Research article Special Issues

Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration

  • Received: 02 March 2021 Accepted: 12 April 2021 Published: 25 April 2021
  • Citation: Mahmoud M. Gamil, Mohammed Elsayed Lotfy, Ashraf M. Hemeida, Paras Mandal, Hiroshi Takahashi, Tomonobu Senjyu. Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration[J]. AIMS Energy, 2021, 9(3): 483-515. doi: 10.3934/energy.2021024

    Related Papers:



  • 加载中


    [1] Bakr N, Bahnassy MH (2019) Egyptian Natural Resources. The Soils of Egypt, Springer 33–49.
    [2] Yoldaş Y, Önen A, Muyeen S, Vasilakos AV, et al. (2017) Enhancing smart grid with microgrids: Challenges and opportunities. Renewable Sustainable Energy Rev 72: 205–214. doi: 10.1016/j.rser.2017.01.064
    [3] Abdulgalil MA, Khalid M, Alismail F (2019) Optimal sizing of battery energy storage for a grid-connected microgrid subjected to wind uncertainties. Energies 12: 2412. doi: 10.3390/en12122412
    [4] Beshr E (2013) Comparative study of adding PV/wind energy systems to autonomus micro grid. IEEE 3rd International Conference on Electric Power and Energy Conversion Systems: 1–6.
    [5] Krepl V, Shaheen HI, Fandi G, et al. (2020) The Role of Renewable Energies in the Sustainable Development of Post-Crisis Electrical Power Sectors Reconstruction. Energies 13: 6326. doi: 10.3390/en13236326
    [6] Ullah S, Haidar AM, Hoole P, et al. (2020) The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J Cleaner Prod 122777.
    [7] International renewable energy agency (2018) Renewable Energy Outlook: Egypt.
    [8] Abdo T, EL-Shimy M (2013) Estimation of global solar radiation (gsr) over egypt, The Future of New and Renewable Energy in Arab World. February 12th – 14th, 2013, Assiut, EGYPT.
    [9] Sarkar T, Bhattacharjee A, Samanta H, et al. (2019) Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Renewable Sustainable Energy Rev 191: 102–118.
    [10] Situmorang YA, Zhao Z, Yoshida A, et al. (2020) Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renewable Sustainable Energy Rev 117: 109486. doi: 10.1016/j.rser.2019.109486
    [11] Torigoe K, Hasegawa S, Numata O, et al. (2000) Influence of emission from rice straw burning on bronchial asthma in children. Pediatr Intl 42: 143–150. doi: 10.1046/j.1442-200x.2000.01196.x
    [12] Röder M, Jamieson C, Thornley P (2020) (Stop) burning for biogas. Enabling positive sustainability trade-offs with business models for biogas from rice straw. Biomass Bioenergyy 138: 105598. doi: 10.1016/j.biombioe.2020.105598
    [13] Zhao XG, Zhang ZQ, Xie YM, et al. (2020) Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization. Energy 195: 117014. doi: 10.1016/j.energy.2020.117014
    [14] Castillo-Calzadilla T, Macarulla AM, Kamara-Esteban, O, et al. (2020) A case study comparison between photovoltaic and fossil generation based on direct current hybrid microgrids to power a service building. J Cleaner Prod 244: 118870. doi: 10.1016/j.jclepro.2019.118870
    [15] Alsaidan I, Alanazi A, Gao W, et al. (2017) State-of-the-art in microgrid-integrated distributed energy storage sizing. Energies 10: 1421. doi: 10.3390/en10091421
    [16] Cuesta MA, Castillo-Calzadilla T, Borges C (2020) A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities. Renewable Sustainable Energy Rev 122: 109691. doi: 10.1016/j.rser.2019.109691
    [17] Aguilar-Jiménez J, Velázquez N, Acuña A, et al. (2018) Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Solar Energy 174: 55–65. doi: 10.1016/j.solener.2018.08.078
    [18] Charabi Y, Abdul-Wahab S (2020) The optimal sizing and performance assessment of a hybrid renewable energy system for a mini-gird in an exclave territory. AIMS Energy 8: 669–685. doi: 10.3934/energy.2020.4.669
    [19] Zamani MH, Riahy GH (2008) Introducing a new method for optimal sizing ofa hybrid (wind/pv/battery) system considering instantaneous wind speedvariations. Energy Sustainable Develop 12: 27–33. doi: 10.1016/S0973-0826(08)60426-3
    [20] Ghazvini AM, Olamaei J (2019) Optimal sizing of autonomous hybrid PV system with considerations for V2G parking lot as controllable load based on a heuristic optimization algorithm. Solar Energy 184: 30–39. doi: 10.1016/j.solener.2019.03.087
    [21] Syed IM (2017) Near-optimal standalone hybrid PV/WE system sizing method. Solar Energy 157: 727–734. doi: 10.1016/j.solener.2017.08.085
    [22] Bukar AL, Tan CW, Lau KY (2019) Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy 188: 685–696. doi: 10.1016/j.solener.2019.06.050
    [23] Ho WS, Hashim H, Muis ZA (2012) Integrated biomass power plant and storage for peak load management. Comput Aided Chem Eng 31: 1000–1004. doi: 10.1016/B978-0-444-59506-5.50031-6
    [24] Sufyan M, Abd Rahim N, Tan C, et al. (2019) Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. Plos One 14: e0211642. doi: 10.1371/journal.pone.0211642
    [25] Guerra G, Martinez-Velasco JA (2018) Optimal sizing and operation of energy storage systems considering long term assessment. AIMS Energy 6: 70–96. doi: 10.3934/energy.2018.1.70
    [26] Lehtveer M, Fridahl M (2020) Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences. Energy 213: 118786. doi: 10.1016/j.energy.2020.118786
    [27] Jimenez O, Curbelo A, Suarez Y (2012) Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy Sustainable Develop 16: 98–102. doi: 10.1016/j.esd.2011.12.003
    [28] Ghenai C, Janajreh I (2016) Design of solar-biomass hybrid microgrid system in Sharjah. Energy Procedia 103: 357–362. doi: 10.1016/j.egypro.2016.11.299
    [29] Wincy WB, Edwin M, Sekhar SJ (2020) Energy and exergy evaluation of rice processing mills working with biomass gasifier in parboiling process. Fuel 259: 116255. doi: 10.1016/j.fuel.2019.116255
    [30] Cao L, Iris K, Xiong X, et al. (2020) Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ Res 186: 109547. doi: 10.1016/j.envres.2020.109547
    [31] Dasappa S (2011) Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustainable Develop 15: 203–213. doi: 10.1016/j.esd.2011.07.006
    [32] Liu Z, Xu A, Long B, et al. (2011) Energy from combustion of rice straw: status and challenges to China. Energy Power Eng 3: 325. doi: 10.4236/epe.2011.33040
    [33] Abdelhady S, Borello D, Shaban A, et al. (2014) Viability study of biomass power plant fired with rice straw in Egypt. Energy Procedia 61: 211–215. doi: 10.1016/j.egypro.2014.11.1072
    [34] Borges CE, Kamara-Esteban O, Castillo-Calzadilla T, et al. (2020) Enhancing the missing data imputation of primary substation load demand records. Sustainable Energy Grids Networks 23: 100369. doi: 10.1016/j.segan.2020.100369
    [35] Mehrjerdi H, Rakhshani E (2019) Correlation of multiple time-scale and uncertainty modelling for renewable energy-load profiles in wind powered system. J Cleaner Prod 236: 117644. doi: 10.1016/j.jclepro.2019.117644
    [36] Mohammadi S, Soleymani S, Mozafari B (2014) Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int J Electr Power Energy Syst 54: 525–535. doi: 10.1016/j.ijepes.2013.08.004
    [37] Qiao X, Zou Y, Li Y, et al. (2019) Impact of uncertainty and correlation on operation of micro-integrated energy system. Int J Electr Power Energy Syst 112: 262–271. doi: 10.1016/j.ijepes.2019.03.066
    [38] Li L, Yang L (2012) A chance-constrained programming based energy storage system sizing model considering uncertainty of wind power. International Conference on Sustainable Power Generation and Supply, Hangzhou, 1–6.
    [39] Lennard M, Date A, Yu X (2017) Islanded microgrid energy system parameter estimation using stochastic methods. Solar Energy 147: 300–313. doi: 10.1016/j.solener.2016.12.041
    [40] Ansari MM, Guo C, Shaikh M, et al. (2020) Considering the uncertainty of hydrothermal wind and solar-based DG. Alexandria Eng J 59: 4211–4236. doi: 10.1016/j.aej.2020.07.026
    [41] Luo L, Abdulkareem SS, Rezvani A, et al. (2020) Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. J Energy Storage 28: 101306. doi: 10.1016/j.est.2020.101306
    [42] Thang V, Ha T (2019) Optimal siting and sizing of renewable sources in distribution system planning based on life cycle cost and considering uncertainties. AIMS Energy 7: 211–226. doi: 10.3934/energy.2019.2.211
    [43] Shouman ER (2017) International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renewable Sustainable Energy Rev 77: 916–923. doi: 10.1016/j.rser.2016.12.107
    [44] Kiptoo MK, Adewuyi OB, Lotfy ME, et al. (2019) Assessing the techno-economic benefits of flexible demand resources scheduling for renewable energy–based smart microgrid planning. Future Internet 11: 219. doi: 10.3390/fi11100219
    [45] Ramli MA, Bouchekara H, Alghamdi AS (2018) Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable Energy 121: 400–411. doi: 10.1016/j.renene.2018.01.058
    [46] Singh S, Singh M, Kaushik SC (2016) Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers Manage 128: 178–190. doi: 10.1016/j.enconman.2016.09.046
    [47] Heydari A, Askarzadeh A (2016) Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept. Appl Energy 165: 601–611. doi: 10.1016/j.apenergy.2015.12.095
    [48] Talaat M, Alsayyari AS, Alblawi A, et al. (2020) Hybrid-cloud-based data processing for power system monitoring in smart grids. Sustainable Cities Soc 55: 102049. doi: 10.1016/j.scs.2020.102049
    [49] Sediqi MM, Furukakoi M, Lotfy ME, et al. (2017) Optimal economical sizing of grid-connected hybrid renewable energy system. J Energy Power Eng 11: 244–53.
    [50] Gamil MM, Sugimura M, Nakadomari A, et al. (2020) Optimal Sizing of a Real Remote Japanese Microgrid with Sea Water Electrolysis Plant Under Time-Based Demand Response Programs Energies 13: 3666.
    [51] Sugimura M, Gamil MM, Akter H, et al. (2020) Optimal sizing and operation for microgrid with renewable energy considering two types demand response. J Renewable Sustainable Energy 12: 065901. doi: 10.1063/5.0008065
    [52] Tobaru S, Shigenobu R, Sharma A, et al. (2016) Optimal operation method with fuel cells in plural regional power systems. IEEE Int Conf Evol Comput IEEE: 442–447.
    [53] Murata T, Ishibuchi H (1995) MOGA: Multi-objective genetic algorithms. IEEE Int Conf Evol Comput 1: 289–294.
    [54] Lotfy ME, Senjyu T, Farahat MA, et al. (2017) A frequency control approach for hybrid power system using multi-objective optimization. Energies 10: 80. doi: 10.3390/en10010080
    [55] Afzalan E, Joorabian M (2013) Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable. Int J Electr Power Energy Syst 52: 55–67. doi: 10.1016/j.ijepes.2013.03.017
    [56] Philipson P, Hickey GL, Crowther MJ, et al. (2020) Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data. Comput Stat Data Anal 151: 107010. doi: 10.1016/j.csda.2020.107010
    [57] Maleki A, Khajeh MG, Ameri M (2016) Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. Int J Electr Power Energy Syst 83: 514–524. doi: 10.1016/j.ijepes.2016.04.008
    [58] Fioriti D, Poli D (2019) A novel stochastic method to dispatch microgrids using Monte Carlo scenarios. Electr Power Syst Res 175: 105896. doi: 10.1016/j.epsr.2019.105896
    [59] Zheng Y, Jenkins BM, Kornbluth K, et al. (2018) Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Appl Energy 230: 836–844. doi: 10.1016/j.apenergy.2018.09.015
    [60] Kiptoo MK, Lotfy ME, Adewuyi OB, et al. (2020) Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers Manage 215: 112917. doi: 10.1016/j.enconman.2020.112917
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2682) PDF downloads(264) Cited by(8)

Article outline

Figures and Tables

Figures(20)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog