Research article Topical Sections

Performance study of a baffled solar dryer

  • Received: 30 August 2021 Accepted: 04 November 2021 Published: 11 November 2021
  • This paper presents a hybrid solar dryer with baffles disposed of on the solar collector. When the levels of solar radiation are low, an electrical heater is used to increase the drying air temperature. A photovoltaic system feeds the electrical heater and the fans, and it is also used to preheat the drying air, increasing the temperature at the inlet of the solar collector. Experimental results of corn drying indicated that the baffles augmented the energy efficiency of the system (from 23.5 to 24.9%) and the temperature rise in the solar collector (from 13.5 to 20.2 ℃), reducing the time required for the corn to reach the final desired moisture content.

    Citation: Cristiana Brasil Maia, Gisele Mol da Silva, Luiz Felippe Guardia Bianchi, André Guimarães Ferreira. Performance study of a baffled solar dryer[J]. AIMS Energy, 2021, 9(6): 1136-1146. doi: 10.3934/energy.2021052

    Related Papers:

  • This paper presents a hybrid solar dryer with baffles disposed of on the solar collector. When the levels of solar radiation are low, an electrical heater is used to increase the drying air temperature. A photovoltaic system feeds the electrical heater and the fans, and it is also used to preheat the drying air, increasing the temperature at the inlet of the solar collector. Experimental results of corn drying indicated that the baffles augmented the energy efficiency of the system (from 23.5 to 24.9%) and the temperature rise in the solar collector (from 13.5 to 20.2 ℃), reducing the time required for the corn to reach the final desired moisture content.



    加载中


    [1] Udomkun P, Romuli S, Schock S, et al. (2020) Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J Environ Manage 268: 110730. doi: 10.1016/j.jenvman.2020.110730
    [2] Shabanali H, Aramyan LH, Sijtsema SJ, et al. (2021) The relationship between household food waste and food security in Tehran city : The role of urban women in household management. Ind Mark Manage 97: 71-83. doi: 10.1016/j.indmarman.2021.06.016
    [3] Madhankumar S, Viswanathan K, Wu W (2021) Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material. Renewable Energy 176: 280-294. doi: 10.1016/j.renene.2021.05.085
    [4] Mohana Y, Mohanapriya R, Anukiruthika T, et al. (2020) Solar dryers for food applications: Concepts, designs, and recent advances. Sol Energy 208: 321-344. doi: 10.1016/j.solener.2020.07.098
    [5] Yadav S, Chandramohan VP (2020) Performance comparison of thermal energy storage system for indirect solar dryer with and without finned copper tube. Sustainable Energy Technol Assess 37: 100609. doi: 10.1016/j.seta.2019.100609
    [6] Lingayat AB, Chandramohan VP, Raju VRK, et al. (2020) A review on indirect type solar dryers for agricultural crops-Dryer setup, its performance, energy storage and important highlights. Appl Energy 258: 114005. doi: 10.1016/j.apenergy.2019.114005
    [7] Belessiotis V, Delyannis E (2011) Solar drying. Sol Energy 85: 1665-1691. doi: 10.1016/j.solener.2009.10.001
    [8] Khanlari A, Sözen A, Afshari F, et al. (2021) Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system. Renewable Energy 175: 1151-1166. doi: 10.1016/j.renene.2021.05.062
    [9] Silva GM da, Ferreira AG, Coutinho RM, et al. (2020) Thermodynamic analysis of a sustainable hybrid dryer. Sol Energy 208: 388-398. doi: 10.1016/j.solener.2020.08.014
    [10] Kamarulzaman A, Hasanuzzaman M, Rahim NA (2021) Global advancement of solar drying technologies and its future prospects: A review. Sol Energy 221: 559-582. doi: 10.1016/j.solener.2021.04.056
    [11] Zoukit A, El Ferouali H, Salhi I, et al. (2019) Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer. Energy 189: 116279. doi: 10.1016/j.energy.2019.116279
    [12] Ananno AA, Masud MH, Dabnichki P, et al. (2020) Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Sol Energy 196: 270-286. doi: 10.1016/j.solener.2019.11.069
    [13] Kiburi FG, Kanali CL, Kituu GM, et al. (2020) Performance evaluation and economic feasibility of a Solar-Biomass hybrid greenhouse dryer for drying banana slices. Renewable Energy Focus 34: 60-68. doi: 10.1016/j.ref.2020.06.009
    [14] Moussaoui H, Bahammou Y, Tagnamas Z, et al. (2021) Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy 168: 131-140. doi: 10.1016/j.renene.2020.12.046
    [15] Goud M, Reddy MVV, Chandramohan VP, et al. (2019) A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Sol Energy 194: 871-885. doi: 10.1016/j.solener.2019.11.031
    [16] Azam MM, Eltawil MA, Amer BMA (2020) Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy 212: 118764. doi: 10.1016/j.energy.2020.118764
    [17] Veeramanipriya E, Umayal Sundari AR (2021) Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava. Sol Energy 215: 240-251. doi: 10.1016/j.solener.2020.12.027
    [18] Simo-Tagne M, Tagne Tagne A, Ndukwu MC, et al. (2021) Numerical study of the drying of cassava roots chips using an indirect solar dryer in natural convection. AgriEngineering 3: 138-157. doi: 10.3390/agriengineering3010009
    [19] Mahmood AJ, Aldabbagh LBY, Egelioglu F (2015) Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer. Energy Convers Manage 89: 599-607. doi: 10.1016/j.enconman.2014.10.028
    [20] Khanlari A, Güler HÖ, Tuncer AD, et al. (2020) Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy 145: 1677-1692. doi: 10.1016/j.renene.2019.07.076
    [21] Sethi CK, Acharya SK, Ghanem SR, et al. (2021) Exergy, energy and economic analysis of a V-groove assist rotating tray type solar cabinet dryer for drying potato chips. J Stored Prod Res 93: 101861. doi: 10.1016/j.jspr.2021.101861
    [22] Silva GM da, Ferreira AG, Coutinho RM, et al. (2020) Experimental analysis of corn drying in a sustainable solar dryer. J Adv Res Fluid Mech Therm Sci, 67.
    [23] Silva GM da, Ferreira AG, Coutinho RM, et al. (2021) Energy and exergy analysis of the drying of corn grains. Renewable Energy 163: 1942-1950. doi: 10.1016/j.renene.2020.10.116
    [24] Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11: 1633-1644. doi: 10.5194/hess-11-1633-2007
    [25] Reboita MS, Rodrigues M, Silva LF, et al. (2016) Aspectos climáticos do estado de Minas Gerais. Revista Bras Climatologia 18: 307-326.
    [26] Rahmatmand A, Harrison SJ, Oosthuizen PH (2020) An innovative method to control surface temperature of a rooftop photovoltaic system. Sol Energy 195: 581-591. doi: 10.1016/j.solener.2019.11.043
    [27] Odeh S, Behnia M (2009) Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering, 30.
    [28] Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG1) (2008) Evaluation of measurement data-Guide to the expression of uncertainty in measurement. International Organization for Standardization Geneva ISBN 50: 134.
    [29] Dincer I, Rosen MA (2007) Exergy, environment and sustainable development, EXERGY, 36-59. doi: 10.1016/B978-008044529-8.50006-9
    [30] Moran MJ, Shapiro HN (2006) Fundamentals of Engineering Thermodynamics, 5th Edition.
    [31] Ferreira AG, Gonçalves LM, Maia CB (2014) Solar drying of a solid waste from steel wire industry. Appl Therm Eng 73: 104-110. doi: 10.1016/j.applthermaleng.2014.07.047
    [32] Ekechukwu OV (1999) Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Convers Manage 40: 593-613. doi: 10.1016/S0196-8904(98)00092-2
    [33] Şevik S, Aktaş M, Dolgun EC, et al. (2019) Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Sol Energy 180: 537-549. doi: 10.1016/j.solener.2019.01.049
    [34] Wang W, Li M, Hassanien RHE, et al. (2018) Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Appl Therm Eng 134: 310-321. doi: 10.1016/j.applthermaleng.2018.01.115
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2063) PDF downloads(197) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog