Citation: Isa Abdullahi Baba, Lawal Ibrahim Olamilekan, Abdullahi Yusuf, Dumitru Baleanu. Analysis of meningitis model: A case study of northern Nigeria[J]. AIMS Bioengineering, 2020, 7(4): 179-193. doi: 10.3934/bioeng.2020016
[1] |
Howlett WP (2015) Neurology in Africa: Clinical Skills and Neurological Disorders UK: Cambridge University Press. doi: 10.1017/CBO9781316287064
![]() |
[2] |
Martínez MJF, Merino EG, Sánchez EG, et al. (2013) A mathematical model to study meningococcal meningitis. Procedia Comput Sci 18: 2492-2495. doi: 10.1016/j.procs.2013.05.426
![]() |
[3] | (2017) CDC Centers for Disease control, Bacterial Meningitis. USA Available from: http//www.who.int/gho/epidemic_disease/meningitis/suspected_cases_death_text/en/. |
[4] |
Dushoff J, Plotkin JB, Levin SA, et al. (2004) Dynamical resonance can account for seasonal of influenza epidemic. Proc Natl Acd Sci USA 101: 16915-16916. doi: 10.1073/pnas.0407293101
![]() |
[5] |
Stone L, Olinky R, Huppert A (2007) Seasonal dynamic of recurrent epidemics. Nature 446: 533-536. doi: 10.1038/nature05638
![]() |
[6] | Rvanchev LA (1968) Modeling experiment of a large epidemics by a means of computer. Trans USSR Acad Sci Ser Math Phy 180: 294-296. |
[7] |
Broutin H, Philippon S, De Magny GC, et al. (2007) Comparative study of meningitis dynamics across nine African countries: a global perceptive. Int J Health Geogr 6: 29. doi: 10.1186/1476-072X-6-29
![]() |
[8] |
Miller MA, Shahab CK (2005) Review of the cost effectiveness of immunization strategies for the control of epidemic meningococcal meningitis. Pharmacoeconomics 23: 333-343. doi: 10.2165/00019053-200523040-00004
![]() |
[9] |
Irving TJ, Blyuss KB, Colijn C, et al. (2012) Modeling meningococcal meningitis in the African meningitis belt. Epidemiol Infect 140: 897-905. doi: 10.1017/S0950268811001385
![]() |
[10] |
Kwambana-Adams BA, Amaza RC, Okoi C, et al. (2018) Meningococcus serogroup C clonal complex ST-10217 outbreak in Zamfara State, Northern Nigeria. Sci Rep 8: 14194. doi: 10.1038/s41598-018-32475-2
![]() |
[11] |
Chowell G, Miller MA, Viboud C (2008) Seasonal influenza in the United States, France and Australia: transmission and prospects for control. Epidemiol Infect 136: 852-864. doi: 10.1017/S0950268807009144
![]() |
[12] |
Bootsma MCJ, Ferguson NM (2007) The effect of public health measure on the 1918 influenza pandemic in US cities. Proc Natl Acad Sci USA 104: 7588-7593. doi: 10.1073/pnas.0611071104
![]() |
[13] |
Chowell G, Ammon CE, Hengartner NW, et al. (2006) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effect of hypothetical interventions. J Theor Biol 241: 193-204. doi: 10.1016/j.jtbi.2005.11.026
![]() |
[14] |
Mills CE, Robins JM, Lipstich M (2004) Transmissibility of 1918 pandemic influenza. Nature 432: 904-906. doi: 10.1038/nature03063
![]() |
[15] |
Chauchemez S, Valleron AJ, Boelle PY, et al. (2008) Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452: 750-754. doi: 10.1038/nature06732
![]() |
[16] |
Diekmann O, Heesterbeek JAP, Roberts MG (2010) The Construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7: 873-885. doi: 10.1098/rsif.2009.0386
![]() |
[17] |
Sene N (2020) SIR epidemic model with Mittag-Leffler fractional derivative. Chaos Soliton Fract 137: 109833. doi: 10.1016/j.chaos.2020.109833
![]() |
[18] |
Sene N (2019) Stability analysis of the generalized fractional differential equations with and without exogeneous inputs. J Nonlinear Sci Appl 12: 562-572. doi: 10.22436/jnsa.012.09.01
![]() |
[19] | Sene N (2020) Global asymptotic stability of the fractional differential equations. J Nonlinear Sci Appl 13: 171-175. |