Research article Special Issues

Analysis of thermal insulation in social housing in Spain (1939–1989) and its possible adaptation to the Sustainable Development Goals (SDGs)

  • Received: 04 August 2022 Revised: 24 November 2022 Accepted: 12 December 2022 Published: 21 December 2022
  • The construction of protected housing in Spain during the period analysed (1939–1989) reached its maximum between 1950–1980 with the construction of almost three million homes per year. The analysis of the homes built for railroad workers from this housing stock is distinct for four main reasons: it is a housing stock with a representative number of homes in relation to the total of social housing built in Spain, which is still mostly in use and covers all the typologies used in the country and which is dispersed throughout it. Thus, for the present analysis, there is a sample that is adequately representative of the whole stock of social housing constructed in Spain, this sample enables a comparative global analysis that can be extrapolated to the remaining stock. The objective of this study is to analyse the energy efficiency of homes through the thermal analysis of the envelope, as well as to acknowledge the specific constructive limitations of these homes and if possible, their rehabilitation that guarantees compliance with the required standards regarding sustainability and energy efficiency set by the Sustainable Development Goals (SDGs) established in the 2030 Agenda. This is a crucial goal to achieve, as the Spanish building stock currently consumes 30% of the total energy consumed, in addition to the socioeconomic profile and the potential for energy poverty, there is a portion of social housing with a precarious construction lacking the heating facilities, which is required due to the weather, with a significant potential for savings and the incorporation of renewable energies.

    Citation: Aurora Martínez-Corral, Javier Cárcel-Carrasco, Jangveer Kaur, Fabiola Colmenero Fonseca. Analysis of thermal insulation in social housing in Spain (1939–1989) and its possible adaptation to the Sustainable Development Goals (SDGs)[J]. AIMS Energy, 2022, 10(6): 1190-1215. doi: 10.3934/energy.2022056

    Related Papers:

  • The construction of protected housing in Spain during the period analysed (1939–1989) reached its maximum between 1950–1980 with the construction of almost three million homes per year. The analysis of the homes built for railroad workers from this housing stock is distinct for four main reasons: it is a housing stock with a representative number of homes in relation to the total of social housing built in Spain, which is still mostly in use and covers all the typologies used in the country and which is dispersed throughout it. Thus, for the present analysis, there is a sample that is adequately representative of the whole stock of social housing constructed in Spain, this sample enables a comparative global analysis that can be extrapolated to the remaining stock. The objective of this study is to analyse the energy efficiency of homes through the thermal analysis of the envelope, as well as to acknowledge the specific constructive limitations of these homes and if possible, their rehabilitation that guarantees compliance with the required standards regarding sustainability and energy efficiency set by the Sustainable Development Goals (SDGs) established in the 2030 Agenda. This is a crucial goal to achieve, as the Spanish building stock currently consumes 30% of the total energy consumed, in addition to the socioeconomic profile and the potential for energy poverty, there is a portion of social housing with a precarious construction lacking the heating facilities, which is required due to the weather, with a significant potential for savings and the incorporation of renewable energies.



    加载中


    [1] Sambricio C (ed.) (2003) Un siglo de vivienda social: 1903–2003. Tomo I y Ⅱ. Madrid: Nerea. ISBN 8489569924 ISBN 8489569916 (O.C.).
    [2] Sambricio C (2020) Política de vivienda en el primer franquismo: 1936–1949. Temporánea. Revista de Historia de la Arquitectura, 59–96. ISSN 26598426. https://doi.org/10.12795/TEMPORANEA.2020.01.03
    [3] Scanlon K, Whitehead C, Arrigoitia MF (2014) Social Housing in Europe. S.l.: John Wiley & Sons. ISBN 978-1-118-41234-3. https://doi.org/10.1002/9781118412367
    [4] Moya González L (2008) La vivienda social en Europa: Alemania, Francia y Países Bajos desde 1945[en línea]. S.l.: Mairea Libros. ISBN 978-84-936485-3-4. Available from: https://dialnet.unirioja.es/servlet/libro?codigo=338454.
    [5] Granath Hansson A, Lundgren B (2019) Defining social housing: A discussion on the suitable criteria. Hous, Theory Soc 36: 149–166. https://doi.org/10.1080/14036096.2018.1459826 doi: 10.1080/14036096.2018.1459826
    [6] Capel H (1990) Capitalismo y morfología urbana en España. 1a edición 1975. Barcelona: Círculo de Lectores.
    [7] Tafunell X (2005) Urbanización y vivienda. En Estadísticas históricas de España, siglo XIX-XX, Albert Carreras y Xavier Tafunell (Coord.), 455–499. Madrid: Fundación BBVA.
    [8] Montaner JM (1999) La segunda posguerra en Europa. España. En Historia de la arquitectura moderna, 8a edición revisada y Ampliada., 896–935. Barcelona: Editorial Gustavo Gili SL.
    [9] Cuéllar D, Martínez-Corral A, Cárcel-Carrasco J (2022) Planes, materiales, lugares: análisis de la vivienda social ferroviaria en España, 1939–1989[en línea]. Valencia: Editorial 3ciencias. Área de Desarrollo y Sostenibilidad SL. ISBN 978-84-12-49433-4. Available from: https://www.3ciencias.com/libros/libro/planes-materiales-lugares-analisis-de-la-vivienda-social-ferroviaria-en-espana-1939-1989/.
    [10] Web1: https://www.idae.es/home.
    [11] Martínez-Corral A, Cuéllar D (2021) When construction was linear. Analysis of the energy sustainability of social housing in Spain (1939–1989). Vitruvio—Int J Archit Technol Sustainability 6: 38–55. https://doi.org/10.4995/vitruvio-ijats.2021.15383 doi: 10.4995/vitruvio-ijats.2021.15383
    [12] Daroca Rubio F (2018) El fundamento social en las viviendas de Rafael de La Hoz. Actas del X Congreso DOCOMOMO Ibérico. El fundamento social de la arquitectura; de lo vernáculo y lo moderno, una síntesis cargada de oportunidades. Badajoz: s.n., 135–140.
    [13] Jordá Such C (2007) Hacia la modernidad técnica. Vivienda moderna en la Comunidad Valenciana. S.l.: s.n., 238.
    [14] Martínez-Corral A, Cuéllar D (2020) Las soluciones constructivas en la vivienda durante el franquismo: el caso de la vivienda ferroviaria. Informes de la Construcción[en línea] 72: 558, e341. https://doi.org/10.3989/ic.71047 doi: 10.3989/ic.71047
    [15] Web2: https://www.mitma.gob.es/el-ministerio/planes-estrategicos/estrategia-a-largo-plazo-para-la-rehabilitacion-energetica-en-el-sector-de-la-edificacion-en-espana.
    [16] Web3: https://www.codigotecnico.org/DocumentosCTE/AhorroEnergia.html.
    [17] Puig SE, Alberini RS, Eggel A (2021) Viviendas sociales de la Ciudad de Santa Fe. Cómo mejorar su Etiqueta de Eficiencia Energética. Caso de estudio: Vivienda Universal. Arquitecno, 18, Art. 18. https://doi.org/10.30972/arq.0185675
    [18] Vásquez-Manquián KP, Decinti-Weiss AV, Díaz-Huenchuan MA (2020) Edificios Prefabricados En Chile: Diagnóstico Energético a 40 Años De Su Construcción. Caso De Estudio: Edificios Kpd, Santiago De Chile. Revista Hábitat Sustentable 10: 8–23. https://doi.org/10.22320/07190700.2020.10.02.01
    [19] Ding C, Feng W, Li X, et al. (2019) Urban-scale building energy consumption database: A case study for Wuhan, China. Energy Procedia 158: 6551–6556. https://doi.org/10.1016/j.egypro.2019.01.102 doi: 10.1016/j.egypro.2019.01.102
    [20] Giraldo DC, Bedoya DC, Alonso DL (2015) Eficiencia Energética Y Sostenibilidad En La Vivienda De Interés Social En Colombia. 2015, 26.
    [21] Alías H, Jacobo GJ (2011) Eficiencia energética y sostenibilidad en viviendas de interés social: Incidencia del material de la envolvente en el consumo eléctrico para mantener el confort higrotérmico interior. https://doi.org/10.14409/ar.v1i1.925
    [22] Winston N, Pareja Eastaway M (2008) Sustainable housing in the urban context: International sustainable development indicator sets and housing. Soc Indic Res 87: 211–221. https://doi.org/10.1007/s11205-007-9165-8 doi: 10.1007/s11205-007-9165-8
    [23] Roberge M (2006) Lo esencial de la gestión documental: Sistema integrado de gestión de los documentos analógicos y de los documentos electrónicos. Géstar.
    [24] Teso L, Carnieletto L, Sun K, et al. (2022) Large scale energy analysis and renovation strategies for social housing in the historic city of Venice. Sustainable Energy Technol Assess 52: 102041. https://doi.org/10.1016/j.seta.2022.102041 doi: 10.1016/j.seta.2022.102041
    [25] Gaudry KH, Fernandez G (2019) Normativas de energía en edificaciones ante el cambio climático. Avances en Ciencias e Ingeniería, 11. https://doi.org/10.18272/aci.v11i2.1285
    [26] Rodriguez SG, Campoy MD, Cantu EC, et al. (2015) Propuesta de modelo integral de evaluación sostenible de la vivienda social en México. Ambiente Construído 15: 7–17. https://doi.org/10.1590/s1678-86212015000400036 doi: 10.1590/s1678-86212015000400036
    [27] Cooper J, Jones K (2008) Routine maintenance and sustainability of existing social housing. Proceedings CIB W070 Conference in Facilities Management, 361–368.
    [28] Alba Dorado MI (2019) Concepção de uma metodologia para a identificação, caracterização, valoração e intervenção na paisagem do patrimô nio industrial. En E. R. de Oliveira (Ed.), Memória ferroviária e cultura do trabalho: Balanços teóricos e metodologias de registro de bens ferroviários numa perspectiva multidisciplinar (1.a ed., 307–332). Cultura Acadêmica. Available from: https://memoriaferroviaria.assis.unesp.br/wp-content/documentos/livro_v1.pdf.
    [29] Ferrari MR, Bruna LA (2021) Metodología para la construcción del Inventario de Recursos Paisajísticos en la Quebrada de Humahuaca (Argentina), Patrimonio Mundial. EURE (Santiago), 47: 251–274. https://doi.org/10.7764/eure.47.141.12
    [30] Fernández V (2020) Fundamentos de Metodología de Investigación. https://doi.org/10.3926/oss.38es
    [31] Carvalho MCM.de. (org.) (2021) Construindo o saber: Metodologia científica—Fundamentos e técnicas. Papirus Editora.
    [32] Joseph K (2021) Mastering Zotero Available from: https://pressbooks.library.yorku.ca/masteringzotero/front-matter/introduction/.
    [33] Cuéllar D, Martínez-Corral A (2021) Metodología y práctica para un inventario de viviendas ferroviarias de nueva construcción en España (1939-1990). Revista TST, enero, 124–149. Available from: https://1drv.ms/b/s!Alw91UAhEiptm9MZDW-DlHSJa8gxow?e=Dxgfno.
    [34] Suárez R, Fragoso J (2016) Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción 68: e136–e136. https://doi.org/10.3989/ic.15.4678
    [35] Azpilicueta E (2004) La construcción de la arquitectura de postguerra en España (1939–1962). PhD, E.T.S. Arquitectura (UPM). Available from: http://oa.upm.es/23197/.
    [36] Azpilicueta E, Araujo R (2012) El mito industrial. Revista Tectónica, 38: 4–19.
    [37] Lahuerta J (1972) Primer Congreso nacional de la Calidad. El arquitecto ante el control de calidad. Informes de la Construcción. 25: 67–80. https://doi.org/10.3989/ic.1972.v25.i242.3219
    [38] Terés-Zubiaga J, Martín K, Erkoreka A, et al. (2013) Field assessment of thermal behaviour of social housing apartments in Bilbao, Northern Spain. Energy Build 67: 118–135. https://doi.org/10.1016/j.enbuild.2013.07.061 doi: 10.1016/j.enbuild.2013.07.061
    [39] Al-Homoud DrMS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40: 353–366. https://doi.org/10.1016/j.buildenv.2004.05.013 doi: 10.1016/j.buildenv.2004.05.013
    [40] Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build 43: 2549–2563. https://doi.org/10.1016/j.enbuild.2011.05.015 doi: 10.1016/j.enbuild.2011.05.015
    [41] Chaudhry SI, Das M (2016) Design of optimum reference temperature profiles for energy saving control of indoor temperature in a building. AIMS Energy 6: 906–920. https://doi.org/10.3934/energy.2016.6.906 doi: 10.3934/energy.2016.6.906
    [42] Fernández Ans P (2019) Coste óptimo y viabilidad económica de la rehabilitación energética de viviendas en España. Revista Hábitat Sustentable 9: 64–77. http://dx.doi.org/10.22320/07190700.2019.09.02.06 doi: 10.22320/07190700.2019.09.02.06
    [43] Fernández PX, Rubio C, Guevara FJ (2019) Rehabilitación energética de viviendas en España: confort térmico y efectividad. Anales de Edificación 5: 37–50. http://dx.doi.org/10.20868/ade.2019.3913 doi: 10.20868/ade.2019.3913
    [44] Asdrubali F, Baldinelli G, Bianchi F (2012) A quantitative methodology to evaluate thermal bridges in buildings. Appl Energy 97: 365–373. https://doi.org/10.1016/j.apenergy.2011.12.054 doi: 10.1016/j.apenergy.2011.12.054
    [45] Ilomets S, Kusch K, Paap L, et al. (2017) Impact of linear thermal bridges on thermal transmittance of renovated apartment buildings. J Civil Eng Manage 23: 96–104. https://doi.org/10.3846/13923730.2014.976259 doi: 10.3846/13923730.2014.976259
    [46] Capozzoli A, Gorrino A, Corrado V (2013) A building thermal bridges sensitivity analysis. Appl Energy 107: 229–243. https://doi.org/10.1016/j.apenergy.2013.02.045 doi: 10.1016/j.apenergy.2013.02.045
    [47] Santamouris M, Kolokotsa D (2013) Passive cooling dissipation techniques for buildings and other structures: The state of the art. Energy Build 57: 74–94. https://doi.org/10.1016/j.enbuild.2012.11.002 doi: 10.1016/j.enbuild.2012.11.002
    [48] De Luxán G, De Diego M, Gómez Muñoz G, et al. (2015) Cuentas energéticas no habituales en edificación residencial. Informes de la Construcción 67: m028–m028. https://doi.org/10.3989/ic.14.059
    [49] Web4: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/medio-ambiente-industrial/prevencion-y-control-integrados-de-la-contaminacion-ippc/.
    [50] Peñalvo-López E, Cárcel-Carrasco J, Alfonso-Solar D, et al. (2020) Study of the improvement on energy efficiency for a building in the mediterranean area by the installation of a green roof system. Energies 13: 12–46. https://doi.org/10.3390/en13051246 doi: 10.3390/en13051246
    [51] Rodríguez JMS, Carrasco FJC (2015) Investigación de los factores incidentes en la eficiencia energética y mantenibilidad de los sistemas de iluminación interior de edificios. S.l.: 3Ciencias. ISBN 978-84-943990-0-8.
    [52] Serna EM, Galadí JIR (2015) Rehabilitación integral de barriadas con dificultades sociales en Andalucía. La experiencia de San Martín de Porres en Córdoba. Informes de la Construcción 67: m027–m027. https://doi.org/10.3989/ic.14.051
    [53] Kurtz F, Monzón M, López-Mesa B (2015) Obsolescencia de la envolvente térmica y acústica de la vivienda social de la postguerra española en áreas urbanas vulnerables. El caso de Zaragoza. Informes de la Construcción 67: m021–m021. https://doi.org/10.3989/ic.14.062
    [54] Vieites E, Vassileva I, Arias JE (2015) European initiatives towards improving the energy efficiency in existing and historic buildings. Energy Procedia 75: 1679–1685. https://doi.org/10.1016/j.egypro.2015.07.418 doi: 10.1016/j.egypro.2015.07.418
    [55] Zagorskas J, Zavadskas EK, Turskis Z, et al. (2014) Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy Build 78: 35–42. https://doi.org/10.1016/j.enbuild.2014.04.010 doi: 10.1016/j.enbuild.2014.04.010
    [56] Gallego-Valadés A, Ródenas-Rigla F, Garcés-Ferrer J (2021) Spatial distribution of public housing and urban Socio-Spatial inequalities: An exploratory analysis of the valencia case. Sustainability 13: 11381. https://doi.org/10.3390/su132011381 doi: 10.3390/su132011381
    [57] Moriarty P, Honnery D (2018) Energy policy and economics under climate change. AIMS Energy 6: 272–290. https://doi.org/10.3934/energy.2018.2.272 doi: 10.3934/energy.2018.2.272
    [58] Martínez-corral A, Cárcel-Carrasco J, Carnero MC, et al. (2022) Analysis for the heritage consideration of historic spanish railway stations (1848–1929). Buildings 12: 206. https://doi.org/10.3390/buildings12020206 doi: 10.3390/buildings12020206
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1132) PDF downloads(94) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog