Review Topical Sections

Smart thermal management of photovoltaic systems: Innovative strategies

  • Received: 31 December 2024 Revised: 03 March 2025 Accepted: 11 March 2025 Published: 26 March 2025
  • The efficiency of photovoltaic (PV) panels is significantly affected by environmental factors such as solar irradiance, wind speed, humidity, dust accumulation, shading, and surface temperature, with thermal buildup being the primary cause of efficiency degradation. In this review, we examined various cooling techniques to mitigate heat accumulation and enhance PV panel performance. A comprehensive analysis of active, passive, and hybrid cooling strategies is presented, including heat pipe-based cooling, heat sinks, holographic films, nanofluids, phase change materials (PCM), thermoelectric, biomaterial-based, and hybrid cooling systems. The effectiveness of these techniques in reducing surface temperature and improving electrical efficiency was assessed. Notably, heat pipe cooling and hybrid PCM-thermoelectric systems demonstrated the most promising improvements, with some methods achieving temperature reductions exceeding 40 ℃ and efficiency enhancements over 15%. Future research directions include developing advanced nanofluid formulations, optimizing the design of heat pipes and heat sinks, integrating multi-functional coatings, and enhancing the real-world durability of cooling materials for inventing innovative, sustainable, and eco-friendly cooling systems. By providing a structured assessment of emerging PV cooling techniques, this study is a valuable resource for researchers and engineers striving to improve solar energy efficiency, reduce thermal losses, and advance the sustainability of photovoltaic technologies.

    Citation: Kaovinath Appalasamy, R Mamat, Sudhakar Kumarasamy. Smart thermal management of photovoltaic systems: Innovative strategies[J]. AIMS Energy, 2025, 13(2): 309-353. doi: 10.3934/energy.2025013

    Related Papers:

    [1] Kokou Aménuvéla Toka, Yawovi Nougbléga, Komi Apélété Amou . Optimization of hybrid photovoltaic-thermal systems integrated into buildings: Impact of bi-fluid exchangers and filling gases on the thermal and electrical performances of solar cells. AIMS Energy, 2024, 12(5): 1075-1095. doi: 10.3934/energy.2024051
    [2] Alemayehu T. Eneyaw, Demiss A. Amibe . Annual performance of photovoltaic-thermal system under actual operating condition of Dire Dawa in Ethiopia. AIMS Energy, 2019, 7(5): 539-556. doi: 10.3934/energy.2019.5.539
    [3] Syed Sabir Hussain Rizvi, Krishna Teerth Chaturvedi, Mohan Lal Kolhe . A review on peak shaving techniques for smart grids. AIMS Energy, 2023, 11(4): 723-752. doi: 10.3934/energy.2023036
    [4] Daniel Chuquin-Vasco, Cristina Calderón-Tapia, Nelson Chuquin-Vasco, María Núñez-Moreno, Diana Aguirre-Ruiz, Vanesa G. Lo-Iacono-Ferreira . Mathematical modeling of a binary ORC operated with solar collectors. Case study—Ecuador. AIMS Energy, 2023, 11(6): 1153-1178. doi: 10.3934/energy.2023053
    [5] Ibraheem Ahmad Qeays, Syed Mohd. Yahya, M. Saad Bin Arif, Azhar Jamil . Nanofluids application in hybrid Photovoltaic Thermal System for Performance Enhancement: A review. AIMS Energy, 2020, 8(3): 365-393. doi: 10.3934/energy.2020.3.365
    [6] K. M. S. Y. Konara, M. L. Kolhe, Arvind Sharma . Power dispatching techniques as a finite state machine for a standalone photovoltaic system with a hybrid energy storage. AIMS Energy, 2020, 8(2): 214-230. doi: 10.3934/energy.2020.2.214
    [7] Cristiana Brasil Maia, Gisele Mol da Silva, Luiz Felippe Guardia Bianchi, André Guimarães Ferreira . Performance study of a baffled solar dryer. AIMS Energy, 2021, 9(6): 1136-1146. doi: 10.3934/energy.2021052
    [8] Badr Ouhammou, Fatima Zohra Gargab, Samir El idrissi kaitouni, Slimane Smouh, Rachid El mrabet, Mohammed Aggour, Abdelmajid Jamil, Tarik Kousksou . Energy saving potential diagnosis for Moroccan university campuses. AIMS Energy, 2023, 11(3): 576-611. doi: 10.3934/energy.2023030
    [9] M. Boussaid, A. Belghachi, K. Agroui, N.Djarfour . Mathematical models of photovoltaic modules degradation in desert environment. AIMS Energy, 2019, 7(2): 127-140. doi: 10.3934/energy.2019.2.127
    [10] Eliseo Zarate-Perez, Juan Grados, Santiago Rubiños, Herbert Grados-Espinoza, Jacob Astocondor-Villar . Building-integrated photovoltaic (BIPV) systems: A science mapping approach. AIMS Energy, 2023, 11(6): 1131-1152. doi: 10.3934/energy.2023052
  • The efficiency of photovoltaic (PV) panels is significantly affected by environmental factors such as solar irradiance, wind speed, humidity, dust accumulation, shading, and surface temperature, with thermal buildup being the primary cause of efficiency degradation. In this review, we examined various cooling techniques to mitigate heat accumulation and enhance PV panel performance. A comprehensive analysis of active, passive, and hybrid cooling strategies is presented, including heat pipe-based cooling, heat sinks, holographic films, nanofluids, phase change materials (PCM), thermoelectric, biomaterial-based, and hybrid cooling systems. The effectiveness of these techniques in reducing surface temperature and improving electrical efficiency was assessed. Notably, heat pipe cooling and hybrid PCM-thermoelectric systems demonstrated the most promising improvements, with some methods achieving temperature reductions exceeding 40 ℃ and efficiency enhancements over 15%. Future research directions include developing advanced nanofluid formulations, optimizing the design of heat pipes and heat sinks, integrating multi-functional coatings, and enhancing the real-world durability of cooling materials for inventing innovative, sustainable, and eco-friendly cooling systems. By providing a structured assessment of emerging PV cooling techniques, this study is a valuable resource for researchers and engineers striving to improve solar energy efficiency, reduce thermal losses, and advance the sustainability of photovoltaic technologies.





    [1] Lv Y (2023) Transitioning to sustainable energy: Opportunities, challenges, and the potential of blockchain technology. Front Energy Res, 11. https://doi.org/10.3389/fenrg.2023.1258044 doi: 10.3389/fenrg.2023.1258044
    [2] Østergaard PA, Duic N, Noorollahi Y, et al. (2020) Sustainable development using renewable energy technology. Renewable Energy 146: 2430–2437. https://doi.org/10.1016/j.renene.2019.08.094 doi: 10.1016/j.renene.2019.08.094
    [3] Rabaia MKH, Abdelkareem MA, Sayed ET, et al. (2021) Environmental impacts of solar energy systems: A review. Sci Total Environ 754: 141989. https://doi.org/10.1016/j.scitotenv.2020.141989 doi: 10.1016/j.scitotenv.2020.141989
    [4] El-Hadary MI, Senthilraja S, Zayed ME (2023) A hybrid system coupling spiral type solar photovoltaic thermal collector and electrocatalytic hydrogen production cell: Experimental investigation and numerical modeling. Process Saf Environ Prot 170: 1101–1120. https://doi.org/10.1016/j.psep.2022.12.079 doi: 10.1016/j.psep.2022.12.079
    [5] Debbarma M, Sudhakar K, Baredar P (2017) Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review. Renewable Sustainable Energy Rev 73: 1276–1288. https://doi.org/10.1016/j.rser.2017.02.035 doi: 10.1016/j.rser.2017.02.035
    [6] Abd Elaziz M, Senthilraja S, Zayed ME, et al. (2021) A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Appl Therm Eng 193: 117055. https://doi.org/10.1016/j.applthermaleng.2021.117055 doi: 10.1016/j.applthermaleng.2021.117055
    [7] Kalogirou SA (2023) Solar energy engineering: Processes and systems. Academic Press (3rd Edition). Avaialble from: https://shop.elsevier.com/books/solar-energy-engineering/kalogirou/978-0-323-99350-0.
    [8] Attia MEH, Zayed ME, Kabeel AE (2024) Design and performance optimization of a novel zigzag channeled solar photovoltaic thermal system: Numerical investigation and parametric analysis. J Clean Prod 434: 140220. https://doi.org/10.1016/j.jclepro.2023.140220 doi: 10.1016/j.jclepro.2023.140220
    [9] Bourisli RI, Zaher FA, Aldalali BS (2024) Reducing the operating temperature and improving the efficiency of PV modules using guiding vanes. Sol Energy 269: 112345. https://doi.org/10.1016/j.solener.2024.112345 doi: 10.1016/j.solener.2024.112345
    [10] Dhilipan J, Vijayalakshmi N, Shanmugam DB (2022) Performance and efficiency of different types of solar cell material—A review. Mater Today Proc 66: 1295–1302. https://doi.org/10.1016/j.matpr.2022.05.132 doi: 10.1016/j.matpr.2022.05.132
    [11] Dwivedi P, Sudhakar K, Soni A, et al. (2020) Advanced cooling techniques of PV modules: A state of art. Case Stud Therm Eng, 21. https://doi.org/10.1016/j.csite.2020.100674 doi: 10.1016/j.csite.2020.100674
    [12] Kazem HA, Al-Waeli AA, Chaichan MT, et al. (2023) Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review. Case Stud Therm Eng 49: 103316. https://doi.org/10.1016/j.csite.2023.103316 doi: 10.1016/j.csite.2023.103316
    [13] Maghrabie HM, Elsaid K, Sayed ET, et al. (2022) Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. J Energy Storage 48: 103937. https://doi.org/10.1016/j.est.2021.103937 doi: 10.1016/j.est.2021.103937
    [14] Tiwari S, Swaminathan M, Harender SES, et al. (2022) Performance enhancement of the photovoltaic system with different cooling methods. Environ Sci Pollut Res Int 29: 45107–45130. https://doi.org/10.1007/s11356-022-20330-x doi: 10.1007/s11356-022-20330-x
    [15] Sharaby MR, Younes M, Baz F, et al. (2024) State-of-the-Art review: Nanofluids for photovoltaic thermal systems. J Contemp Technol Aappl Eng 3: 11–24. https://doi.org/10.21608/jctae.2024.288445.1025 doi: 10.21608/jctae.2024.288445.1025
    [16] Sheik MA, Aravindan MK, Cuce E, et al. (2022) A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials. Int J Low-Carbon Technol 17: 768–783. https://doi.org/10.1093/ijlct/ctac053 doi: 10.1093/ijlct/ctac053
    [17] Solar radiation: What it is and how it is produced—Iberdrola. Accessed: Jun. 22, 2023. Available from: https://www.iberdrola.com/social-commitment/solar-radiation.
    [18] Kumar Gupta A, Kakkar S, Chaudhary R, et al. (2021) Sun irradiance trappers for solar PV module to operate on maximum power: An experimental study. https://doi.org/10.17762/turcomat.v12i5.1759
    [19] Singh AK Singh RR (2021) An overview of factors influencing solar power efficiency and strategies for enhancing. 2021 Innovations Power Adv Comput Techno (i-PACT). https://doi.org/10.1109/i-PACT52855.2021.9696845
    [20] Ramkiran B, Sundarabalan CK, Sudhakar K (2020) Performance evaluation of solar PV module with filters in an outdoor environment. Case Stud Therm Eng 21: 100700. https://doi.org/10.1016/j.csite.2020.100700 doi: 10.1016/j.csite.2020.100700
    [21] Al-Maghalseh M (2018) Experimental study to investigate the effect of dust, wind speed and temperature on the PV module performance. Jordan J Mech Ind Eng 12: 123–129.
    [22] Climate of Singapore (2024) Available from: https://www.weather.gov.sg/climate-climate-of-singapore/.
    [23] Panjwani MK, Narejo GB (2014) Effect of humidity on the efficiency of solar cell (photovoltaic). Int J Eng Res Gen Sci, 2.
    [24] Hosenuzzaman M, Hasanuzzaman M, Rahim NA, et al. (2014) Factors affecting the PV based power generation. 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, 20. https://doi.org/10.1049/cp.2014.1467
    [25] Abderrezek M, Fathi M (2017) Experimental study of the dust effect on photovoltaic panels' energy yield. Sol Energy 142: 308–320. https://doi.org/10.1016/j.solener.2016.12.040 doi: 10.1016/j.solener.2016.12.040
    [26] Fouad MM, Shihata LA, Morgan ESI (2017) An integrated review of factors influencing the performance of photovoltaic panels. Renewable Sustainable Energy Rev 80: 1499–1511. https://doi.org/10.1016/j.rser.2017.05.141 doi: 10.1016/j.rser.2017.05.141
    [27] Kumar P, Shukla AK, Sudhakar K, et al. (2017) Experimental exergy analysis of water-cooled PV module. Int J Exergy 23: 197–209. https://doi.org/10.1504/IJEX.2017.085768 doi: 10.1504/IJEX.2017.085768
    [28] Bernadette D, Twizerimana M, Bakundukize A, et al. (2021) Analysis of shading effects in solar PV system. Int J Sustainable Green Energy 10: 47. https://doi.org/10.11648/j.ijrse.20211002.13 doi: 10.11648/j.ijrse.20211002.13
    [29] Bilen K, Erdoğan İ (2023) Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Sol Energy 262: 111829. https://doi.org/10.1016/j.solener.2023.111829 doi: 10.1016/j.solener.2023.111829
    [30] Solanki R, Singh V, Varshney L, et al (2023) Advanced cooling technique to improve efficiency of Solar Panel. 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), 1–6. https://doi.org/10.1109/ICICAT57735.2023.10263658
    [31] Pomares-Hernández C, Zuluaga-García EA, Escorcia Salas GE, et al (2021) Computational modeling of passive and active cooling methods to improve PV panels efficiency. Appl Sci 11: 11370. https://doi.org/10.3390/app112311370 doi: 10.3390/app112311370
    [32] Ahmadi R, Monadinia F, Maleki M (2021) Passive/active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam. Sol Energy Mater Sol Cells 222: 110942. https://doi.org/10.1016/j.solmat.2020.110942 doi: 10.1016/j.solmat.2020.110942
    [33] Dida M, Boughali S, Bechki D, et al. (2021) Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions. Energy Convers Manage 243: 114328. https://doi.org/10.1016/j.enconman.2021.114328 doi: 10.1016/j.enconman.2021.114328
    [34] Ahmad EZ, Sopian K, Jarimiet H, et al. (2021) Recent advances in passive cooling methods for photovoltaic performance enhancement. Int J Electr Comput Eng 11: 146. https://doi.org/10.11591/ijece.v11i1.pp146-154 doi: 10.11591/ijece.v11i1.pp146-154
    [35] Rickric OG, Martes AS, Pagatpatan GI, et al. (2020) Hybrid cooling system for solar PV panel. Int J Emerging Trends Eng Res 8: 4079–4083. https://doi.org/10.30534/ijeter/2020/08882020 doi: 10.30534/ijeter/2020/08882020
    [36] Tiwari MK, Mishra V, Dev R, et al (2023) Effects of active cooling techniques to improve the overall efficiency of photovoltaic module—An updated review. E3S Web Conf 387: 01012. https://doi.org/10.1051/e3sconf/202338701012 doi: 10.1051/e3sconf/202338701012
    [37] Sharaf M, Yousef MS, Huzayyin AS (2022) Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ Sci Pollut Res Int 29: 26131–26159. https://doi.org/10.1007/s11356-022-18719-9 doi: 10.1007/s11356-022-18719-9
    [38] Zohuri B (2016) Heat pipe design and technology: Modern applications for practical thermal managemen. Springer Cham. https://doi.org/10.1007/978-3-319-29841-2
    [39] Basri MH, Yaakob Y, Kamaruzaman Z, et al. (2022) Heat pipe as a passive cooling device for PV panel performance enhancement. J Adv Res Appl Sci Eng Technol 28: 190–198. https://doi.org/10.37934/araset.28.2.190198 doi: 10.37934/araset.28.2.190198
    [40] Eshghi H, Kahani M, Zamen M (2022) Cooling of photovoltaic panel equipped with single circular heat pipe: An experimental study. 3: 229–235. https://doi.org/10.22044/rera.2022.11523.1097
    [41] Praveenkumar S, Gulakhmadov A, Agyekumet EB, et al. (2022) Experimental study on performance enhancement of a photovoltaic module incorporated with CPU heat pipe—A 5E analysis. Sensors, 22. https://doi.org/10.3390/s22176367 doi: 10.3390/s22176367
    [42] Al-Amri F, Maatallah TS, Al-Amri OF, et al. (2022) Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alex Eng J 61: 1413–1424. https://doi.org/10.1016/j.aej.2021.06.046 doi: 10.1016/j.aej.2021.06.046
    [43] Kaneesamkandi Z, Almalki MJ, Sayeed A, et al. (2023) Passive cooling of PV modules using heat pipe thermosiphon with acetone: Experimental and theoretical study. Appl Sci 13: 3. https://doi.org/10.3390/app13031457 doi: 10.3390/app13031457
    [44] Sabry M, Lashin A (2023) Performance of a heat-pipe cooled concentrated photovoltaic/thermoelectric hybrid system. Energies 16: 1438. https://doi.org/10.3390/en16031438 doi: 10.3390/en16031438
    [45] Arifin Z, Tjahjana DDDP, Hadi S, et al. (2020) Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. Int J Photoenergy. https://doi.org/10.1155/2020/1574274 doi: 10.1155/2020/1574274
    [46] Arifin Z, Suyitno S, Tjahjana DDDP, et al. (2020) The effect of heat sink properties on solar cell cooling systems. Appl Sci 10: 1–16. https://doi.org/10.3390/app10217919 doi: 10.3390/app10217919
    [47] Hudișteanu SV, Țurcanu FE, Cherecheș NC, et al. (2021) Enhancement of pv panel power production by passive cooling using heat sinks with perforated fins. Appl Sci 11: 23. https://doi.org/10.3390/app112311323 doi: 10.3390/app112311323
    [48] Salehi R, Jahanbakhshi A, Reza Golzarian M, et al. (2021) Evaluation of solar panel cooling systems using anodized heat sink equipped with thermoelectric module through the parameters of temperature, power and efficiency. Energy Convers Manage: X, 11. https://doi.org/10.1016/j.ecmx.2021.100102 doi: 10.1016/j.ecmx.2021.100102
    [49] Krstic M, Pantic L, Djordjevic S, et al. (2024) Passive cooling of photovoltaic panel by aluminum heat sinks and numerical simulation. Ain Shams Eng J, 15. https://doi.org/10.1016/j.asej.2023.102330 doi: 10.1016/j.asej.2023.102330
    [50] Elminshawy NAS, El-Damhogi DG, Ibrahim IA, et al. (2022) Assessment of floating photovoltaic productivity with fins-assisted passive cooling. Appl Energy 325: 119810. https://doi.org/10.1016/j.apenergy.2022.119810 doi: 10.1016/j.apenergy.2022.119810
    [51] Kirpichnikova IM, Sudhakar K, Makhsumov IB, et al. (2022) Thermal model of a photovoltaic module with heat-protective film. Case Stud Therm Eng, 30. https://doi.org/10.1016/j.csite.2021.101744 doi: 10.1016/j.csite.2021.101744
    [52] Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E (2017) Performance of nanofluid-based photovoltaic/thermal systems: A review. Renewable Sustainable Energy Rev 76: 323–352. https://doi.org/10.1016/j.rser.2017.03.025 doi: 10.1016/j.rser.2017.03.025
    [53] Murtadha TK, Dil Hussein AA, Alalwany AAH, et al. (2022) Improving the cooling performance of photovoltaic panels by using two passes circulation of titanium dioxide nanofluid. Case Stud Therm Eng, 36. https://doi.org/10.1016/j.csite.2022.102191 doi: 10.1016/j.csite.2022.102191
    [54] Hamdan M (2022) Performance enhancement of a photovoltaic module by passive cooling using water-based aluminum oxide nano-fluid. J Ecol Eng 23: 276–286. https://doi.org/10.12911/22998993/146675 doi: 10.12911/22998993/146675
    [55] Ibrahim A, Ramadan MR, Khallaf AEM, et al. (2023) A comprehensive study for Al2O3 nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions. Environ Sci Pollut Res Int 30: 106838–106859. https://doi.org/10.1007/s11356-023-25928-3 doi: 10.1007/s11356-023-25928-3
    [56] Jose JPA, Soni PK, Hemalatha N, et al. (2023) An analysis of the effects of nanofluid-based serpentine tube cooling enhancement in solar photovoltaic cells for green cities. J Nanomater 2023: 1–15. https://doi.org/10.1155/2023/3456536 doi: 10.1155/2023/3456536
    [57] Salehi R, Jahanbakhshi A, Ooi JB, et al. (2023) Study on the performance of solar cells cooled with heatsink and nanofluid added with aluminum nanoparticle. Int J Thermofluids, 20. https://doi.org/10.1016/j.ijft.2023.100445 doi: 10.1016/j.ijft.2023.100445
    [58] Abdollahi N, Rahimi M (2020) Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling. Renewable Energy 147: 302–309. https://doi.org/10.1016/j.renene.2019.09.002 doi: 10.1016/j.renene.2019.09.002
    [59] Velmurugan K, Karthikeyan V, Korukonda TB, et al. (2020) Experimental studies on PV module cooling with radiation source PCM matrix. IEEE Access 8: 145936–145949. https://doi.org/10.1109/ACCESS.2020.3012272 doi: 10.1109/ACCESS.2020.3012272
    [60] Rubaiee S, Fazal MA (2022) The influence of various solar radiations on the efficiency of a photovoltaic solar module integrated with a passive cooling system. Energies 15: 9584. https://doi.org/10.3390/en15249584 doi: 10.3390/en15249584
    [61] Agarwal N, Saxena A (2022) Performance characteristics of a photovoltaic panel integrated with PCM packed cylindrical tubes for cooling. Int J Sustainable Energy 41: 444–468. https://doi.org/10.1080/14786451.2021.1950721 doi: 10.1080/14786451.2021.1950721
    [62] Durez A, Ali M, Waqas A, et al. (2023) Modelling and optimization of phase change materials (PCM)-based passive cooling of solar PV panels in multi climate conditions. Front Energy Res, 11. https://doi.org/10.3389/fenrg.2023.1121138 doi: 10.3389/fenrg.2023.1121138
    [63] Sheikh Y, Jasim M, Qasim M, et al. (2024) Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study. Int J Thermofluids 23: 100748. https://doi.org/10.1016/j.ijft.2024.100748 doi: 10.1016/j.ijft.2024.100748
    [64] Drebushchak VA (2008) Introduction the peltier effect. J Therm Anal Calorim 91: 311–315. https://doi.org/10.1007/s10973-007-8336-9 doi: 10.1007/s10973-007-8336-9
    [65] Metwally H, Mahmoud NA, Aboelsoud W, et al. (2021) Yearly performance of the photovoltaic active cooling system using the thermoelectric generator. Case Stud Therm Eng 27: 101252. https://doi.org/10.1016/j.csite.2021.101252 doi: 10.1016/j.csite.2021.101252
    [66] Khan MAI, Khan MI, Kazim AH, et al. (2021) An experimental and comparative performance evaluation of a hybrid photovoltaic-thermoelectric system. Front Energy Res, 9. https://doi.org/10.3389/fenrg.2021.722514 doi: 10.3389/fenrg.2021.722514
    [67] Praveenkumar S, Agyekum EB, Alwan NT, et al. (2022) Experimental assessment of thermoelectric cooling on the efficiency of PV module. Int J Renewable Energy Res 12: 1670–1681. https://doi.org/10.20508/ijrer.v12i3.13087.g8553 doi: 10.20508/ijrer.v12i3.13087.g8553
    [68] Faheem M, Abu Bakr M, Ali M, et al. (2024) Evaluation of efficiency enhancement in photovoltaic panels via integrated thermoelectric cooling and power generation. Energies 17: 2590. https://doi.org/10.3390/en17112590 doi: 10.3390/en17112590
    [69] Ramkiran B, Sundarabalan CK, Sudhakar K (2021) Sustainable passive cooling strategy for PV module: A comparative analysis. Case Stud Therm Eng, 27. https://doi.org/10.1016/j.csite.2021.101317 doi: 10.1016/j.csite.2021.101317
    [70] Dwivedi P, Ganesh SA, Sudhakar K (2023) Thermal and electrical performance of uncooled, nature-cooled, and photovoltaic thermal module. Int J Photoenergy. https://doi.org/10.1155/2023/4720545 doi: 10.1155/2023/4720545
    [71] Rukman, NS, Fudholi A, Utari PA, et al. (2021) Bi-fluid cooling effect on electrical characteristics of flexible photovoltaic panel. J Mechatron Electr Power Veh Technol 12: 51–56. https://doi.org/10.14203/j.mev.2021.v12.51-56 doi: 10.14203/j.mev.2021.v12.51-56
    [72] Agyekum EB, PraveenKumar S, Alwan NT (2021) Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: Experimental investigation. Heliyon 7: e07920. https://doi.org/10.1016/j.heliyon.2021.e07920 doi: 10.1016/j.heliyon.2021.e07920
    [73] Chiang W, Permana I, Wang F, et al. (2022) Experimental investigation for an innovative hybrid photovoltaic/Thermal (PV/T) solar system. Energy Rep 8: 910–918. https://doi.org/10.1016/j.egyr.2022.10.264 doi: 10.1016/j.egyr.2022.10.264
    [74] Azmi MSFM, Hussain MH, Rahim SRA, et al. (2023) Hybrid cooling system for solar photovoltaic panel. J Phys Conf Ser 2550: 012004. https://doi.org/10.1088/1742-6596/2550/1/012004 doi: 10.1088/1742-6596/2550/1/012004
    [75] Madurai Elavarasan R, Nadarajah M, Pugazhendhi R, et al. (2024) An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels. Appl Energy 356: 122371. https://doi.org/10.1016/j.apenergy.2023.122371 doi: 10.1016/j.apenergy.2023.122371
    [76] Said Z, Ahmad FF, Radwan AM, et al. (2023) New thermal management technique for PV module using Mist/PCM/Husk: An experimental study. 401: 136798. https://doi.org/10.1016/j.jclepro.2023.136798
    [77] Kumar R, Montero FJ, Lamba R, et al. (2023) Thermal management of photovoltaic-thermoelectric generator hybrid system using radiative cooling and heat pipe. Appl Therm Eng 227: 120420. https://doi.org/10.1016/j.applthermaleng.2023.120420 doi: 10.1016/j.applthermaleng.2023.120420
    [78] Hamed MH, Hassan H, Ookawara S, et al. (2024) Performance comparative study on passively cooled concentrated photovoltaic (PV) using adsorption/desorption and heat sink cooling methods: Experimental investigations. Energy 307: 132700. https://doi.org/10.1016/j.energy.2024.132700 doi: 10.1016/j.energy.2024.132700
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(994) PDF downloads(190) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog