Research article

Estimating SFLQ-based regional input-output tables for South Korean regions

  • Received: 11 November 2024 Revised: 17 February 2025 Accepted: 03 March 2025 Published: 10 March 2025
  • JEL Codes: C13, C67, O18, R15

  • The present study employed official input-output data for 17 regions in South Korea from 2015 to analyze the industry-specific Flegg location quotient (SFLQ) formula as a tool for estimating regional input-output tables. The paper builds on the work of Kowalewski (2015), who proposed an interesting variant of the Flegg location quotient (FLQ) by letting the value of the parameter δ in the FLQ vary across industries. The main aim of the present study was to employ Kowalewski's SFLQ formula to produce estimated regional input-output tables for South Korea and to examine the accuracy of the resulting estimates. We estimated Kowalewski's regression model for all Korean regions in 2015, something that has not previously been performed. Subsequently, we compared the regionalized SFLQ-based estimates with the official regional input-output tables produced by the Bank of Korea. We tested the accuracy of the estimations using different statistics.

    Citation: Timo Tohmo. Estimating SFLQ-based regional input-output tables for South Korean regions[J]. National Accounting Review, 2025, 7(1): 125-142. doi: 10.3934/NAR.2025006

    Related Papers:

  • The present study employed official input-output data for 17 regions in South Korea from 2015 to analyze the industry-specific Flegg location quotient (SFLQ) formula as a tool for estimating regional input-output tables. The paper builds on the work of Kowalewski (2015), who proposed an interesting variant of the Flegg location quotient (FLQ) by letting the value of the parameter δ in the FLQ vary across industries. The main aim of the present study was to employ Kowalewski's SFLQ formula to produce estimated regional input-output tables for South Korea and to examine the accuracy of the resulting estimates. We estimated Kowalewski's regression model for all Korean regions in 2015, something that has not previously been performed. Subsequently, we compared the regionalized SFLQ-based estimates with the official regional input-output tables produced by the Bank of Korea. We tested the accuracy of the estimations using different statistics.



    加载中


    [1] Bonfiglio A, Chelli F (2008) Assessing the behaviour of non-survey methods for constructing regional input-output tables through a Monte Carlo simulation. Econ Syst Res 20: 243-258. https://doi.org/10.1080/09535310802344315 doi: 10.1080/09535310802344315
    [2] Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Rese 33: 261-304. https://doi.org/10.1177/0049124104268644 doi: 10.1177/0049124104268644
    [3] Flegg AT, Tohmo T (2013a) Regional input-output tables and the FLQ formula: A case study of Finland. Reg Stud 47: 703-721. https://doi.org/10.1080/00343404.2011.592138 doi: 10.1080/00343404.2011.592138
    [4] Flegg AT, Tohmo T (2013b) A comment on Tobias Kronenberg's 'Construction of regional input-output tables using nonsurvey methods: The role of cross-hauling'. Int Reg Sci Rev 36: 235-257. https://doi.org/10.1177/0160017612446371 doi: 10.1177/0160017612446371
    [5] Flegg AT, Tohmo T (2016) Estimating regional input coefficients and multipliers: The use of FLQ is not a gamble. Reg Stud 50: 310-325. https://doi.org/10.1080/00343404.2014.901499 doi: 10.1080/00343404.2014.901499
    [6] Flegg AT, Tohmo T (2019) The regionalization of national input-output tables: A study of South Korean regions. Pap Reg Sci 98: 601–621. https://doi.org/10.1111/pirs.12364 doi: 10.1111/pirs.12364
    [7] Flegg AT, Mastronardi LJ, Romero CA (2016) Evaluating the FLQ and AFLQ formulae for estimating regional input coefficients: empirical evidence for the province of Córdoba, Argentina. Econ Syst Res 28: 21-37. https://doi.org/10.1080/09535314.2015.1103703 doi: 10.1080/09535314.2015.1103703
    [8] Flegg AT, Webber CD (1997) On the appropriate use of location quotients in generating regional input-output tables: Reply. Reg Stud 31: 795-805. https://doi.org/10.1080/713693401 doi: 10.1080/713693401
    [9] Flegg AT, Webber CD (2000) Regional size, regional specialization and the FLQ formula. Reg Stud 34: 563-569. https://doi.org/10.1080/00343400050085675 doi: 10.1080/00343400050085675
    [10] Flegg AT, Webber CD, Elliott MV (1995) On the appropriate use of location quotients in generating regional input-output tables. Reg Stud 29: 547-561. https://doi.org/10.1080/00343409512331349173 doi: 10.1080/00343409512331349173
    [11] Flegg AT, Lamonica GR, Chelli FM, et al. (2021) A new approach to modelling the input–output structure of regional economies using non-survey methods. J Econ Struct 10: 1–31. https://doi.org/10.1186/s40008-021-00242-8 doi: 10.1186/s40008-021-00242-8
    [12] Harrigan FJ, McGilvray JW, McNicoll IH (1980) Simulating the structure of a regional economy. Environ Plan A 12: 927–936. https://doi.org/10.1068/a120927 https://doi.org/10.1068/a120927 doi: 10.1068/a120927DOI:10.1068/a120927
    [13] Hewings GJD (1971) Regional input-output models in the U.K.: Some problems and prospects for the use of nonsurvey techniques. Reg Stud 5: 11–22. https://doi.org/10.1080/09595237100185021 doi: 10.1080/09595237100185021
    [14] Isard W (1960) Methods of regional analysis: An introduction to regional science. The regional science studies series 4. The M.I.T. Press, Massachusetts Institute of Technology.
    [15] Jensen RC (1980) The concept of accuracy in regional input-output models. Int Reg Sci Rev 5: 139–154. https://doi.org/10.1177/016001768000500203 doi: 10.1177/016001768000500203
    [16] Jensen RC, MacDonald S (1982) Technique and technology in regional input-output. Ann Reg Sci 16: 27–45. https://doi.org/10.1007/BF01284245 doi: 10.1007/BF01284245
    [17] Kowalewski J (2015) Regionalization of national input-output tables: empirical evidence on the use of the FLQ formula. Reg Stud 49: 240-250. https://doi.org/10.1080/00343404.2013.766318 doi: 10.1080/00343404.2013.766318
    [18] Mardones C, Silva D (2021) Estimation of regional input coefficients and output multipliers for the regions of Chile. Pap Reg Sci 100: 875–889. https://doi.org/10.1111/pirs.12603 doi: 10.1111/pirs.12603
    [19] Mardones C, Silva D (2023) Evaluation of Non-survey Methods for the Construction of Regional Input–Output Matrices When There is Partial Historical Information. Comput Econ 61: 1173–1205. https://doi.org/10.1007/s10614-022-10241-x doi: 10.1007/s10614-022-10241-x
    [20] Mardones C, Correa M (2024) Methodological proposal to approximate the sectoral impacts of a carbon tax at the regional level–the case of Chile. Econ Syst Res, 1–24. https://doi.org/10.1080/09535314.2024.2397974 doi: 10.1080/09535314.2024.2397974
    [21] Miernyk WH (1968) Long-Range forecasting with a regional input-output model. West Econ J 6: 165–176. https://doi.org/10.1007/978-1-349-15404-3_13 doi: 10.1007/978-1-349-15404-3_13
    [22] Miernyk WH (1976) Comments on recent developments in regional input-output analysis. Int Reg Sci Rev 1: 47–55. https://doi.org/10.1177/016001767600100204 doi: 10.1177/016001767600100204
    [23] Miller RE, Blair PD (2009) Input-output analysis: Foundations and extensions, Cambridge University Press, New York.
    [24] Morrison WI, Smith P (1974) Nonsurvey input-output techniques at the small area level: An evaluation. J Reg Sci 14: 1–14. https://doi.org/10.1111/j.1467-9787.1974.tb00425.x doi: 10.1111/j.1467-9787.1974.tb00425.x
    [25] OECD (2017) Gross domestic product (GDP) (indicator). https://doi.org/10.1787/dc2f7aec-en
    [26] Richardson HW (1972) Input-output and regional economics, London, Weidenfeld and Nicolson.
    [27] Round JI (1978) An interregional input-output approach to the evaluation of nonsurvey methods. J Reg Sci 18: 179–194. https://doi.org/10.1111/j.1467-9787.1978.tb00540.x doi: 10.1111/j.1467-9787.1978.tb00540.x
    [28] Round JI (1983) Nonsurvey techniques. A critical review of the theory and the evidence. Int Reg Sci Rev 8: 189–212. https://doi.org/10.1177/016001768300800302 doi: 10.1177/016001768300800302
    [29] Schaffer WA, Chu K (1969) Nonsurvey techniques for constructing regional interindustry models. Pap Reg Sci Assoc 23: 83–101. https://doi.org/10.1007/BF01941876 doi: 10.1007/BF01941876
    [30] Smith P, Morrison WI (1974) Simulating the urban economy, input-output techniques.
    [31] Theil H, Beerens GAC, DeLeeuw CG, et al. (1966) Applied Economic Forecasting, Amsterdam: North-Holland Publishing Company.
    [32] Tohmo T (2004) New developments in the use of location quotients to estimate regional input-output coefficients and multipliers. Reg Stud 38: 43-54. https://doi.org/10.1080/00343400310001632262 doi: 10.1080/00343400310001632262
    [33] Zhao X, Choi SG (2015) On the regionalization of input-output tables with an industry-specific location quotient. Ann Reg Sci 54: 901-926. https://doi.org/10.1007/s00168-015-0693-x doi: 10.1007/s00168-015-0693-x
  • NAR-07-01-006-S001.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1412) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog