Research article

Performance assessment of a solar PV array using a new dynamic reconfiguration based on the Cuckoo Search optimizer

  • Received: 19 May 2025 Revised: 11 August 2025 Accepted: 25 August 2025 Published: 02 September 2025
  • Partial shading is a major challenge in photovoltaic (PV) systems, as it causes significant power losses and leads to multiple local maximum power points (MPPs) on the power-voltage (P-V) curve, reducing overall system efficiency. To address this issue, we proposed a novel reconfiguration approach for shaded PV arrays using the Cuckoo Search (CS) optimization algorithm. With the proposed method, we aimed to identify an optimal switching matrix structure that minimizes current mismatch among rows and maximizes power output under shading conditions. The methodology involved implementing a 9 × 9 PV array model in MATLAB/Simulink and evaluating its performance under five distinct shading patterns. The performance of the CS-based reconfiguration was compared against four established techniques: Total Cross-Tied (TCT), standard Sudoku, Optimal Sudoku, and the Multi-objective Grey Wolf Optimizer (MOGWO). The evaluation was based on key statistical and performance metrics, including on power output, system reliability, and convergence behavior. Testing results demonstrated the superiority of the CS method, achieving global maximum power point (GMPP) values of 23.6071 kW, 23.0057 kW, 22.1083 kW, 22.6669 kW, and 22.4937 kW across the five tested shading scenarios. These results validated the effectiveness of the CS algorithm in enhancing the power output of PV arrays under partial shading and highlight its potential applicability in real-world energy systems.

    Citation: Hassan S. Ahmed, Ahmed J. Abid, Adel A. Obed, Raaid Alubady, Salam J. Yaqoob, Ameer L. Saleh, László Számel. Performance assessment of a solar PV array using a new dynamic reconfiguration based on the Cuckoo Search optimizer[J]. AIMS Electronics and Electrical Engineering, 2025, 9(4): 476-499. doi: 10.3934/electreng.2025022

    Related Papers:

  • Partial shading is a major challenge in photovoltaic (PV) systems, as it causes significant power losses and leads to multiple local maximum power points (MPPs) on the power-voltage (P-V) curve, reducing overall system efficiency. To address this issue, we proposed a novel reconfiguration approach for shaded PV arrays using the Cuckoo Search (CS) optimization algorithm. With the proposed method, we aimed to identify an optimal switching matrix structure that minimizes current mismatch among rows and maximizes power output under shading conditions. The methodology involved implementing a 9 × 9 PV array model in MATLAB/Simulink and evaluating its performance under five distinct shading patterns. The performance of the CS-based reconfiguration was compared against four established techniques: Total Cross-Tied (TCT), standard Sudoku, Optimal Sudoku, and the Multi-objective Grey Wolf Optimizer (MOGWO). The evaluation was based on key statistical and performance metrics, including on power output, system reliability, and convergence behavior. Testing results demonstrated the superiority of the CS method, achieving global maximum power point (GMPP) values of 23.6071 kW, 23.0057 kW, 22.1083 kW, 22.6669 kW, and 22.4937 kW across the five tested shading scenarios. These results validated the effectiveness of the CS algorithm in enhancing the power output of PV arrays under partial shading and highlight its potential applicability in real-world energy systems.



    加载中


    [1] Taghvaee MH, Radzi MA, Moosavain SM, Hizam H, Marhaban MH (2013) A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and sustainable energy reviews 17: 216‒227. https://doi.org/10.1016/j.rser.2012.09.023 doi: 10.1016/j.rser.2012.09.023
    [2] Buberger J, Kersten A, Kuder M, Eckerle R, Weyh T, Thiringer T (2022) Total CO2-equivalent life-cycle emissions from commercially available passenger cars. Renewable and Sustainable Energy Reviews 159: 112158. https://doi.org/10.1016/j.rser.2022.112158 doi: 10.1016/j.rser.2022.112158
    [3] Abbas FA, Abdul-Jabbar TA, Obed AA, Kersten A, Kuder M, Weyh T (2023) A comprehensive review and analytical comparison of non-isolated dc-dc converters for fuel cell applications. Energies 16: 3493. https://doi.org/10.3390/en16083493 doi: 10.3390/en16083493
    [4] Sahoo SK (2016) Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renewable and Sustainable Energy Reviews 59: 927‒939. https://doi.org/10.1016/j.rser.2016.01.049 doi: 10.1016/j.rser.2016.01.049
    [5] Yousri D, Allam D, Eteiba MB (2020) Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer. Energy Conversion and Management 206: 112470. https://doi.org/10.1016/j.enconman.2020.112470 doi: 10.1016/j.enconman.2020.112470
    [6] Krishna GS, Moger T (2019) Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions. Renewable and Sustainable Energy Reviews 109: 333‒348. https://doi.org/10.1016/j.rser.2019.04.037 doi: 10.1016/j.rser.2019.04.037
    [7] Pal P (2023) Present status and future outlooks of renewable energy in India for sustainable development. A Basic Overview of Environment and Sustainable Development[Volume 2], International Academic Publishing House (IAPH), 408‒433. https://doi.org/10.52756/boesd.2023.e02.028
    [8] Villa LFL, Picault D, Raison B, Bacha S, Labonne A (2012) Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules. IEEE Journal of Photovoltaics 2: 154‒163. https://doi.org/10.1109/JPHOTOV.2012.2185040 doi: 10.1109/JPHOTOV.2012.2185040
    [9] Yaqoob SJ, Saleh AL, Motahhir S, Agyekum EB, Nayyar A, Qureshi B (2021) Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Scientific reports 11: 19153. https://doi.org/10.1038/s41598-021-98593-6 doi: 10.1038/s41598-021-98593-6
    [10] Rani BI, Ilango GS, Nagamani C (2013) Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Transactions on sustainable energy 4: 594‒601. https://doi.org/10.1109/TSTE.2012.2230033 doi: 10.1109/TSTE.2012.2230033
    [11] Rao PS, Ilango GS, Nagamani C (2014) Maximum power from PV arrays using a fixed configuration under different shading conditions. IEEE journal of Photovoltaics 4: 679‒686. https://doi.org/10.1109/JPHOTOV.2014.2300239 doi: 10.1109/JPHOTOV.2014.2300239
    [12] Sahu HS, Nayak SK, Mishra S (2015) Maximizing the power generation of a partially shaded PV array. IEEE journal of emerging and selected topics in power electronics 4: 626‒637. https://doi.org/10.1109/JESTPE.2015.2498282 doi: 10.1109/JESTPE.2015.2498282
    [13] Alahmad M, Chaaban MA, kit Lau S, Shi J, Neal J (2012) An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time. Solar energy 86: 951‒963. https://doi.org/10.1016/j.solener.2011.12.028 doi: 10.1016/j.solener.2011.12.028
    [14] Vicente PdS, Pimenta TC, Ribeiro ER (2015) Photovoltaic array reconfiguration strategy for maximization of energy production. International Journal of Photoenergy 2015: 592383. https://doi.org/10.1155/2015/592383 doi: 10.1155/2015/592383
    [15] Satpathy PR, Sharma R (2019) Power and mismatch losses mitigation by a fixed electrical reconfiguration technique for partially shaded photovoltaic arrays. Energy conversion and management 192: 52‒70. https://doi.org/10.1016/j.enconman.2019.04.039 doi: 10.1016/j.enconman.2019.04.039
    [16] Deshkar SN, Dhale SB, Mukherjee JS, Babu TS, Rajasekar N (2015) Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm. Renewable and Sustainable Energy Reviews 43: 102‒110. https://doi.org/10.1016/j.rser.2014.10.098 doi: 10.1016/j.rser.2014.10.098
    [17] Babu TS, Ram JP, Dragičević T, Miyatake M, Blaabjerg F, Rajasekar N (2017) Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Transactions on Sustainable Energy 9: 74‒85. https://doi.org/10.1109/TSTE.2017.2714905 doi: 10.1109/TSTE.2017.2714905
    [18] Horoufiany M, Ghandehari R (2018) Optimization of the Sudoku based reconfiguration technique for PV arrays power enhancement under mutual shading conditions. Solar Energy 159: 1037‒1046. https://doi.org/10.1016/j.solener.2017.05.059 doi: 10.1016/j.solener.2017.05.059
    [19] Akrami M, Pourhossein K (2018) A novel reconfiguration procedure to extract maximum power from partially-shaded photovoltaic arrays. Solar Energy 173: 110‒119. https://doi.org/10.1016/j.solener.2018.06.067 doi: 10.1016/j.solener.2018.06.067
    [20] Fathy A (2018) Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array. Solar Energy 171: 638‒651. https://doi.org/10.1016/j.solener.2018.07.014 doi: 10.1016/j.solener.2018.07.014
    [21] Yousri D, Babu TS, Beshr E, Eteiba MB, Allam D (2020) A robust strategy based on marine predators algorithm for large scale photovoltaic array reconfiguration to mitigate the partial shading effect on the performance of PV system. IEEE Access 8: 112407‒112426. https://doi.org/10.1109/ACCESS.2020.3000420 doi: 10.1109/ACCESS.2020.3000420
    [22] Yousri D, Thanikanti SB, Balasubramanian K, Osama A, Fathy A (2020) Multi-objective grey wolf optimizer for optimal design of switching matrix for shaded PV array dynamic reconfiguration. IEEE Access 8: 159931‒159946. https://doi.org/10.1109/ACCESS.2020.3018722 doi: 10.1109/ACCESS.2020.3018722
    [23] Mikkili S, Bapurao KA, Bonthagorla PK (2022) Sudoku and optimal sudoku reconfiguration techniques for power enhancement of partial shaded solar PV system. Journal of The Institution of Engineers (India): Series B 103: 1793‒1807. https://doi.org/10.1007/s40031-022-00760-4 doi: 10.1007/s40031-022-00760-4
    [24] Rezazadeh S, Moradzadeh A, Pourhossein K, Akrami M, Mohammadi-Ivatloo B, Anvari-Moghaddam A (2023) Photovoltaic array reconfiguration under partial shading conditions for maximum power extraction via knight's tour technique. Journal of Ambient Intelligence and Humanized Computing 14: 11545‒11567. https://doi.org/10.1007/s12652-022-03723-1 doi: 10.1007/s12652-022-03723-1
    [25] Fang X, Yang Q (2024) Dynamic reconfiguration of photovoltaic array for minimizing mismatch loss. Renewable and Sustainable Energy Reviews 191: 114160. https://doi.org/10.1016/j.rser.2023.114160 doi: 10.1016/j.rser.2023.114160
    [26] Yi L, Cheng S, Wang Y, Ma H, Luo B, Hu Y (2024) A multi-objective pelican optimization algorithm for dynamic reconfiguration of multi-type rural rooftop PV array. Journal of Intelligent & Fuzzy Systems 47: 393‒409. doi: DOI:10.3233/JIFS-236528
    [27] Sharma M, Pareek S, Singh K (2024) An efficient power extraction using artificial intelligence based machine learning model for SPV array reconfiguration in solar industries. Engineering Applications of Artificial Intelligence 129: 107516. https://doi.org/10.1016/j.engappai.2023.107516 doi: 10.1016/j.engappai.2023.107516
    [28] Hachemi AT, Sadaoui F, Saim A, Ebeed M, Arif S (2024) Dynamic operation of distribution grids with the integration of photovoltaic systems and distribution static compensators considering network reconfiguration. Energy Reports 12: 1623‒1637. https://doi.org/10.1016/j.egyr.2024.07.050 doi: 10.1016/j.egyr.2024.07.050
    [29] Yi L, Cheng S, Wang Y, Hu Y, Ma H, Luo B (2024) A multivariate reconfiguration method for rooftop PV array based on improved northern goshawk optimization algorithm. Physica Scripta 99: 035537. https://doi.org/10.1088/1402-4896/ad2a2b doi: 10.1088/1402-4896/ad2a2b
    [30] Khalil IU, ul Haq A (2024) A modified chess knight reconfiguration approach for mitigating power losses in PV systems. Energy Reports 11: 2204‒2219. https://doi.org/10.1016/j.egyr.2024.01.066 doi: 10.1016/j.egyr.2024.01.066
    [31] Mallick P, Sharma R, Satpathy PR, Thanikanti SB, Nwulu NI (2024) A harmony search switching matrix algorithm for enhanced performance of solar PV arrays during non-uniform irradiance scenarios. IEEE Access 12: 40387‒40411. https://doi.org/10.1109/ACCESS.2024.3370839 doi: 10.1109/ACCESS.2024.3370839
    [32] Hou G, Guo Z (2025) Maximum power point tracking of solar photovoltaic under partial shading conditions based on improved salp swarm algorithm. Electric Power Systems Research 241: 111316. doi: DOI:10.1016/j.epsr.2024.111316
    [33] Azharuddin M, Babu TS, Bilakanti N, Rajasekar N (2016) A nearly accurate solar photovoltaic emulator using a dSPACE controller for real-time control. Electric Power Components and Systems 44: 774‒782. https://doi.org/10.1080/15325008.2015.1131763 doi: 10.1080/15325008.2015.1131763
    [34] Babu TS, Ram JP, Sangeetha K, Laudani A, Rajasekar N (2016) Parameter extraction of two diode solar PV model using Fireworks algorithm. Solar energy 140: 265‒276. https://doi.org/10.1016/j.solener.2016.10.044 doi: 10.1016/j.solener.2016.10.044
    [35] Yousri D, Allam D, Eteiba MB, Suganthan PN (2019) Static and dynamic photovoltaic models' parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants. Energy conversion and management 182: 546‒563. https://doi.org/10.1016/j.enconman.2018.12.022 doi: 10.1016/j.enconman.2018.12.022
    [36] Allam D, Yousri D, Eteiba M (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy Conversion and Management 123: 535‒548. https://doi.org/10.1016/j.enconman.2016.06.052 doi: 10.1016/j.enconman.2016.06.052
    [37] Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC), 210‒214. Ieee. https://doi.org/10.1109/NABIC.2009.5393690
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(838) PDF downloads(91) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog