using cross-validation, and train 

the SVM model on the training data; (iii) Model Evaluation: Assess the performance of the trained 

model on a separate validation dataset using appropriate metrics; (iv) Model Tuning: Adjust the model 

hyperparameters based on the validation results to enhance performance; and (v) Model Deployment: 

Once satisfactory performance is attained, deploy the trained SVM model to make predictions on new, 

unseen data. By following these simulation steps, SVM can efficiently classify or regress data by 

finding the optimal hyperplane or decision boundary that maximizes the margin between classes or 

minimizes the error for regression tasks (Kumar et al. [39]; Fuladipanah et al. [35]; Rathnayake et al. 

[40]). 

2.3. Evaluation metrics  

In the realm of predictive modeling and statistical analysis, quantifying the accuracy and 

reliability of models is paramount. Several metrics are widely used to evaluate the performance of 

models, each providing different insights into the model's strengths and weaknesses. Among these, 

RMSE, MAE, and R² are commonly utilized. Additionally, DDR is an advanced metric offering a 

nuanced assessment of model performance. The RMSE is a measure of the differences between 



778 

 

AIMS Environmental Science Volume 12, Issue 5, 770–794. 

predicted and observed values. It is particularly sensitive to large errors, making it useful for detecting 

models with occasional large deviations. The RMSE is defined mathematically as: 

RMSE=√
1

n
∑ (y

i
-ŷ

i
)
2

n

i=1

 (11) 

where yi represents the observed value for the ith data point, ŷ
i
 denotes the predicted value for 

the ith data point, and n signifies the total number of data points. RMSE is expressed in the same units 

as the observed values, which aids in the interpretability of the results. The MAE quantifies the average 

magnitude of errors in a set of predictions without considering their direction. It provides a 

straightforward measure of prediction accuracy. The MAE is given by: 

MAE=
1

n
∑|y

i
-ŷ

i
|

n

i=1

 (12) 

where | | denotes the absolute value function. The MAE is also expressed in the same units as the 

data, making it directly interpretable. The R² assesses the proportion of variance in the dependent 

variable that is predictable from the independent variables. It provides an indication of the goodness-

of-fit of a model. The R² value ranges from 0 to 1, where 1 indicates perfect prediction and 0 indicates 

no explanatory power. Mathematically, R² is defined as: 

R2=1-
∑ (y

i
-ŷ

i
)
2n

i=1

∑ (y
i
-y̅)

2n
i=1

 (13) 

where y̅ is the mean of the observed values. A higher R² value indicates a better fit of the model 

to the data. In addition to traditional evaluation metrics such as RMSE, MAE, and R², the Developed 

Discrepancy Ratio (DDR) index was used to provide a more nuanced assessment of model 

performance. The DDR index, proposed by Noori et al. [41], is a statistical tool designed to evaluate 

the degree of agreement between observed and predicted values by comparing the distribution of 

absolute errors to a theoretical distribution derived from the Gaussian (normal) function. The key 

advantage of the DDR lies in its ability to highlight both central tendency and spread of prediction 

errors, capturing not only average performance but also the frequency and magnitude of larger 

deviations. The DDR is calculated based on the probability density function (PDF) of standardized 

residuals, enabling a visual and quantitative comparison of prediction error distributions. By 

transforming the residuals into a standardized normal space, the DDR enables the identification of how 

well the prediction error pattern aligns with an ideal normal distribution centered around zero. This is 

particularly helpful for assessing the robustness and consistency of machine learning models across 

operational conditions. DDRmax, or the maximum value of the discrepancy ratio, represents the highest 

concentration of errors at a particular standardized value. It serves as an indicator of the peak alignment 

(or misalignment) between the predicted and observed datasets. A higher DDRmax value typically 

reflects better model performance, indicating that a larger proportion of prediction errors are 

concentrated near the zero-error line. Conversely, a lower DDRmax suggests that errors are more widely 



779 

 

AIMS Environmental Science Volume 12, Issue 5, 770–794. 

scattered, indicating weaker model reliability. In this study, the DDR and DDRmax metrics were used 

alongside RMSE, MAE, and R² to evaluate the predictive strength of the machine learning models. 

This approach ensures a comprehensive understanding of not only average error magnitude but also 

the distribution and extremity of prediction errors, which is particularly important in hydrological 

modeling, where localized errors can have significant implications for decision-making. The DDR 

index is calculated as follows:  

DDR=
Predicted value

Observed value
-1 (14) 

As mentioned, in order to enhance interpretation and visualization, it is essential to convert the 

Gaussian distribution of DDR values into a standard normal distribution. This process involves a two-

step approach. Initially, the DDR values (referred to as variable x) are standardized, resulting in the 

calculation of the normalized DDR value (x(DDR)) using a Gaussian function. Following this, a visual 

representation is generated, where x(DDR) values are compared with their standardized counterparts 

(ZDDR). In the graphical representation of ZDDR versus x(DDR), a greater alignment of error distribution 

towards the central tendency and higher x(DDR) values signify improved accuracy. 

2.4. Sensitivity analysis  

According to Koncar [42], the Gamma test constitutes a non-parametric statistical technique 

utilized for output estimation by identifying the optimal input-output dataset configurations based on 

minimal mean square error values. This technique is proposed as an appropriate method for 

determining the most efficacious combination of various input variables to precisely characterize the 

output. In this methodology, the dataset is represented as {(xi,yi
), 1≤i≤M)}, where the input vectors 

xi∈Rm are m dimensional vectors, and the corresponding outputs y
i
∈R are scalars. The input vector 

x influences the output y. The relationship between the input and output variables is defined by the 

following equation: 

y=Gx+Γ (15) 

Here, G and Γ denote the gradient and the intercept of the regression line where x=0, respectively, 

and y is the output. Lower values of G and Γ suggest that the respective input variables are more 

appropriate. In addition to these two criteria, an indicator denoted as V-Ratio=
Γ

σ2(y)
 , where Γ 

represents the gamma function and σ2(y) is the output variance, is utilized to identify the optimal 

input parameters. The values of the V-Ratio range from 0 to 1. A V-Ratio value closer to zero for each 

input parameter indicates the effectiveness of that particular input. The various combinations of input 

variables have been delineated following the format introduced by Mask (Malik et al. [43]). Table 2 

encompasses nine parameters, with the mask representation employing an eight-digit binary sequence 

corresponding to these variables: Tmin, Tmax, Tave, RHmin, RHmax, RHave, WS, SHs, and P, respectively. 

Within this representation, the binary digits '1' and '0' denote the inclusion or exclusion of a parameter. 

For instance, '11111111' denotes the inclusion of all parameters, while '01111111' indicates the 

exclusion of the first parameter, Tmin, from the sensitivity analysis. As previously indicated, the optimal 
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model is distinguished by the lowest values of Γ, G, and V-Ratio. Several permutations were conducted 

to assess the sensitivity of the parameters involved in the ETo simulation. An illustrative instance of 

this analysis, comprising 25 alternatives, is delineated in Table 3. Based on the findings, the optimal 

and most efficacious input configuration for forecasting and simulating ETo consists of the digit 

combination 001010110 (the raw of no. 19). In essence, in employing MLMs, the pertinent parameters 

encompass Tave, RHmin, WS, and HS. While Figure 2-i illustrates the variation of Γ-σ for all 

combinations, a scatter plot of Γ and σ for the opted and optimized 001010110 combination is 

presented in Figure 2-ii. 

Table 3. Examining Sensitivity in Model Input Parameters.   

No. Γ G Standard Error V-Ratio Mask 

1 0.297427 0.053459 0.015277 0.034097 111010111 

2 0.254336 0.06074 0.012875 0.029157 011010111 

3 0.258858 0.060585 0.013181 0.029676 101010111 

4 0.218563 0.11027 0.008443 0.025056 011010110 

5 0.263779 0.071748 0.01422 0.03024 101001111 

6 0.221845 0.110694 0.009479 0.025432 101010110 

7 0.266067 0.068812 0.016094 0.030502 011001111 

8 0.223812 0.069941 0.010285 0.025658 001010111 

9 0.225671 0.083949 0.011749 0.025871 001001111 

10 0.272215 0.089098 0.012347 0.031207 111000111 

11 0.272409 0.084766 0.011072 0.031229 111010110 

12 0.321378 0.059071 0.016096 0.036843 111001111 

13 0.234125 0.115905 0.010518 0.02684 101001110 

14 0.235387 0.111817 0.011329 0.026985 011001110 

15 0.235348 0.08894 0.014931 0.02698 010001111 

16 0.287649 0.055306 0.017668 0.032976 110010111 

17 0.245963 0.190428 0.008102 0.028197 111000110 

18 0.242758 0.074345 0.012789 0.02783 010010111 

19 0.198678 0.146447 0.006912 0.022777 001010110 

20 0.29955 0.086101 0.012207 0.034341 111001110 

21 0.350276 0.050867 0.016257 0.040156 011101111 

22 0.201923 0.155379 0.006354 0.023149 001001110 

23 0.252361 0.083384 0.010932 0.028931 110001110 

24 0.306033 0.061923 0.016555 0.035084 110001111 

25 0.255086 0.092136 0.009796 0.029243 101000111 
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Figure 2. Outcomes of Γ-test, (i) Γ vs. σ; (ii) a 3D histogram of Γ-σ-Frequency for the 

001010110. 

3. Results and discussion  

3.1. Models’ performance metrics 

Upon determining the effective input parameters, the ANN, SVM, and GEP models were each 

implemented using a data partitioning strategy comprising 70% for training (11,260 data points), 15% 

for testing (2,412 data points), and 15% for validation (2,412 data points). The performance evaluation 

of these three models was conducted utilizing the performance metrics outlined in the preceding 

section. The overall results of the simulation, based on the optimal parameter configurations for each 

of the three machine learning models, are presented in Table 4 . 
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Table 4. A summary of the statistical performance of the MLMs involved. 

Model name 
Training phase 

RMSE MAE R2 DDR max Bias  

SVM 0.9026 0.6604 0.9138 2.5773 -0.0513 

GEP 0.7048 0.5591 0.9444 1.5953 0.0647 

MLP (4-9-1) 0.4122 0.3207 0.9806 3.2694 0.0004 

Model name Testing phase 

SVM 1.0654 0.7882 0.8824 2.19 -0.1265 

GEP 0.7048 0.5640 0.9443 1.59 0.0516 

MLP (4-9-1) 0.4308 0.3333 0.9789 3.29 -0.0120 

Model name Validation phase 

SVM 0.9213 0.6790 0.9216 2.64 0.2153 

GEP 1.0501 0.7918 0.8863 2.25 -0.0260 

MLP (4-9-1) 0.4327 0.3342 0.9779 3.22 0.0083 

3.2. SVM’s outputs 

The SVM model, optimized with an RBF kernel (C=19, ε=0.1, γ=0.25), demonstrated moderate 

performance across all phases. During training, it achieved reasonable accuracy but exhibited a slight 

tendency toward underestimation. This underestimation became more pronounced in the testing phase, 

where the model showed increased error magnitudes and reduced stability compared to training. In 

validation, while predictive consistency partially recovered relative to testing, the model maintained 

higher errors than other phases and displayed a shift to systematic overestimation. Throughout all 

phases, SVM maintained moderate explanatory power for ETo variability, though its error distribution 

indicated less reliability in extreme value prediction compared to ANN. 

3.3. GEP’s outputs 

The GEP model, configured with the parameters detailed in Table 5, demonstrated reliable 

performance during the training and testing phases, showing consistent accuracy in modeling ETo. The 

evolved expression tree incorporated mathematical functions such as cosine, arctangent, square root, 

cube root, and basic arithmetic operators, reflecting the model's flexibility in capturing complex 

relationships. However, the model's accuracy declined during the validation phase, indicating its 

reduced ability to generalize to unseen data. This outcome may be attributed to the complexity of the 

symbolic expression generated, which, while effective in fitting training data, led to overfitting and 

decreased predictive reliability when applied to new observations. The tree expression of the GEP 

model output is depicted in Figure 3, where the constants in the equation are G1C0=0.563538, G1C1=-

0.381042, G2C0=-7.928467, G2C1=-0.861634, G3C0=4.249603, and G3C1= -7.235016. 
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Table 5. Tuning parameters of the GEP. 

Parameters Values 

Head size 8 

Chromosomes numbers 45 

Number of genes 3 

Mutation rate 0.044 

Inversion rate 0.1 

One-point recombination rate 0.3 

Two-point recombination 

rate 

0.3 

Gene recombination rate 0.1 

Gene transposition rate 0.1 

IS transposition rate 0.1 

RIS transposition rate 0.1 

Fitness function error type RMSE 

Linking function + 

 

Figure 3. Expression tree of the GEP model.  

3.4. ANN’s outputs 

The MLP model with a 4-9-1 architecture, utilizing Tanh and Identity activation functions for the 

hidden and output layers, respectively, and optimized with the BFGS 358 algorithm, achieved the best 

overall performance among the models tested. It provided highly accurate predictions and maintained 

strong agreement with observed ETo values throughout the training, testing, and validation phases. 

The model’s consistent performance across these phases highlights its capacity to capture the complex 

nonlinear relationships between the climatic variables and ETo, and its ability to generalize effectively 

to new data. This robustness makes the MLP model a reliable tool for ETo prediction in arid climates 

like that of Ahvaz. Based on the performance indices RMSE, MAE, R², and DDR, the MLP 4-9-1 

model achieved consistently better results across all phases. For example, in the validation phase, the 

MLP achieved an R² of 0.9779, compared to 0.9216 for SVM and 0.8863 for GEP. Similarly, RMSE 

values were 0.4327 for MLP, 0.9213 for SVM, and 1.0501 for GEP, indicating the MLP model provided 
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more accurate predictions. These differences demonstrate the superior predictive capability of the MLP 

model over SVM and GEP. 

3.5. Graphical performance criteria  

 

 

Figure 4. The distribution of the DDR index for involved MLMs.  

To assess model performance through a graphical depiction, Figure 4 and Figure 5 were generated. 

Figure 4 illustrates the models' functionality based on the DDR index. Evidently, across all phases of 

training, testing, and prediction, the MLP 4-9-1 model exhibits notably superior performance compared 

to SVM and GEP, as indicated by its significantly higher peak point on the curve. The SVM model 

occupies a secondary or intermediate position in the DDR distribution curve, denoted by its blue 

coloration, while the GEP model is relegated to the lowest rank. These graphical findings align with 

the numerical results presented in Table 4. Figure 5 displays the scatter plot of observed versus 
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predicted data, serving as a visual representation of the Coefficient of Determination (R²) index. The 

inclusion of a 1:1 line (the bisector of the first quadrant of the coordinate plane) aids in assessing model 

performance; closer alignment of data points to this line signifies superior model performance. It is 

evident from the graphs that the MLP 4-9-1 model consistently outperforms the other two models. 

Figure 6 illustrates the distribution of the measured and the MLMs’ output data. Box plots of measured 

and predicted values are also included.  

  

 

Figure 5. Scatter plot of the MLMs’ outputs involved vs. measured data.  
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Figure 6. Distribution of the measured vs. outputs of the MLMs involved.  

The performance of the MLMs are presented using the Taylor Diagram in Figure 7. The Taylor 

diagram visually assesses how well models or datasets compare to a reference so that (i) the radial 

distance from the origin represents its standard deviation, and (ii) the azimuthal angle represents its 

correlation coefficient with the reference. The diagram enables quick visual comparison and 

quantification of skill scores. In Figure 7, Taylor diagrams across training, testing, and prediction 

stages show the MLP 4-9-1 model consistently aligns closely with observational data. This proximity 



787 

 

AIMS Environmental Science Volume 12, Issue 5, 770–794. 

demonstrates the MLP model's superior performance in replicating the reference data compared to 

other models. 

 

 

Figure 7. The Taylor diagram of the MLMs’ outputs.  

Figure 8 illustrates the alignment between the simulation results generated by the Multilayer 

Perceptron (MLP) during the prediction phase and the empirical data. It is evident that there is a high 

degree of concordance between the two time series, despite discrepancies that predominantly appear 

at the extremities . 
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Figure 8. Measured vs. predicted values of ETo during the validation phase. 

It can be discussed that the superior performance of the MLP model in this study can be attributed 

to several interrelated factors that enhance its capability in modeling complex hydrological 

phenomena, ETo. First and foremost, the MLP model is inherently well-suited for capturing highly 

nonlinear relationships between input variables (e.g., temperature, humidity, wind speed, and sunshine 

hours) and the target output (ETo). Given the complex and dynamic interactions among climatic 

parameters in arid environments like Ahvaz, linear or weakly nonlinear models often fail to detect 

subtle dependencies. In contrast, the layered structure of MLP, combined with nonlinear activation 

functions (e.g., Tanh), enables it to approximate arbitrary nonlinear functions with high precision, as 

supported by the universal approximation theorem. Moreover, MLPs are generally more robust to 

noise in large datasets when appropriately regularized and trained. In this study, the performance of 

the MLP model remained consistent across training, testing, and validation datasets, suggesting strong 

generalization ability and limited overfitting. The use of the BFGS optimization algorithm further 

enhanced convergence and reduced the likelihood of becoming trapped in local minima, which can 

degrade performance in noisy or high-dimensional settings. On the other hand, the relatively lower 

performance of the GEP model may be partly due to overfitting during the training phase. As an 

evolutionary algorithm, GEP is highly flexible in fitting training data but is also prone to generating 

overly complex symbolic expressions, especially in the absence of strong constraints on expression 

tree size or depth. This can result in models that perform well on training data but generalize poorly to 

unseen data, as indicated by the drop in performance during the validation phase. Additionally, SVM- 

while effective at identifying optimal hyperplanes in transformed feature space- may be less adaptable 

to capturing highly nonlinear or intricate time-dependent patterns when compared to MLP, particularly 

in the presence of interacting climate variables with non-Gaussian distributions. In summary, the MLP 

model outperformed GEP and SVM due to its superior ability to model nonlinear relationships, robust 

optimization framework, and strong generalization capacity, making it particularly well-suited for 

forecasting ETo in complex, data-rich, and environmentally variable regions such as Ahvaz. 
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4. Conclusion  

We investigated the use of three MLMs, namely MLP, SVM, and GEP, to predict daily ETo at 

the Ahvaz synoptic station. All models successfully captured the relationship between climatic 

variables and ETo, demonstrating their potential for hydrological modeling in arid environments. 

Although all three MLMs demonstrated acceptable accuracy in predicting daily ETo values, the MLP 

model consistently showed higher performance. For instance, in the prediction phase, the MLP 

achieved an R² of 0.9779, outperforming SVM (0.9216) and GEP (0.8863), with correspondingly lower 

RMSE (0.4327 for MLP versus 0.9213 for SVM and 1.0501 for GEP). These statistical comparisons 

highlight the advantage of using the MLP model for ETo prediction in this study. Overall, given the 

increasing demand for efficient water use in arid regions like Ahvaz, the superior performance of the 

MLP model highlights its value for supporting irrigation scheduling and water resource planning under 

variable climate conditions. 

The superior performance of the ANN model, specifically the MLP (4-9-1) architecture, can be 

attributed to its inherent ability to capture complex nonlinear relationships between climatic inputs and 

ETo. Unlike other MLMs, MLP’s multi-layered structure, combined with nonlinear activation 

functions such as Tanh, enables it to approximate arbitrary nonlinear functions with high precision, as 

supported by the universal approximation theorem. This property is particularly valuable in 

hydrological modeling, where the relationships between temperature, humidity, wind speed, and solar 

radiation are often non-additive, seasonally variable, and highly interactive. Furthermore, the MLP 

model demonstrated strong generalization capability, evidenced by the consistent performance across 

training, testing, and validation phases, which suggests effective learning of the underlying data 

structure without overfitting. This robustness can be partially credited to the use of the BFGS 

optimization algorithm, which promotes smooth convergence and avoids entrapment in local minima 

during training. Additionally, the ANN’s structure enables it to implicitly optimize the interactions 

among multiple input variables, something that models like GEP (which evolve symbolic expressions) 

or SVM (which map inputs to high-dimensional feature spaces) handle less flexibly. While SVM and 

GEP have their respective strengths, such as GEP’s interpretability and SVM’s margin maximization, 

neither offers the same level of adaptive learning and noise tolerance in high-volume, nonlinear 

datasets as the MLP. These factors collectively explain why the ANN model consistently outperformed 

the other two models in capturing the complex dynamics of ETo under arid climate conditions. 

While our results of demonstrate the high predictive performance of the MLP model compared to 

SVM and GEP for ETo forecasting, several limitations must be acknowledged. First, like most machine 

learning models, MLPs require large volumes of high-quality, well-distributed data to ensure optimal 

performance. In regions with sparse or inconsistent climatic data, the model may underperform due to 

insufficient representation of local environmental variability. Second, although the MLP architecture 

captures complex nonlinear relationships, it operates as a black box, meaning the internal reasoning 

behind its predictions is not easily interpretable. This lack of transparency can be a drawback for 

decision-makers who prefer models with explicit functional forms or physically based formulations. 

Third, while the MLP model generalized well within the data from Ahvaz, its transferability to other 

geographic regions with different climatic regimes may be limited. Retraining and hyperparameter 

adjustment would be required for application in new locations, which can be computationally 

expensive and time-consuming. Moreover, model performance can be sensitive to the choice of 
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architecture (e.g., number of hidden layers, neurons), activation functions, and optimization algorithms. 

Without careful tuning, MLPs may overfit or underfit the data. Similarly, evolutionary algorithms like 

GEP can be prone to overfitting if expression tree complexity is not adequately controlled, while SVMs 

may require kernel selection and parameter tuning that are not always straightforward. These 

limitations highlight the importance of combining MLMs with domain knowledge and using model 

ensembles or hybrid approaches in future research to improve accuracy, interpretability, and robustness 

under varying data conditions. 
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