Research article

Growth and poverty reduction in Vietnam: A strategic policy modelling study

  • A major objective of economic development or growth is poverty reduction, and it is especially a high priority in developing, low-income economies such as Vietnam. Vietnam is an important transition open high-growth economy since Doi Moi in 1987 and with increasing global geopolitical influence in South East Asia but with concerning high poverty incidence. While poverty is recognised internationally as a multidimensional incidence with interdependent relationships among the country's many activities in the sense of Marshall or Haavelmo, rigorous studies with focus on these multidirectional causality issues for Vietnam are currently very limited. The paper addresses these issues by introducing an endogeneity or simultaneous multi-equation modelling approach with World Bank and other international data and system estimation to studying the growth-poverty relationship with Vietnam as a case study. The objective is to explore empirical evidence for this causal relationship with an economy-wide transmission mechanism and with common causality postulates for the improvement of sustainable growth and poverty reduction strategic policy analysis. The main findings show growth-poverty circular causality and the strong impact of growth on poverty reduction and of trade openness on growth. The approach advances the literature, and the findings are also a useful guide for aid consultants, economic researchers, policy makers, nongovernment organizations (NGOs), and official development assistance (ODA) donors in Vietnam in particular and in developing countries in general.

    Citation: Van Hoa Tran, Quang Thao Pham. Growth and poverty reduction in Vietnam: A strategic policy modelling study[J]. National Accounting Review, 2024, 6(3): 449-464. doi: 10.3934/NAR.2024020

    Related Papers:

    [1] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [2] Jianquan Li, Yiqun Li, Yali Yang . Epidemic characteristics of two classic models and the dependence on the initial conditions. Mathematical Biosciences and Engineering, 2016, 13(5): 999-1010. doi: 10.3934/mbe.2016027
    [3] Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109
    [4] Fred Brauer . Age-of-infection and the final size relation. Mathematical Biosciences and Engineering, 2008, 5(4): 681-690. doi: 10.3934/mbe.2008.5.681
    [5] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman . The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455
    [6] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [7] Z. Feng . Final and peak epidemic sizes for SEIR models with quarantine and isolation. Mathematical Biosciences and Engineering, 2007, 4(4): 675-686. doi: 10.3934/mbe.2007.4.675
    [8] Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439
    [9] Jinlong Lv, Songbai Guo, Jing-An Cui, Jianjun Paul Tian . Asymptomatic transmission shifts epidemic dynamics. Mathematical Biosciences and Engineering, 2021, 18(1): 92-111. doi: 10.3934/mbe.2021005
    [10] Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335
  • A major objective of economic development or growth is poverty reduction, and it is especially a high priority in developing, low-income economies such as Vietnam. Vietnam is an important transition open high-growth economy since Doi Moi in 1987 and with increasing global geopolitical influence in South East Asia but with concerning high poverty incidence. While poverty is recognised internationally as a multidimensional incidence with interdependent relationships among the country's many activities in the sense of Marshall or Haavelmo, rigorous studies with focus on these multidirectional causality issues for Vietnam are currently very limited. The paper addresses these issues by introducing an endogeneity or simultaneous multi-equation modelling approach with World Bank and other international data and system estimation to studying the growth-poverty relationship with Vietnam as a case study. The objective is to explore empirical evidence for this causal relationship with an economy-wide transmission mechanism and with common causality postulates for the improvement of sustainable growth and poverty reduction strategic policy analysis. The main findings show growth-poverty circular causality and the strong impact of growth on poverty reduction and of trade openness on growth. The approach advances the literature, and the findings are also a useful guide for aid consultants, economic researchers, policy makers, nongovernment organizations (NGOs), and official development assistance (ODA) donors in Vietnam in particular and in developing countries in general.





    [1] ADB (2003) Economic Growth and Poverty Reduction in Viet Nam, ERD Working Paper No. 42. Manila, June 2003. Available from: http://www.adb.org/economics.
    [2] Anderson E (2020) The impact of trade liberalisation on poverty and inequality: Evidence from CGE models. J Policy Model 42:1208–1227.
    [3] Balisacan AM, Pernia EM, Estrada GEB (2003) Economic Growth and Poverty Reduction in Viet Nam, In: Pernia, E.M., Deolalikar, A.B., Poverty, Growth and Institutions in Developing Asia, London: Palgrave Macmillan, 273–296. https://doi.org/10.1057/9781403937797_9
    [4] CIE (2002) Vietnam Poverty Analysis, Centre for International Economics, 9 May 2002. Available from: https://www.dfat.gov.au/sites/default/files/vietnam_poverty_analysis.pdf.
    [5] Dollar D, Kraay A (2002) Growth is Good for the Poor. J Econ Growth 7: 195–225. https://doi.org/10.1023/A:1020139631000 doi: 10.1023/A:1020139631000
    [6] Easterly W (2007) Was Development Assistance a Mistake? Am Econ Rev 97: 328–332. https://doi.org/10.1257/aer.97.2.328 doi: 10.1257/aer.97.2.328
    [7] Engle RF, Granger CWJ (1987) Co-integration and Error Correction: Representation, Estimation and Testing. Econometrica 55: 251–276.
    [8] ERS-USDA (2024) International Macroeconomic Data Set. Available from: https://www.ers.usda.gov/data-products/international-macroeconomic-data-set.aspx.
    [9] Fernandez-Villaverdez J, Mineyama T, Song D (2024) Are We Fragmented Yet? Measuring Geopolitical Fragmentation and its Causal Effects. Available from: https://www.sas.upenn.edu/~jesusfv/Fragmentation.pdf.
    [10] Frankel JA, Romer D (1999) Does Trade Cause Growth?. Am Econ Rev 89: 379–399.
    [11] Friedman M (1953) Essays in Positive Economics. Chicago: University of Chicago Press.
    [12] Giroud A (2004) Regionalisation, Foreign Direct Investment and Poverty Reduction: The Case of ASEAN. University of Bradford, 2004. Available from: https://assets.publishing.service.gov.uk/media/57a08d1eed915d3cfd00181c/R7625BRADFORD_FINAL_REPORT_DfID.pdf.
    [13] Granger CWJ (1969) Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 37: 424–438.
    [14] Johansen L (1982) Econometric Models and Economic Planning and Policy: Some Trends and Problems, In: Hazewinkle, M., Kan, A.H.G.R. (eds.), Current Developments in the Interface: Economics, Econometrics, Mathematics, Boston: Reidel. 91–120. https://doi.org/10.1007/978-94-009-7933-8_12
    [15] Kydland FE (2006) Quantitative Aggregate Economics. Am Econ Rev 96: 13731383.
    [16] Le TH, Koo S (2007) Recent Economic Performance and Poverty Reduction in Vietnam. J Int Area Stud 14: 17–35.
    [17] Le MS, Nguyen T, Singh T (2014) Economic Growth and Poverty in Vietnam: Evidence from Elasticity Approach (Working paper), Griffith University. Available from: https://researchrepository.griffith.edu.au.
    [18] MOLISA (Ministry of Labour, Invalids and Social Affairs) (2023) Available from: https://en.vietnamplus.vn/nationaltarget-programme-on-sustainable-povertyreductionreviewed/271430.vnp#: ~: text = The%20programme%20also%20aims%20to, by%20over%203%25%20per%20year.
    [19] Paweenawat SW, McNown R (2014) The Determinants of Income Inequality in Thailand: A Synthetic Cohort Analysis. J Asian Econ 31–32: 10–21. https://doi.org/10.1016/j.asieco.2014.02.001 doi: 10.1016/j.asieco.2014.02.001
    [20] Pham TH, Riedel J (2019) Impacts of the Sectoral Composition of Growth on Poverty Reduction in Vietnam. J Econ Dev 21: 213–222. https://doi.org/10.1108/JED-10-2019-0046 doi: 10.1108/JED-10-2019-0046
    [21] Pindyck RS, Rubinfeld DL (1998) Econometric Models and Economic Forecasts. Sydney: McGraw-Hill.
    [22] Sala-I-Martin X (1991) Comment, In: Blanchard, O.J., Fischer, S. (eds.), NBER Macroeconomic Annual 1991, Cambridge, MA: MIT Press, 368–378.
    [23] Siddiqui R, Kemal AR (2006) Poverty-reducing or Poverty-inducing? A CGE-based Analysis of Foreign Capital Inflows in Pakistan. MPRA Paper no. 2283. Available from: https://mpra.ub.uni-muenchen.de/2283/1/MPRA_paper_2283.pdf.
    [24] Stone R (1988) Progress in Balancing the National Accounts, In: Ironmonger, D.S., Perkins, J.O.N., Tran, V.H. (eds.), National Income and Economic Progress: Essays in Honour of Colin Clark, London: Macmillan.
    [25] Tran VH (1992) Modelling Output Growth: A New Approach. Econ Lett 38: 279–284.
    [26] Tran VH (2005) Modelling the Impact of China's WTO Membership on Its Investment and Growth: A New Flexible Keynesian Approach (with Comment), In: Heiduk, G.S., Wong, K. (eds), WTO and World Trade, New York: Physica-Verlag, 251–265. https://doi.org/10.1007/3-7908-1630-2_22
    [27] Tran VH, Limskul K (2013) Economic Impact of CO2 Emissions on Thailand's Growth and Climate Change Mitigation Policy: A Modelling Analysis. Econ Model 33: 351–358. https://doi.org/10.1016/j.econmod.2013.04.019 doi: 10.1016/j.econmod.2013.04.019
    [28] Tran VH, Turner L, Vu J (2018) Economic Impact of Chinese Tourism on Australia: A New Approach. Tour Econ 24: 677–689. https://doi.org/10.1177/1354816618769077 doi: 10.1177/1354816618769077
    [29] Tran VH, Vu J (2020) Contribution of Chinese and Indian Tourism to Australia: A Comparative Econometric Study. Archives Bus Res 8: 107–120. https://doi.org/10.14738/abr.81.7498 doi: 10.14738/abr.81.7498
    [30] Tran VH, Vu J, Pham QT (2020) Vietnam's sustainable tourism and growth: a new approach to strategic policy modelling. Natl Account Rev 2: 324–336. https://doi.org/10.3934/NAR.2020019 doi: 10.3934/NAR.2020019
    [31] Tran VH, Vu J, Ho TT (2021) Vietnam's National Export Strategy: Evidence from an Economic Policy Modelling Study. Thammasat Rev Econ Soc Policy 7: 4–33.
    [32] UNDP (2024) Unstacking Global Poverty: Data for High Impact Action: Briefing Note for Countries on the 2023 Multidimensional Poverty Index, Viet Nam, Available from: https://hdr.undp.org/sites/default/files/Country-Profiles/MPI/VNM.pdf.
    [33] World Bank (2022) From the Last Mile to the Next Mile: 2022 Vietnam Poverty and Equity Assessment. Overview. Available from: https://thedocs.worldbank.org/en/doc/4849fcf95377cf1482bd9668c4cf05fb-0070012022/original/VN-PA-launch-PPT-ENG-FINAL.pdf.
    [34] World Bank (2023) Harnessing the Potential of the Services Sector for Growth. Available from: https://documents1.worldbank.org/curated/en/099544403132351453/pdf/IDU0343e48530e212043860bee605aae66cfb04a.pdf.
    [35] World Bank (2024) Available from: https://databank.worldbank.org/source/world-development-indicators.
    [36] WTO (2024) Regional Trade Agreements. Available from: https://www.wto.org/english/tratop_e/region_e/region_e.htm.
    [37] Zhu Y, Bashir S, Marie M (2022) Assessing the Relationship between Poverty and Economic Growth: Does Sustainable Development Goal Can be Achieved?. Environ Sci Pollut Res 29: 27613–27623. https://doi.org/10.1007/s11356-021-18240-5
  • This article has been cited by:

    1. Guihong Fan, Junli Liu, P. van den Driessche, Jianhong Wu, Huaiping Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, 2010, 228, 00255564, 119, 10.1016/j.mbs.2010.08.010
    2. Pierre Magal, Ousmane Seydi, Glenn Webb, Final Size of an Epidemic for a Two-Group SIR Model, 2016, 76, 0036-1399, 2042, 10.1137/16M1065392
    3. Pierre Magal, Ousmane Seydi, Glenn Webb, Final size of a multi-group SIR epidemic model: Irreducible and non-irreducible modes of transmission, 2018, 301, 00255564, 59, 10.1016/j.mbs.2018.03.020
    4. Subekshya Bidari, Xinying Chen, Daniel Peters, Dylanger Pittman, Péter L. Simon, Solvability of implicit final size equations for SIR epidemic models, 2016, 282, 00255564, 181, 10.1016/j.mbs.2016.10.012
    5. Zhiying Wang, Jing Liang, Huifang Nie, Hongli Zhao, A 3SI3R model for the propagation of two rumors with mutual promotion, 2020, 2020, 1687-1847, 10.1186/s13662-020-02552-w
    6. Emmanuelle Augeraud-Véron, E. Augeraud, M. Banerjee, J.-S. Dhersin, A. d'Onofrio, T. Lipniacki, S. Petrovskii, Chi Tran, A. Veber-Delattre, E. Vergu, V. Volpert, Lifting the COVID-19 lockdown: different scenarios for France, 2020, 15, 0973-5348, 40, 10.1051/mmnp/2020031
    7. KLOT PATANARAPEELERT, INVESTIGATING THE ROLE OF WITHIN- AND BETWEEN-PATCH MOVEMENT IN A DYNAMIC MODEL OF DISEASE SPREAD, 2020, 28, 0218-3390, 815, 10.1142/S0218339020500187
    8. Aadrita Nandi, Linda J. S. Allen, 2019, Chapter 20, 978-3-030-25497-1, 483, 10.1007/978-3-030-25498-8_20
    9. Jingan Cui, Yanan Zhang, Zhilan Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, 2019, 13, 1751-3758, 31, 10.1080/17513758.2018.1484186
    10. Pierre Magal, Glenn Webb, The parameter identification problem for SIR epidemic models: identifying unreported cases, 2018, 77, 0303-6812, 1629, 10.1007/s00285-017-1203-9
    11. Abba B. Gumel, Enahoro A. Iboi, Calistus N. Ngonghala, Elamin H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, 2021, 6, 24680427, 148, 10.1016/j.idm.2020.11.005
    12. Joel C. Miller, A Note on the Derivation of Epidemic Final Sizes, 2012, 74, 0092-8240, 2125, 10.1007/s11538-012-9749-6
    13. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 5, 978-1-4939-9826-5, 179, 10.1007/978-1-4939-9828-9_5
    14. Fred Brauer, General compartmental epidemic models, 2010, 31, 0252-9599, 289, 10.1007/s11401-009-0454-1
    15. Lei Xiang, Yuyue Zhang, Jicai Huang, Stability analysis of a discrete SIRS epidemic model with vaccination, 2020, 26, 1023-6198, 309, 10.1080/10236198.2020.1725497
    16. Hémaho B. Taboe, Kolawolé V. Salako, James M. Tison, Calistus N. Ngonghala, Romain Glèlè Kakaï, Predicting COVID-19 spread in the face of control measures in West Africa, 2020, 328, 00255564, 108431, 10.1016/j.mbs.2020.108431
    17. Julien Arino, Christopher S Bowman, Seyed M Moghadas, Antiviral resistance during pandemic influenza: implications for stockpiling and drug use, 2009, 9, 1471-2334, 10.1186/1471-2334-9-8
    18. Zhipeng Qiu, Zhilan Feng, Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment, 2010, 72, 0092-8240, 1, 10.1007/s11538-009-9435-5
    19. Kyeongah Nah, Mahnaz Alavinejad, Ashrafur Rahman, Jane M Heffernan, Jianhong Wu, Impact of influenza vaccine-modified infectivity on attack rate, case fatality ratio and mortality, 2020, 492, 00225193, 110190, 10.1016/j.jtbi.2020.110190
    20. Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu, A model for influenza with vaccination and antiviral treatment, 2008, 253, 00225193, 118, 10.1016/j.jtbi.2008.02.026
    21. Viggo Andreasen, The Final Size of an Epidemic and Its Relation to the Basic Reproduction Number, 2011, 73, 0092-8240, 2305, 10.1007/s11538-010-9623-3
    22. Calistus N. Ngonghala, Enahoro A. Iboi, Abba B. Gumel, Could masks curtail the post-lockdown resurgence of COVID-19 in the US?, 2020, 329, 00255564, 108452, 10.1016/j.mbs.2020.108452
    23. Keisuke Ejima, Kazuyuki Aihara, Hiroshi Nishiura, Edward Goldstein, The Impact of Model Building on the Transmission Dynamics under Vaccination: Observable (Symptom-Based) versus Unobservable (Contagiousness-Dependent) Approaches, 2013, 8, 1932-6203, e62062, 10.1371/journal.pone.0062062
    24. Hyojung Lee, Sunmi Lee, Chang Hyeong Lee, Stochastic methods for epidemic models: An application to the 2009 H1N1 influenza outbreak in Korea, 2016, 286, 00963003, 232, 10.1016/j.amc.2016.04.019
    25. Bahman Davoudi, Joel C. Miller, Rafael Meza, Lauren Ancel Meyers, David J. D. Earn, Babak Pourbohloul, Early Real-Time Estimation of the Basic Reproduction Number of Emerging Infectious Diseases, 2012, 2, 2160-3308, 10.1103/PhysRevX.2.031005
    26. Tahar Z. Boulmezaoud, E. Augeraud, M. Banerjee, J.-S. Dhersin, A. d'Onofrio, T. Lipniacki, S. Petrovskii, Chi Tran, A. Veber-Delattre, E. Vergu, V. Volpert, A discrete epidemic model and a zigzag strategy for curbing the Covid-19 outbreak and for lifting the lockdown, 2020, 15, 0973-5348, 75, 10.1051/mmnp/2020043
    27. Shi Zhao, Salihu S. Musa, Hao Fu, Daihai He, Jing Qin, Simple framework for real-time forecast in a data-limited situation: the Zika virus (ZIKV) outbreaks in Brazil from 2015 to 2016 as an example, 2019, 12, 1756-3305, 10.1186/s13071-019-3602-9
    28. Yi Wang, Zhouchao Wei, Jinde Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, 2020, 101, 0924-090X, 1801, 10.1007/s11071-020-05867-1
    29. Carlos Castillo-Chavez, Sunmi Lee, 2015, Chapter 85, 978-3-540-70528-4, 427, 10.1007/978-3-540-70529-1_85
    30. Salisu M. Garba, Jean M.-S. Lubuma, Berge Tsanou, Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa, 2020, 328, 00255564, 108441, 10.1016/j.mbs.2020.108441
    31. Florian Uekermann, Lone Simonsen, Kim Sneppen, Rashid Ansumana, Exploring the contribution of exposure heterogeneity to the cessation of the 2014 Ebola epidemic, 2019, 14, 1932-6203, e0210638, 10.1371/journal.pone.0210638
    32. Calistus N. Ngonghala, Enahoro Iboi, Steffen Eikenberry, Matthew Scotch, Chandini Raina MacIntyre, Matthew H. Bonds, Abba B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, 2020, 325, 00255564, 108364, 10.1016/j.mbs.2020.108364
    33. Yi Wang, Jinde Cao, Gang Huang, Further dynamic analysis for a network sexually transmitted disease model with birth and death, 2019, 363, 00963003, 124635, 10.1016/j.amc.2019.124635
    34. Julien Arino, Stéphanie Portet, A simple model for COVID-19, 2020, 5, 24680427, 309, 10.1016/j.idm.2020.04.002
    35. Antoine Danchin, Tuen Wai Ng, Gabriel Turinici, A New Transmission Route for the Propagation of the SARS-CoV-2 Coronavirus, 2020, 10, 2079-7737, 10, 10.3390/biology10010010
    36. Fred Brauer, Epidemic Models with Heterogeneous Mixing and Treatment, 2008, 70, 0092-8240, 1869, 10.1007/s11538-008-9326-1
    37. Nicolas Bacaër, M. Gabriela M. Gomes, On the Final Size of Epidemics with Seasonality, 2009, 71, 0092-8240, 10.1007/s11538-009-9433-7
    38. Juping Zhang, Dan Li, Wenjun Jing, Zhen Jin, Huaiping Zhu, Transmission dynamics of a two-strain pairwise model with infection age, 2019, 71, 0307904X, 656, 10.1016/j.apm.2019.03.001
    39. Jiajia Wang, Laijun Zhao, Rongbing Huang, 2SI2R rumor spreading model in homogeneous networks, 2014, 413, 03784371, 153, 10.1016/j.physa.2014.06.053
    40. Zhilan Feng, John W. Glasser, 2021, 9780128160787, 331, 10.1016/B978-0-12-801238-3.11471-0
    41. Fengqin Zhang, Jianquan Li, Jia Li, Epidemic characteristics of two classic SIS models with disease-induced death, 2017, 424, 00225193, 73, 10.1016/j.jtbi.2017.04.029
    42. Yaming Zhang, Yanyuan Su, Li Weigang, Haiou Liu, Rumor and authoritative information propagation model considering super spreading in complex social networks, 2018, 506, 03784371, 395, 10.1016/j.physa.2018.04.082
    43. Jonathan Dushoff, Sang Woo Park, Speed and strength of an epidemic intervention, 2021, 288, 0962-8452, 10.1098/rspb.2020.1556
    44. Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1
    45. Karly A. Jacobsen, Mark G. Burch, Joseph H. Tien, Grzegorz A. Rempała, The large graph limit of a stochastic epidemic model on a dynamic multilayer network, 2018, 12, 1751-3758, 746, 10.1080/17513758.2018.1515993
    46. Yaming Zhang, Yanyuan Su, Li Weigang, Haiou Liu, Interacting model of rumor propagation and behavior spreading in multiplex networks, 2019, 121, 09600779, 168, 10.1016/j.chaos.2019.01.035
    47. Seoyun Choe, Sunmi Lee, Modeling optimal treatment strategies in a heterogeneous mixing model, 2015, 12, 1742-4682, 10.1186/s12976-015-0026-x
    48. A Ducrot, P Magal, T Nguyen, G F Webb, Identifying the number of unreported cases in SIR epidemic models, 2020, 37, 1477-8599, 243, 10.1093/imammb/dqz013
    49. Fan Bai, Uniqueness of Nash equilibrium in vaccination games, 2016, 10, 1751-3758, 395, 10.1080/17513758.2016.1213319
    50. Julien Arino, Mathematical epidemiology in a data-rich world, 2020, 5, 24680427, 161, 10.1016/j.idm.2019.12.008
    51. Fred Brauer, James Watmough, Age of infection epidemic models with heterogeneous mixing, 2009, 3, 1751-3758, 324, 10.1080/17513750802415822
    52. Salihu Sabiu Musa, Shi Zhao, Nafiu Hussaini, Salisu Usaini, Daihai He, Dynamics analysis of typhoid fever with public health education programs and final epidemic size relation, 2021, 10, 25900374, 100153, 10.1016/j.rinam.2021.100153
    53. Franco Blanchini, Paolo Bolzern, Patrizio Colaneri, Giuseppe De Nicolao, Giulia Giordano, Optimal control of compartmental models: The exact solution, 2023, 147, 00051098, 110680, 10.1016/j.automatica.2022.110680
    54. Salihu S. Musa, Abdullahi Yusuf, Shi Zhao, Zainab U. Abdullahi, Hammoda Abu-Odah, Farouk Tijjani Saad, Lukman Adamu, Daihai He, Transmission dynamics of COVID-19 pandemic with combined effects of relapse, reinfection and environmental contribution: A modeling analysis, 2022, 38, 22113797, 105653, 10.1016/j.rinp.2022.105653
    55. Franco Blanchini, Paolo Bolzern, Patrizio Colaneri, Giuseppe De Nicolao, Giulia Giordano, 2022, Logarithmic Dynamics and Aggregation in Epidemics, 978-1-6654-6761-2, 4313, 10.1109/CDC51059.2022.9992421
    56. Alison Adams, Quiyana M. Murphy, Owen P. Dougherty, Aubrey M. Sawyer, Fan Bai, Christina J. Edholm, Evan P. Williams, Linda J.S. Allen, Colleen B. Jonsson, Data-driven models for replication kinetics of Orthohantavirus infections, 2022, 349, 00255564, 108834, 10.1016/j.mbs.2022.108834
    57. Asma Azizi, Caner Kazanci, Natalia L. Komarova, Dominik Wodarz, Effect of Human Behavior on the Evolution of Viral Strains During an Epidemic, 2022, 84, 0092-8240, 10.1007/s11538-022-01102-7
    58. Yi Wang, Jinde Cao, Changfeng Xue, Li Li, Mathematical Analysis of Epidemic Models with Treatment in Heterogeneous Networks, 2023, 85, 0092-8240, 10.1007/s11538-022-01116-1
    59. Florin Avram, Rim Adenane, David I. Ketcheson, A Review of Matrix SIR Arino Epidemic Models, 2021, 9, 2227-7390, 1513, 10.3390/math9131513
    60. Xiaohao Guo, Yichao Guo, Zeyu Zhao, Shiting Yang, Yanhua Su, Benhua Zhao, Tianmu Chen, Computing R0 of dynamic models by a definition-based method, 2022, 7, 24680427, 196, 10.1016/j.idm.2022.05.004
    61. 2022, chapter 3, 9781799883432, 56, 10.4018/978-1-7998-8343-2.ch003
    62. Cameron J. Browne, Hayriye Gulbudak, Joshua C. Macdonald, Differential impacts of contact tracing and lockdowns on outbreak size in COVID-19 model applied to China, 2022, 532, 00225193, 110919, 10.1016/j.jtbi.2021.110919
    63. Yan Chen, Haitao Song, Shengqiang Liu, Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stages, 2022, 7, 24680427, 795, 10.1016/j.idm.2022.11.004
    64. Luis Almeida, Pierre-Alexandre Bliman, Grégoire Nadin, Benoît Perthame, Nicolas Vauchelet, Final size and convergence rate for an epidemic in heterogeneous populations, 2021, 31, 0218-2025, 1021, 10.1142/S0218202521500251
    65. Jaafar El Karkri, Mohammed Benmir, 2022, 9780323905046, 137, 10.1016/B978-0-32-390504-6.00014-0
    66. Natali Hritonenko, Olga Yatsenko, Yuri Yatsenko, Model with transmission delays for COVID‐19 control: Theory and empirical assessment, 2022, 24, 1097-3923, 1218, 10.1111/jpet.12554
    67. Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer, A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission, 2020, 17, 1551-0018, 3294, 10.3934/mbe.2020188
    68. Qiang Huang, Qiyong Liu, Ci Song, Xiaobo Liu, Hua Shu, Xi Wang, Yaxi Liu, Xiao Chen, Jie Chen, Tao Pei, Urban spatial epidemic simulation model: A case study of the second COVID‐19 outbreak in Beijing, China, 2022, 26, 1361-1682, 297, 10.1111/tgis.12850
    69. Ashabul Hoque, Abdul Malek, K. M. Rukhsad Asif Zaman, Data analysis and prediction of the COVID-19 outbreak in the first and second waves for top 5 affected countries in the world, 2022, 109, 0924-090X, 77, 10.1007/s11071-022-07473-9
    70. Jiaqi Liu, Jiayin Qi, Online Public Rumor Engagement Model and Intervention Strategy in Major Public Health Emergencies: From the Perspective of Social Psychological Stress, 2022, 19, 1660-4601, 1988, 10.3390/ijerph19041988
    71. Florin Avram, Rim Adenane, Andrei Halanay, New Results and Open Questions for SIR-PH Epidemic Models with Linear Birth Rate, Loss of Immunity, Vaccination, and Disease and Vaccination Fatalities, 2022, 14, 2073-8994, 995, 10.3390/sym14050995
    72. Jummy F. David, Sarafa A. Iyaniwura, Effect of Human Mobility on the Spatial Spread of Airborne Diseases: An Epidemic Model with Indirect Transmission, 2022, 84, 0092-8240, 10.1007/s11538-022-01020-8
    73. Julien Arino, Pierre-Yves Boëlle, Evan Milliken, Stéphanie Portet, Risk of COVID-19 variant importation – How useful are travel control measures?, 2021, 6, 24680427, 875, 10.1016/j.idm.2021.06.006
    74. Sedrique A. Tiomela, J.E. Macías-Díaz, Alain Mvogo, Computer simulation of the dynamics of a spatial susceptible-infected-recovered epidemic model with time delays in transmission and treatment, 2021, 212, 01692607, 106469, 10.1016/j.cmpb.2021.106469
    75. Florin Avram, Rim Adenane, Lasko Basnarkov, Gianluca Bianchin, Dan Goreac, Andrei Halanay, An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A, B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities, 2023, 11, 2227-7390, 1307, 10.3390/math11061307
    76. Bolarinwa Bolaji, B. I. Omede, U. B. Odionyenma, P. B. Ojih, Abdullahi A. Ibrahim, Modelling the transmission dynamics of Omicron variant of COVID-19 in densely populated city of Lagos in Nigeria, 2023, 2714-4704, 1055, 10.46481/jnsps.2023.1055
    77. Wanxiao Xu, Hongying Shu, Lin Wang, Xiang-Sheng Wang, James Watmough, The importance of quarantine: modelling the COVID-19 testing process, 2023, 86, 0303-6812, 10.1007/s00285-023-01916-6
    78. Sarita Bugalia, Jai Prakash Tripathi, Assessing potential insights of an imperfect testing strategy: Parameter estimation and practical identifiability using early COVID-19 data in India, 2023, 10075704, 107280, 10.1016/j.cnsns.2023.107280
    79. Carles Barril, Pierre-Alexandre Bliman, Sílvia Cuadrado, Final Size for Epidemic Models with Asymptomatic Transmission, 2023, 85, 0092-8240, 10.1007/s11538-023-01159-y
    80. Jean-Jil Duchamps, Félix Foutel-Rodier, Emmanuel Schertzer, General epidemiological models: law of large numbers and contact tracing, 2023, 28, 1083-6489, 10.1214/23-EJP992
    81. Maximilian M. Nguyen, Ari S. Freedman, Sinan A. Ozbay, Simon A. Levin, Fundamental bound on epidemic overshoot in the SIR model, 2023, 20, 1742-5662, 10.1098/rsif.2023.0322
    82. Mohamed Anass El Yamani, Jaafar El Karkri, Saiida Lazaar, Rajae Aboulaich, A two-group epidemiological model: Stability analysis and numerical simulation using neural networks, 2023, 14, 1793-9623, 10.1142/S1793962323500290
    83. Preeti Deolia, Anuraj Singh, Analysing the probable insights of ADE in dengue vaccination embodying sequential Zika infection and waning immunity, 2024, 139, 2190-5444, 10.1140/epjp/s13360-023-04813-5
    84. Donald S. Burke, Origins of the problematic E in SEIR epidemic models, 2024, 24680427, 10.1016/j.idm.2024.03.003
    85. Alexis Erich S. Almocera, Alejandro H. González, Esteban A. Hernandez-Vargas, Confinement tonicity on epidemic spreading, 2024, 88, 0303-6812, 10.1007/s00285-024-02064-1
    86. Qian Li, Biao Tang, Yanni Xiao, Multiple epidemic waves in a switching system with multi-thresholds triggered alternate control, 2024, 112, 0924-090X, 8721, 10.1007/s11071-024-09533-8
    87. A. Dénes, G. Röst, T. Tekeli, 2024, Chapter 12, 978-3-031-59071-9, 249, 10.1007/978-3-031-59072-6_12
    88. Francesca Calà Campana, Rami Katz, Giulia Giordano, Sequential-Quadratic-Hamiltonian Optimal Control of Epidemic Models With an Arbitrary Number of Infected and Non-Infected Compartments, 2024, 8, 2475-1456, 1805, 10.1109/LCSYS.2024.3412775
    89. Komal Tanwar, Nitesh Kumawat, Jai Prakash Tripathi, Sudipa Chauhan, Anuj Mubayi, Evaluating vaccination timing, hesitancy and effectiveness to prevent future outbreaks: insights from COVID-19 modelling and transmission dynamics, 2024, 11, 2054-5703, 10.1098/rsos.240833
    90. Justin K. Sheen, Lee Kennedy-Shaffer, Michael Z. Levy, Charlotte Jessica E. Metcalf, Claudio José Struchiner, Design of field trials for the evaluation of transmissible vaccines in animal populations, 2025, 21, 1553-7358, e1012779, 10.1371/journal.pcbi.1012779
    91. Rim Adenane, Mohamed El Fatini, 2024, Actuarial Risks Associated to Disease Outbreaks and Insurance Plans Under Media Coverage Strategy, 979-8-3503-8735-3, 1, 10.1109/ICOA62581.2024.10754019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1835) PDF downloads(75) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog