Research article

Big data and consumer behavior: A macroeconomic perspective through supermarket analytics

  • Published: 15 September 2025
  • JEL Codes: C45, C81, D12, L81

  • This study explores how big data analytics can be used on supermarket transaction data to reveal patterns in consumer behavior with broader macroeconomic implications. Using a comprehensive dataset from a multinational retail chain, we employed advanced analytical methods—including machine learning algorithms, time series forecasting (ARIMA), clustering, and recommendation systems—to model purchasing behavior and segment customers. The analysis revealed distinct consumer profiles, habitual spending patterns, and time-sensitive trends that inform both retail decision-making and economic interpretation. The results demonstrated that consumer transaction data can serve not only to improve operational efficiency and personalized marketing in the retail sector but also to provide real-time indicators of economic sentiment and household financial health. This dual contribution highlights the potential of retail big data as a tool for both business strategy and macroeconomic policy analysis. The study also outlines implementation considerations and ethical challenges, offering a foundation for future research in data-driven retail and economic analytics.

    Citation: Tasos Stylianou, Aikaterina Pantelidou. Big data and consumer behavior: A macroeconomic perspective through supermarket analytics[J]. Quantitative Finance and Economics, 2025, 9(3): 682-712. doi: 10.3934/QFE.2025024

    Related Papers:

  • This study explores how big data analytics can be used on supermarket transaction data to reveal patterns in consumer behavior with broader macroeconomic implications. Using a comprehensive dataset from a multinational retail chain, we employed advanced analytical methods—including machine learning algorithms, time series forecasting (ARIMA), clustering, and recommendation systems—to model purchasing behavior and segment customers. The analysis revealed distinct consumer profiles, habitual spending patterns, and time-sensitive trends that inform both retail decision-making and economic interpretation. The results demonstrated that consumer transaction data can serve not only to improve operational efficiency and personalized marketing in the retail sector but also to provide real-time indicators of economic sentiment and household financial health. This dual contribution highlights the potential of retail big data as a tool for both business strategy and macroeconomic policy analysis. The study also outlines implementation considerations and ethical challenges, offering a foundation for future research in data-driven retail and economic analytics.



    加载中


    [1] Aggarwal C, Bhuiyan M, Hasan M (2014) Frequent Pattern Mining Algorithms: A Survey, In: Aggarwal C, Han J, (eds) Frequent Pattern Mining, Springer, Cham. http://doi.org/10.1007/978-3-319-07821-2_2
    [2] Aguiar M, Hurst E (2005) Consumption versus expenditure. J Polit Econ 113: 919–948. https://doi.org/10.1086/491590 doi: 10.1086/491590
    [3] Aktas E, Meng Y (2017) An Exploration of Big Data Practices in Retail Sector. Logistics 1: 1–28. https://doi.org/10.3390/logistics1020012 doi: 10.3390/logistics1020012
    [4] Alhamed M, Rahman MH (2023) A systematic literature review on penetration testing in networks: future research directions. Appl Sci 13: 6986. https://doi.org/10.3390/app13126986 doi: 10.3390/app13126986
    [5] Ascarza E (2018) Retention futility: Targeting high-risk customers might be ineffective. J Market Res 55: 80–98. http://doi.org/10.1509/jmr.16.0163 doi: 10.1509/jmr.16.0163
    [6] Bata M (2020) Machine Learning Algorithms - A Review. Int J Sci Res 9: 381–386. http://doi.org/10.21275/ART20203995 doi: 10.21275/ART20203995
    [7] Chang R, Liu Z (2011) An Improved Apriori Algorithm, Proceedings of 2011 International Conference on Electronics and Optoelectronics (ICEOE), Publisher: IEEE, Dalian, China, V1-476–V1-478. http://doi.org/10.1109/ICEOE.2011.6013148
    [8] Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: From big data to big impact. MIS Quart, 1165–1188. http://doi.org/10.2307/41703503 doi: 10.2307/41703503
    [9] Corrigan HB, Cracium G, Powell AM (2014) How Does Target Know So Much About Its Customers? Utilizing Customer Analytics to Make Marketing Decisions. Market Educat Rev 24: 159–165. https://doi.org/10.2753/MER1052-8008240206 doi: 10.2753/MER1052-8008240206
    [10] Deaton A, Muellbauer J (1980) Economics and consumer behavior, Cambridge university press. https://doi.org/10.1017/CBO9780511805653
    [11] Einav L, Levin J (2014) Economics in the age of big data. Science 346: 1243089. http://doi.org/10.1126/science.1243089 doi: 10.1126/science.1243089
    [12] Famili A, Shen WM, Weber R, et al. (1997) Data preprocessing and intelligent data analysis. Intell Data Anal 1: 3–23. http://doi.org/10.1016/S1088-467X(98)00007-9 doi: 10.1016/S1088-467X(98)00007-9
    [13] Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) Knowledge Discovery and Data Mining: Towards a Unifying Framework, In: KDD, 96: 82–88.
    [14] Gandomi A, Haider M (2015) Beyond the hype: Big data concepts, methods, and analytics. Int J Inform Manage 35: 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 doi: 10.1016/j.ijinfomgt.2014.10.007
    [15] Germann F, Lilien GL, Fiedler L, et al. (2014) Do retailers benefit from deploying customer analytics? J Retailing 90: 587–593. https://doi.org/10.1016/j.jretai.2014.08.002 doi: 10.1016/j.jretai.2014.08.002
    [16] Giri C, Thomassey S, Zeng X (2019) Customer analytics in fashion retail industry, In: Functional textiles and clothing, Springer, Singapore, 349–361. https://doi.org/10.1007/978-981-13-7721-1_27
    [17] Hastie T, Tibshirani R, Friedman JH, et al. (2009) The elements of statistical learning: data mining, inference, and prediction, 2: 1–758, New York: Springer. http://doi.org/10.1007/978-0-387-84858-7
    [18] He X, Liao L, Zhang H, et al. (2017) Neural collaborative filtering, In Proceedings of the 26th International Conference on World Wide Web, 173–182. https://doi.org/10.1145/3038912.3052569
    [19] Hirpara S, Parikh PJ (2021) Retail facility layout considering shopper path. Comput Ind Eng 154: 106919. https://doi.org/10.1016/j.cie.2020.106919 doi: 10.1016/j.cie.2020.106919
    [20] Huber J, Stuckenschmidt H (2020) Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int J Forecasting 36: 1420–1438. https://doi.org/10.1016/j.ijforecast.2020.02.005 doi: 10.1016/j.ijforecast.2020.02.005
    [21] Kaggle (2023) Supermarket dataset for predictive marketing 2023. Available from: https://www.kaggle.com/datasets/hunter0007/ecommerce-dataset-for-predictive-marketing-2023[Accessed: 1 March 2025].
    [22] Kambatla K, Kollias G, Kumar V, et al. (2014) Trends in big data analytics. J Parallel Distr Com 74: 2561–2573. https://doi.org/10.1016/j.jpdc.2014.01.003 doi: 10.1016/j.jpdc.2014.01.003
    [23] Kamel MA (2023) Big data analytics and market performance: the roles of customization and personalization strategies and competitive intensity. J Enterp Inf Manag 36: 1727–1749. http://doi.org/10.1108/JEIM-04-2022-0114 doi: 10.1108/JEIM-04-2022-0114
    [24] Kumar V, Petersen AJ (2005) Using a Customer-Level Marketing Strategy to Enhance Firm Performance: A Review of Theoretical and Empirical Evidence. J Acad Market Sci 33: 504–519. https://doi.org/10.1177/0092070305275857 doi: 10.1177/0092070305275857
    [25] Li Vigni M, Durante C, Cocchi M (2013) Chapter 3 - Exploratory Data Analysis, Data Handling in Science and Technology, 28: 55–126. https://doi.org/10.1016/B978-0-444-59528-7.00003-X doi: 10.1016/B978-0-444-59528-7.00003-X
    [26] Liu X, Xia G, Zhang X, et al. (2024) Customer churn prediction model based on hybrid neural networks. Sci Report 14: 30707. https://doi.org/10.1038/s41598-024-79603-9 doi: 10.1038/s41598-024-79603-9
    [27] McAfee A, Brynjolfsson E, Davenport TH, et al. (2012) Big data: the management revolution. Harvard Bus Rev 90: 60–68.
    [28] Nomura Y, Liu Z, Nishi T (2025) Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management. Appl Sci 15: 2421. https://doi.org/10.3390/app15052421 doi: 10.3390/app15052421
    [29] Otto SA, SzymanskiI DM, Varadarajan R (2020) Customer satisfaction and firm performance: insights from over a quarter century of empirical research. J Acad Market Sci 48: 543–564. http://doi.org/10.1007/s11747-019-00657-7 doi: 10.1007/s11747-019-00657-7
    [30] Plebani P, Rossetto D, Tiezzi F (2023) Empowering trusted data sharing for data analytics in a federated environment: A blockchain-based approach. Frontiers in Blockchain 6: 1141760. https://doi.org/10.3389/fbloc.2023.1141760 doi: 10.3389/fbloc.2023.1141760
    [31] Pravani S, Prasanna SH, Jesuthasan A (2020) Product Recommendation System for Supermarket, 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Publisher: IEEE, Miami, USA, 930–035. http://doi.org/10.1109/ICMLA51294.2020.00151
    [32] Raeder T, Chawla NV (2011) Market basket analysis with networks. Soc Netw Anal Min 1: 97–113. http://doi.org/10.1007/s13278-010-0003-7 doi: 10.1007/s13278-010-0003-7
    [33] Rooderkerk RP, Van Heerde HJ, Bijmolt TH (2013) Optimizing Retail Assortments. Market Sci 32: 699–715. https://doi.org/10.1287/mksc.2013.0800 doi: 10.1287/mksc.2013.0800
    [34] Santos S, Gonçalves HM (2024) Consumer decision journey: Mapping with real-time longitudinal online and offline touchpoint data. Eur Manage J 42: 397–413. https://doi.org/10.1016/j.emj.2022.10.001 doi: 10.1016/j.emj.2022.10.001
    [35] Sinaga KP, Yang MS (2020) Unsupervised K-Means Clustering Algorithm. IEEE Access 8: 80716–80727. http://doi.org/10.1109/ACCESS.2020.2988796 doi: 10.1109/ACCESS.2020.2988796
    [36] Smaili MY, Hachimi H (2023) New RFM-D classification model for improving customer analysis and response prediction. Ain Shams Eng J 14: 102254. https://doi.org/10.1016/j.asej.2023.102254 doi: 10.1016/j.asej.2023.102254
    [37] Stylianou T, Milidis A (2024). The socioeconomic determinants of University dropouts: The case of Greece. J Infrastruct Policy Dev 8: 3729. https://doi.org/10.24294/jipd.v8i6.3729 doi: 10.24294/jipd.v8i6.3729
    [38] Tasos S, Amjad MI, Awan MS, et al. (2020) Poverty alleviation and microfinance for the economy of Pakistan: A case study of Khushhali Bank in Sargodha. Economies 8: 63. http://doi.org/10.3390/economies8030063 doi: 10.3390/economies8030063
    [39] Trebbin A, Geburt K. (2024) Carbon and Environmental Labelling of Food Products: Insights into the Data on Display. Sustainability 16: 10876. https://doi.org/10.3390/su162410876 doi: 10.3390/su162410876
    [40] Unwin A (2010) Exploratory Data Analysis, Peterson P., Baker E., McGaw Berry, International Encyclopedia of Education, Elsevier.
    [41] Wang J, Tan Y, Jiang B, et al. (2025) Dynamic marketing uplift modeling: A symmetry-preserving framework integrating causal forests with deep reinforcement learning for personalized intervention strategies. Symmetry 17: 610. https://doi.org/10.3390/sym17040610 doi: 10.3390/sym17040610
    [42] Watson HJ (2014) Tutorial: Big Data Analytics: Concepts, Technologies, and Applications. Commun Assoc Inf Syst 34: 1247–1268. https://doi.org/10.17705/1CAIS.03465 doi: 10.17705/1CAIS.03465
    [43] Wirth R, Hipp J (2000) CRISP-DM: Towards a standard process model for data mining, In: Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, Manchester, UK, 29–39.
    [44] Xiao JW, Xie Y, Fang H, et al. (2023) A new deep clustering method with application to customer selection for demand response program. Int J Elec Power Energ Syst 150: 109072. https://doi.org/10.1016/j.ijepes.2023.109072 doi: 10.1016/j.ijepes.2023.109072
    [45] Yang S, Zhang L (2025) Optimizing an Omnichannel Retail Strategy Considering Customer Segmentation. Evaluation Rev. https://doi:10.1177/0193841X251328710 doi: 10.1177/0193841X251328710
    [46] Zikopoulos P, Eaton C (2011) Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media.
    [47] Zwitter A (2014) Big Data ethics. Big Data Soc 1. https://doi.org/10.1177/2053951714559253 doi: 10.1177/2053951714559253
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1605) PDF downloads(127) Cited by(0)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog