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Abstract: A new strain of meningitis emerges in northern Nigeria, which brought a lot of confusion.
This is because vaccine and treatment for the old strain was adopted but to no avail. It was later
discovered that it was a new strain that emerged. In this paper we consider the two strains of meningitis
(I 1 and I 2 ). Our aim is to analyse the effect of one strain on the dynamics of the other strain
mathematically. Equilibrium solutions were obtained and their global stability was analysed using
Lyaponuv function. It was shown that the stability depends on magnitude of the basic reproduction
ratio. The coexistence of the two strains was numerically shown.
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1. Introduction

The inflammation of meninges that surround membranes of the spinal cord and brain is called
meningitis [1]. It is a bacterial and protozoa caused disease. It infects both children, young and older
adult. Meningitis is popularly known to be a disease which spreads quickly in an isolated
geographical settlement like students hostel, military quarters, school and prison yard [2]. There are
pathogenic micro-organisms that are responsible for the spread of meningitis among individual in a
society. These include listeria monocytogenes,streptococcus pneumonia, Group B streptococcus,
Neisseria meningitides and Haemophilias, it is a transmissible disease [3]. This disease infects
individuals based on their age group. Some of the pathogen are found in new born babies, they
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include streptococcus pneumonia, Group streptococcus, listeria monocytogenes and Escherichia
while streptococcus pneumonia, Neisseria meningitides, influenza type B and Group B streptococcus
are found in children. Meningitis infects teeth in adult, the pathogen responsible for this infection
include, streptococcus and Neisseria meningitides [3]. Meningitis is a deadly disease. It kills if the
symptoms is not identified early enough. No amount of treatment and control can prevent the death by
meningitis if it is discovered at late time. The major symptoms of the disease are headache, vomiting
and sensitivity to light [3].

SIR model was used as a basis tool for modelling meningitis,this include incorporating seasonality
[4,5] as spatial temporal model [6] to show how it spreads among individuals.

Mathematical model helps in studying meningitis virus and bacteria through past meningitis
epidemic. Some model were used to study the spread and control of infectious disease Martinez et al.
[2] used discrete mathematical model to study spread and control meningococcal meningitis, they
considered a model with five compartments viz; susceptible, asymptotic infected, infected with
symptoms, carries, recovered and dead class. Broutin et al. [7] used some mathematical tool to
conduct time series analysis and wavelength method to study meningococcal meningitis in nine (9)
Africa countries, according to their result, it was stated that international co-operation in public health
and cross discipline studies are highly recommended to help in controlling this infectious disease.
Miller and Shahab [8] recommended effectiveness of immunization with respect to cost constrain to
control epidemic meningococcal meningitis. Irving et al. [9] adopt deterministic compartment model
to investigate the effectiveness of simple structure model in controlling epidemic of meningococcal
meningitis.

Therefore mathematical modelling plays a vital role in investigating the spread and control of
meningitis disease, it makes it easy to identify what an individual should avoid in order to be free
from infection of the disease.

Zamfara is a state in north-western Nigeria and has a population of about 4.1 million of which about
800,000 of children are under five [10]. It was at the centre of the largest meningitis outbreak in 21st
century with 7,140 suspect meningitis cases and 553 death reported between December 2016 to 2017
[10]. The over attack was 155 per 100,000 population and children 5–14 years accounted for 47.

Most of the previous researches show that there are interactions among the multiple strains of
disease such as tuberculosis, dengue fever, meningitis, HIV, influenza, malaria fever and other
sexually transmitted related disease [11–15]. And it shows that any strain with largest basic
reproduction ratio eliminates other strains. It is also investigated and showed the coexistence of
multiple strain using exponential growth, co-infection, super-infection method and application of
various methods to control coexistence of the strain [15]. Since new strain are still evolving, there is
need for more studies on the coexistence of multiple strains.

Unlike other diseases as mentioned above, most meningitis models in literature only considered a
single strain, hence there is need to study multiple strain of the disease and understand its qualitative
properties. Here we are motivated by what happened in Zamfara State, Northern part of Nigeria in
2018 [10]. A new strain of meningitis surfaced and government and medical practitioners thought it
was the old strain. So, the vaccine and treatment of the old strain were given for the new strain. This
leads to the death of many people. Our main objective is to investigate this phenomena mathematically.
This paper consists of five (5) sections and is arranged as follows: section 1 is the introduction, section
2 is the formation of model, section 3 is the study of existence of equilibrium and computation of
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reproduction ratio, section 4 is the stability analysis of equilibrium while section 5 is the discussion of
result and numerical simulation.

2. Formulation of the model

This model of meningitis consists of system of six differential equations. The compartments are
S (t), C1(t), C2(t), I1(t), I2(t), R(t) which represent the population of susceptible, carrier of infection
with respect to strain 1, carrier of infection with respect to strain 2, ill individual with respect to strain
1, ill individual with respect to strain 2 and recovered individual at time t, respectively.

Due to birth, immigration and other population growth factors, we assume constant recruitment in
to susceptible population and there is no double infection. The variable as well as parameters as used
in the model are all positive. Meaning of variables and parameters are given in Table 1 and Figure
1 gives the schematic diagram of the model. With the above assumptions, the model is given by the
system of ODE as follows:

Figure 1. Schematic diagram of the model.

dS
dt

= Π + θR + β1S (C1 + I1) + β2S (C2 + I2) − µS ,

dC1

dt
= β1S (C1 + I1) − (α1 + µ + ω)C1,

dI1

dt
= α1C1 − (µ + δ1 + γ1)I1,

dC2

dt
= β2S (C2 + I2) − (α2 + µ + ω)C2,

dI2

dt
= α2C2 − (µ + δ2 + γ2)I2,

dR
dt

= I1γ1 + I2γ2 + ωC1 + ωC2 − (θ + µ)R.

(2.1)
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Table 1. Description of the parameters.

Parameter Description
Π Recruitment rate
θ Loss of immunity
β1 Effectiveness contact rate due to strain 1
β2 Effectiveness contact rate due to strain 2
µ Natural death rate
α1 Progression rate from C1 to I1

α1 Progression rate from C2 to I2

δ1 Disease - induced mortality due to strain 1
δ2 Disease - induced mortality due to strain 2
ω Natural recovery rate
γ1 Recovery rate from disease due to strain 1
γ2 Recovery rate from disease due to strain 2

3. Analysis of the model

In this section, some important properties of the proposed model such as boundedness, existence of
equilibrium and basic reproduction number will be analyzed.

3.1. Boundedness and positivity

The system trajectories are confined within a compact set. Then, the total population N(t) = S (t) +

C1(t) + C2(t) + I1(t) + I2(t) + R(t). Thus taking the derivative leads to

dN(t)
dt

=
dS (t)

dt
+

dC1(t)
dt

+
dC2(t)

dt
+

dI1(t)
dt

+
dI2(t)

dt
+

dR(t)
dt

= Π − Nµ − (δ1I1 + δ2I2).
(3.1)

Therefore
dN(t)

dt
6 Π − Nµ which implies

dN(t)
dt

+ Nµ 6 Π. (3.2)

Consequently,

N(t) 6
Π

µ
+ Ce−µt, (3.3)

where C is constant. The initial value condition at t = 0 gives

N(0) ≤
Π

µ
+ C. (3.4)

This implies that

C = N(0) +
Π

µ
. (3.5)
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We get

lim
t→∞

N(t) 6 lim
t→∞

(
Π

µ
+ (N(0) −

Π

µ
)e−µt) =

Π

µ
, (3.6)

and this gives

lim
t→∞

N(t) 6
Π

µ
. (3.7)

Hence the population is bounded above.

For the Positivity Let t0 > 0. In the model, if the initial conditions

S (0) > 0,C1(0) > 0, I1(0) > 0,C2(0) > 0, I2(0) > 0,R(0) > 0, (3.8)

then for all

t ∈ [0, t], S (t),C1(t), I1(t),C2(t), I2(t),R(t) (3.9)

will remain positive in R6
+.

Since all the parameters used are positive, we can place lower bounds on each of the equations given
in the model. Thus,

dS
dt

= Π + θR + β1S (C1 + I1) + β2S (C2 + I2) − µS ≥ −µS ,

dC1

dt
= β1S (C1 + I1) − (α1 + µ + ω)C1 ≥ −(α1 + µ + ω)C1,

dI1

dt
= α1C1 − (µ + δ1 + γ1)I1 ≥ −(µ + δ1 + γ1)I1,

dC2

dt
= β2S (C2 + I2) − (α2 + µ + ω)C2 ≥ −(α2 + µ + ω)C2,

dI2

dt
= α2C2 − (µ + δ2 + γ2)I2 ≥ −(µ + δ2 + γ2)I2,

dR
dt

= I1γ1 + I2γ2 + ωC1 + ωC2 − (θ + µ)R ≥ −(θ + µ)R.

(3.10)

Solving the differential inequality, we get

S (t) ≥ e−µt ≥ 0,
C1(t) ≥ e−(α1+µ+ω)t ≥ 0,
I1(t) ≥ e−(µ+δ1+γ1)t ≥ 0,

C2(t) ≥ e−(α2+µ+ω)t ≥ 0,
I2(t) ≥ e−(µ+δ2+γ2)t ≥ 0,

R(t) ≥ e−(θ+µ)t ≥ 0.

(3.11)

Hence the proof.
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3.2. Existence of equilibrium

In order to obtain the equilibrium solution , we equate the system of differential equations to zero
and solve them simultaneously as follow:

Π + θR − β1S (C1 + I1) − β2S (C2 + I2) − µS = 0,
β1S (C1 + I1) − (α1 + µ + ω)C1 = 0,
β2S (C2 + I2) − (α2 + µ + ω)C2 = 0,
α1C1 − (µ + δ1 + γ1)I1 = 0,
α2C2 − (µ + δ2 + γ2)I2 = 0,
γ1I1 + γ2I2 + ωC1 + ωC2 + δ1I1 + δ2I2 − (µ + θ)R = 0

(3.12)

Then, At DFE: S 0, I1 = I2 = 0 implies that C1 = C2 = 0
From Eq (3.12),

Π + θR − µS = 0. (3.13)

Putting R = 0 into Eq (3.13), it implies that S =
Π

µ
, ∴ E0 = [

Π

µ
, 0, 0, 0, 0, 0]. When I2 = 0 ⇒ C2 = 0

and I1 , 0⇒ C2 , 0
Then,

S 1 =
Ω1Ω3

β1(Ω3 + α1)
,

R1 = −
(ΠΩ3β1 + Πα1β1 − µΩ1Ω3)(ωΩ3 + α1γ1)

β1(ωθΩ2
3 + ωθΩ3α1 + θΩ3α1γ1 + θα2

1γ1 −Ω1Ω
2
2Ω3 −Ω1Ω3Ω5α1)

C1 = −
Ω3Ω5(ΠΩ3β1 + Πα1β1 − µΩ1Ω3)

β1(ωθΩ2
3 + ωθΩ3α1 + θΩ3α1γ1 + θα2

1γ1 −Ω1Ω
2
2Ω3 −Ω1Ω3Ω5α1)

I1 = −
α1Ω5(ΠΩ3β1 + Πα1β1 − µΩ1Ω3)

β1(ωθΩ2
3 + ωθΩ3α1 + θΩ3α1γ1 + θα2

1γ1 −Ω1Ω
2
2Ω3 −Ω1Ω3Ω5α1)

(3.14)

This equilibrium solution exists only when I1 > 0,C1 > 0,R1 > 0 if ( Ω1+α1
µΩ1Ω3

) > 1. When I1 = 0⇒ C1 =

0 and I2 , 0⇒ C2 , 0, Then,

S 2 =
Ω2Ω4

β2(Ω4 + Ω2)
,

R2 =
(ΠΩ4β2 + Πα2β2 − µΩ2Ω4)(ωΩ4 + α2γ2)

β2(ωθΩ2
4 + ωθΩ4α2 + θΩ4α2γ2 + θα2

2γ2 −Ω2Ω
2
4Ω5 −Ω2Ω4Ω5α2)

C2 = −
Ω4Ω5(ΠΩ4β2 + Πα2β2 − µΩ2Ω4)

β2(ωθΩ2
4 + ωθΩ4α2 + θΩ4α2γ2 + θα2

2γ2 −Ω2Ω
2
4Ω5 −Ω2Ω4Ω5α2)

I2 =
Ω5(ΠΩ4β2 + Πα2β2 − µΩ2Ω4)

β2(ωθΩ2
4 + ωθΩ4α2 + θΩ4α2γ2 + θα2

2γ2 −Ω2Ω
2
4Ω5 −Ω2Ω4Ω5α2)

.

(3.15)

This equilibrium solution exists only when I2,C2,R2 > 0 if (Ω4+Π)
µΩ2Ω4

, where Ω1 = α1 + µ + ω, Ω2 =

α2 + µ + ω, Ω3 = µ + δ1 + γ1, Ω4 = µ + δ2 + γ2 and Ω5 = θ + µ.
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3.3. Basic reproduction number

Basic reproduction number is the number of secondary infection caused by one infected individual
in a wholly susceptible population. Here, it is obtained using next generation matrix as in [16];

F =

(
β1S (C1 + I1)
β2S (C3 + I2)

)
(3.16)

V =

(
(α1 + µ + ω)C1

(α2 + µ + ω)C2

)
(3.17)

Now,

∂F(E0) =

(
β1S 0 0

0 β2S 0

)
(3.18)

(∂V)−1 =


1

α1 + µ + ω
0

0
1

α2 + µ + ω

 (3.19)

Then,

∂F(E0)(∂V)−1 =

 β1S 0
α1+µ+ω

0
0 β2S 0

α2+µ+ω

 (3.20)

The matrix F is non-negative and it is called transition matrix which is responsible for the infection
while the matrix V is known as a transmission matrix for the model.
From ∂F(E0)(∂V)−1 in above,

R1 =
β1S 0

α1 + µ + ω
=

β1Π

α1 + µ + ω
, R2 =

β2S 0

α2 + µ + ω
=

β2Π

α2 + µ + ω
, (3.21)

where S 0 = Π
µ
. So that R0 is the spectral radius of the matrix ∂F(E0)(∂V)−1. Therefore

R0 = max.(R1,R2), Hence

R0 = max.(
β1Π

α1 + µ + ω
,

β12Π

α2 + µ + ω
). (3.22)

Profile of the basic reproduction number is given in Figure 2 below.
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Figure 2. Profile of the basic reproduction number.

4. Stability analysis of the equilibrium solution

Here, we study the global stability of the equilibrium solutions using Lyaponuv function as in the
following [17–19].

Theorem 4.1. The disease free equilibrium, E0 is globally asymptotically stable if R1 < 1 and R2 < 1.

Proof. Consider the Lyaponuv function

V(S 0,C1.0,C2.0, I1.0, I2.0,R0) = g(
S
S 0

) + I1.0 + I2.0 + C1 + C2.0 + g(
R
R0

). (4.1)

where g(x) = x − 1 − ln x, since I1, I2 > 0 then,

V(S ,C1,C2, I1, I2,R) > 0. (4.2)
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Now we need to show that V̇ < 0.

V̇(S ,C1,C2, I1, I2,R) = (1 −
S 0

S
)Ṡ + İ1 + İ2 + Ċ1 + Ċ2 + (1 −

R0

R
)Ṙ

= (1 −
S 0

S
)[Π + θR − β1S (C1 + I1) − β2S (C2 + I2) − µS ] + β1S (C1 + I1) − (α1 + µ + ω)C1

+ β2S (C2 + I2) − (α2 + µ + ω)C2 + α1C1 − (µ + δ1 + γ1)I1 + α2C2 − (µ + δ2 + γ2)I2

+ (1 −
R0

R
)[γ1I1 + γ2I2 + ωC1 + ωC2 − µR − θR]

= 2µS 0 −
µS 2

0

S
− µS + (µ + ω + α1)C1[

β1S 0

(µ + ω + α1)
− 1] + (µ + ω + α2)C2[

β2S 0

(µ + ω + α2)
− 1]

+ (β1S 0 − µ − δ1 −
R0γ1

R
)I1

+ (β2S 0 − µ − δ2 −
R0γ2

R
)I2 + (α1 + ω −

R0ω

R
)C1 + (α2 + ω −

R0ω

R
)C2 − (

RS 0

S
+ R0)θ − (R − R0)µ

= 2µS 0 −
µS 2

0

S
− µS − (µ + ω + α1)C1[1 − R1] − (µ + ω + α2)C2[1 − R2] − (

R0γ1

R
+ µ + δ − β1S 0)I1

− (
R0γ2

R
+ µ + δ − β2S 0)I2 − (

R0ω

R
− α1 − ω)C1 − (

R0ω

R
− α2 − ω)C2 − (

RS 0

S
+ R0)θ − (R − R0)µ

= µS 0(2 −
S 0

S
−

S
S 0

) − (µ + ω + α1)C1[1 − R1] − (µ + ω + α2)C2[1 − R2] − (
R0γ1

R
+ µ + δ − β1S 0)I1

− (
R0γ2

R
+ µ + δ − β2S 0)I2 − (

R0ω

R
− α1 − ω)C1 − (

R0ω

R
− α2 − ω)C2 − (

RS 0

S
+ R0)θ − (R − R0)µ.

(4.3)

But 2 −
S 0

S
−

S
S 0

< 0 by the relationship between arithmetic and geometric mean, ∴ V̇ 6 0.

Theorem 4.2. E1 is globally asymptotically stable if R1 < 1.

Proof. Consider the Lyaponuv function:

V(S ,C1.1,C2.1, I1.1, I2.1,R1) = g(
S
S 1

) + g(
I1

I1.1
) + I2 + g(

C1.1

C1
) + C2 + g(

R
R1

), (4.4)

where g(x) = x − 1 − ln x, since I1 > 0, then V(S ,C1,C2, I1, I2,R) > 0.
Now we need to show that V̇ < 0.
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V̇(S ,C1,C2, I1, I2,R) = (1 −
S 1

S
)Ṡ 1 + (1 −

I1.1

I1
)İ1 + İ2 + (1 −

C1.1

C1
)Ċ1 + Ċ2 + (1 −

R1

R
)Ṙ

= (1 −
S 1

S
)[Π + θR − β1S (C1 + I1) − β2S (C2 + I2) − µS ]

+ (1 −
C1.1

C1
)[β1S (C1 + I1) − (α1 + µ + ω)C1]

+ (1 −
I1.1

I1
)[α1C1 − (µ + δ1 + γ1)I1] + β2S (C2 + I2) − (α2 + µ + ω)C2 + α2C2 − (µ + δ2 + γ2)I2

+ (1 −
R1

R
)[γ1I1 + γ2I2 + ωC1 + ωC2 − µR − θR]

= 2µS 1 −
µS 2

1

S
− µS + (µ + ω + α1)C1[

β1S 1

(µ + ω + α1)
− 1]

+ (β1S 1 − µ − δ1 −
R1γ1

R
)I1 + (α1 + ω −

R1ω

R
)I1

− [β1S (C1 + I1) − (α1 + µ + ω)C1]
C1.1

C1
−
θRS 1

S
− θR1 − (R − R1)µ − [α1C1 − (µ + δ1 + γ1)I1]

I1.1

I1

+ [β2S 1 − µ − δ2 −
Rγ2

R
]

= µS 1(2 −
S 1

S
−

S
S 1

) − (µ + ω + α1)C1[1 − R1] − [γ1R + µR + δ1R − β1S 1]I1

− (R −
RS 1

S
)θ − (R − R1)µ − (

ωR1

R
− α1 − ω)C1

(4.5)

But 2 −
S 1

S
−

S
S 1

< 0 by the relationship between arithmetic and geometric mean, ∴ V̇ < 0

Theorem 4.3. E2 is globally asymptotically stable if R2 < 1.

Proof. Consider the Lyaponuv function:

V(S ,C1.2,C2.2, I1.2, I2.2,R) = g(
S
S 2

) + C1 + I1 + g(
C2

C2.2
) +

I2

I2.2
+ g(

R
R2

), where g(x) = x − 1 − ln x, since

I1 > 0, then V(S ,C1,C2, I1, I2,R) > 0.
Now we need to show that V̇ < 0.
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V̇(S ,C1,C2, I1, I2,R) = (1 −
S 2

S
)Ṡ + Ċ1 + İ1 + (1 −

C2.2

C2
)Ċ2 + (1 −

I2.2

I2
)İ2 + (1 −

R2

R
)Ṙ

= (1 −
S 1

S
)[Π + θR − β1S (C1 + I1) − β2S (C2 + I2) − µS ] + β1S (C1 + I1) − (α1 + µ + ω)C1

+ α1C1 − (µ + δ1 + γ1)I1

+ (1 −
C2.2

C2
)[β2S (C2 + I2) − (α2 + µ + ω)C2] + (1 −

I2.2

I2
)[α2C2 − (µ + δ2 + γ2)I2]

+ (1 −
R2

R
)[γ1I1 + γ2I2 + ωC1 + ωC2 − µR − θR]

= 2µS 2 −
µS 2

2

S
− µS + (µ + ω + α2)C2[

β2S 2

(µ + ω + α2)
− 1] + (β2S 2 − µ − δ2 −

R2γ2

R
)I2

+ (α2 + ω −
R2ω

R
)C2 − [β2S (C2 + I2) − (α2 + µ + ω)C2]

C2.2

C2
−
θRS 2

S
− θR2 − (R − R2)µ

− [α2C2 − (µ + δ2 + γ2)I2]
I2.2

I2

= µS 2(2 −
S 2

S
−

S
S 2

) − (µ + ω + α2)C2[1 − R2] − [γ2R + µR + δ2R − β2S 2]I2

− (R −
RS 2

S
)θ − (R − R2)µ − (

ωR2

R
− α2 − ω)C2.

(4.6)

But 2 −
S 2

S
−

S
S 2

< 0 by the relationship between arithmetic and geometric mean, ∴ V̇ < 0.

5. Numerical simulations

In this chapter numerical examples are given out using the parameter values in Table 2. Figure 3
shows how the disease from both strains die out when max (R1,R2) < 1. Figure 4 and 5 show how
strain 1 and 2 persist when R1 > 1 and when R2 > 1 respectively. Finally Figure 6 shows how both
strain 1 and 2 persist when min (R1,R2) > 1.

Table 2. Description of parameter values used in the model.
Parameter E0 E1 E2 E3

Π 0.0381 0.0381 0.0381 0.381
θ 0.9 0.9 0.9 0.9
β1 0.00174 10 0.00174 10
β2 0.00174 0.00174 10 10
µ 0.1177 0.1177 0.1177 0.1177
α1 0.104 0.104 0.104 0.104
α2 0.104 0.104 0.104 0.104
δ1 0.747 0.747 0.747 0.747
δ2 0.747 0.747 0.747 0.747
ω 0.896 0.896 0.896 0.896
γ1 0.253 0.253 0.253 0.253
γ2 0.253 0.253 0.253 0.253
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Figure 3. Disease free equilibrium: max{R1,R2 < 1}.

Figure 4. Endemic with respect to strain 2: R1 > 1.
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Figure 5. Endemic with respect to strain 2: R2 > 1.

Figure 6. Endemic with respect to both strains 2: min{R1,R2 > 1}.
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6. Conclusion

In this paper, a model consisting of two strains of meningitis is studied. Three equilibrium points
were obtained:

E0 : disease free equilibrium, I1 and I2 are both zero.
E1 : Endemic equilibrium for I1 only and I2 is zero.
E2 : Endemic equilibrium for I2 only and I1 is zero.
But the endemic equilibrium for I1 and I2 is difficult to find due to the non-linear nature of the

model, hence we show its stability numerically.
The method of next generation matrix was used to obtain two basic reproduction ratios for strain 1

and 2, and it was proved that the stability of these equilibrium points depend on the nature of basic
reproduction ratios. Lyaponuv function was used to show the global stability of the equilibrium
solutions. When min.(R1,R2)< 1, the disease free equilibrium is globally stable and the disease dies
out. And when the basic reproduction ratio is greater than 1 for each endemic equilibrium, then such
equilibrium is globally stable and the disease at such equilibrium dies out.
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