-
AIMS Molecular Science, 2018, 5(1): 117-130. doi: 10.3934/molsci.2018.1.117.
Review
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Steroid hormones as interkingdom signaling molecules: Innate immune function and microbial colonization modulation
Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
Received: , Accepted: , Published:
Keywords: biofilm formation; biofilm dispersal; steroid hormones; estrogens; androgens; progesterone; dehydroepiandosterone; nitric oxide
Citation: Michael W Patt, Lisa Conte, Mary Blaha, Balbina J Plotkin. Steroid hormones as interkingdom signaling molecules: Innate immune function and microbial colonization modulation. AIMS Molecular Science, 2018, 5(1): 117-130. doi: 10.3934/molsci.2018.1.117
References:
-
1. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199.
- 2. Hastings JW, Greenberg EP (1999) Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 181: 2667–2668.
-
3. Horswill A, Stoodley P, Stewart PS, et al. (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387: 371–380.
-
4. Miller M, Bassler B (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199.
-
5. Reading N, Sperandio V (2006) Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett 254: 1–11.
-
6. Plotkin BJ, Viselli SM (2000) Effect of insulin on microbial growth. Curr Microbiol 41: 60–64.
- 7. Plotkin B, Wu Z, Ward K, et al. (2014) Effect of human insulin on the formation of catheter-associated E. coli biofilms. Open J Urol 4: 49–56.
-
8. Sperandio V, Torres AG, Jarvis B, et al. (2003) Bacteria-host communication: The language of hormones. Proc Natl Acad Sci U.S.A 100: 8951–8956.
- 9. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. Apmis 121: 1–58.
-
10. Bryers J (2008) Medical biofilms. Biotechnol Bioeng 100: 1–18.
-
11. Burmølle M, Hansen L, Sørensen S (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54: 352–362.
-
12. Costerton J, Stewart P, Greenberg E (1999) Bacterial biofilms: A common cause of persistent infections. Science 284: 1318–1322.
-
13. Donlan R (2001) Biofilm formation: A clinically relevant microbiological process. Clin Infect Dis 33: 1387–1392.
- 14. Martinotti MG, Savoia D (1985) Effect of some steroid hormones on the growth of Trichomonas vaginalis. G Batteriol Virol Immunol 78: 52–59.
- 15. Sugarman B, Mummaw N (1988) The effect of hormones on Trichomonas vaginalis. J Gen Microbiol 134: 1623–1628.
- 16. Drutz DJ, Huppert M, Sun SH, et al. (1981) Human sex hormones stimulate the growth and maturation of Coccidioides immitis. Infect Immun 32: 897–907.
- 17. Elsherif S, Refai M (1976) Studies on the fungistatic action of hormones on dermatophytes. E Rodenwaldt-Archiv 3: 101–108.
-
18. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108.
-
19. Zhang X, Essmann M, Burt ET, et al. (2000) Estrogen effects on Candida albicans: A potential virulence-regulating mechanism. J Infect Dis 181: 1441–1446.
-
20. Cheng G, Yeater KM, Hoyer LL (2006) Cellular and molecular biology of Candida albicans estrogen response. Eukaryotic cell 5: 180–191.
- 21. Kinsman OS, Pitblado K, Coulson CJ (2010) Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis. Mycoses 31: 617–626.
-
22. White S, Larsen B (1997) Candida albicans morphogenesis is influenced by estrogen. Cell Mol Life Sci CMLS 53: 744–749.
- 23. White T, Silver P (2005) Regulation of sterol metabolism in Candida albicans by the UPC2 gene. Biochem Soc Trans 33: 1215–1218.
-
24. Tarry W, Fisher M, Shen S, et al. (2005) Candida albicans: The estrogen target for vaginal colonization. J Surg Res 129: 278–282.
-
25. Fidel PL, Cutright J, Steele C (2000) Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun 68: 651–657.
-
26. Micheli Md, Bille J, Schueller C, et al. (2002) A common drug-responsive element mediates the upregulation of the Candida albicans ABC transports CDR1 and CDR2, two genes involved in antifunal drug resistance. Mol Microbiol 43: 1197–1214.
-
27. Karnani N, Gaur NA, Jha S, et al. (2004) SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast 21: 219–239.
-
28. Krishnamurthy S, Gupta V, Prasad R, et al. (1998) Expression of CDR1, a multidrug resistance gene of Candida albicans: Transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 160: 191–197.
- 29. Kornman KS, Loesche WJ (1982) Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 35: 256–263.
-
30. Chotirmall SH, Smith SG, Gunaratnam C, et al. (2012) Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 366: 1978–1986.
-
31. Lyczak JB, Cannon CL, Pier GB (2002) Lung Infections Associated with Cystic Fibrosis. Clin Microbiol Rev 15: 194–222.
-
32. Mihai MM, Holban AM, Giurcaneanu C, et al. (2015) Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr Top Med Chem 15: 1552–1576.
-
33. Rowland SS, Falkler WA, Bashirelahi N (1992) Identification of an estrogen-binding protein in Pseudomonas aeruginosa. J Steroid Biochem Mol Biol 42: 721–727.
-
34. Amirshahi A, Wan C, Beagley K, et al. (2011) Modulation of the Chlamydia trachomatis in vitro transcriptome response by the sex hormones estradiol and progesterone. BMC Microbiol 11: 150.
-
35. Edwards JL (2010) Neisseria gonorrhoeae survival during primary human cervical epithelial cell infection requires nitric oxide and is augmented by progesterone. Infect Immun 78: 1202–1213.
-
36. Yamaguchi H, Kamiya S, Uruma T, et al. (2008) Chlamydia pneumoniae Growth Inhibition in Cells by the Steroid Receptor Antagonist RU486 (Mifepristone). Antimicrob Agents Chemother 52: 1991–1998.
- 37. Ishida K, Yamazaki T, Motohashi K, et al. (2012) Effect of the steroid receptor antagonist RU486 (mifepristone) on an IFNγ-induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells. J Infect Chemother 19: 22–29.
-
38. Hahn DL, Mcdonald R (1998) Can acute Chlamydia pneumoniae respiratory tract infection initiate chronic asthma? Ann Allergy Asthma Immunol 81: 339–344.
-
39. Renee MD, Morehead MS (2001) Mifepristone. Ann Pharmacother 35: 707–719.
-
40. Farr S, Banks W, Uezu K, et al. (2004) DHEAS improves learning and memory in aged SAMP8 mice but not in diabetic mice. Life Sci 75: 2775–2785.
-
41. Nippoldt T (1998) Dehydroepiandrosterone supplements: Bringing sense to sensational claims. Endocr Pract 4: 106–111.
-
42. Straub R, Konecna L, Hrach S, et al. (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: Possible link between endocrinsensecence and immunosenescence. J Clin Endocrinol Metab 83: 2012–2017.
-
43. Yotis W, Waner J (1968) Antimicrobial properties of testosterone and its intermediates. Antonie van Leeuwenhoek 34: 275–286.
-
44. Plotkin BJ, Konakieva MI (2017) Attenuation of antimicrobial activity by the human steroid hormones. Steroids 128: 120–127.
- 45. Plotkin B, Erickson Q, Roose R, et al. (2003) Effect of androgens and glucocorticoids on microbial growth and antimicrobial susceptibility. Curr Microbiol 47: 514–520.
-
46. Plotkin B, Konaklieva M (2007) Possible role of sarA in dehydroepiandosterone (DHEA)-mediated increase in Staphylococcus aureus resistance to vancomycin. Chemotherapy 53: 181–184.
-
47. Proctor R, Peters G (1998) Small colony variants in staphylococcal infections: Diagnostic and therapeutic implications. Clin Infect Dis 27: 419–422.
-
48. Wong SS, Ho PL, Woo PC, et al. (1999) Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis 29: 760–767.
-
49. Donlan RM (2002) Biofilms: Microbial Life on Surfaces. Emerging Infect Dis 8: 881–890.
-
50. Plotkin B, Morejon A, Laddaga R, et al. (2005) Induction of increased resistance to vancomycin in Staphylococcus aureus clinical isolates (MSSA, MRSA) by dehydroepiandosterone (DHEA). Lett Appl Microbiol 40: 249–254.
-
51. Hiramatsu K, Dick JD, Perl TM (1998) Vancomycin resistance in staphylococci. Drug Resist Updates 1: 135–150.
-
52. Howe R, Wootton M, Walsh T, et al. (1999) Expression and detection of hetero-vancomycin resistance in Staphylococcus aureus. J Antimicrob Chemother 44: 675–678.
- 53. Moise PA, Schentag JJ (2000) Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections. Int J Antimicrob Agents 16: 31–34.
- 54. Martinotti MG, Savoia D (1985) Effect of some steroid hormones on the growth of Trichomonas vaginalis. G Batteriol Virol Immunol 78: 52–59.
-
55. Yotis WW, Fitzgerald T (1974) Hormonally induced alterations in Staphylococcus aureus. Ann N Y Acad Sci 236: 187–202.
-
56. Reiss F (1947) The effect of hormones on the growth of Trichophyton purpureum and Trichophyton gypseum. J Invest Dermatol 8: 245–250.
-
57. Lysko PG, Morse SA (1980) Effects of steroid hormones on Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 281–288.
- 58. Morse SA, Fitzgerald TJ (1974) Effect of progesterone on Neisseria gonorrhoeae. Infect Immun 10: 1370–1377.
- 59. Yotis WW, Savov ZT (1970) Reduction of the cytolytic action of staphylococcal alpha toxin by progesterone. Yale J Biol Med 42: 411.
-
60. Haam VE, Rosenfeld I (1942) The effect of the various sex hormones upon experimental pneumococcus infections in mice. J Infect Dis 70: 243–247.
- 61. Yotis W, Fitzgerald T (1968) Responses of staphylococci to androgens. Appl Microbiol 16: 1512–1517.
-
62. Li J, Niu J, Ou S, et al. (2012) Effects of SCR-3 on the immunosuppression accompanied with the systemic inflammatory response syndrome. Mol Cell Biochem 364: 29–37.
-
63. Yu C, York B, Wang S, et al. (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25: 765–778.
-
64. Chen CY, Hofmann CS, Cottrell BJ, et al. (2013) Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PloS One 8: e84863.
-
65. Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535: 85–93.
-
66. Mittler R, Vanderauwera S, Suzuki N, et al. (2011) ROS signaling: The new wave? Trends plant Sci 16: 300–309.
-
67. Lushchak VI (2011) Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol Toxicol Pharmacol Cbp 153: 175–190.
-
68. Tanaka H, Ishibashi J, Fujita K, et al. (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38: 1087–1110.
-
69. Daiber A, Steven S, Weber A, et al. (2017) Targeting vascular (endothelial) dysfunction. Br J Pharmacol 174: 1591–1619.
-
70. Jankovic A, Korac A, Buzadzic B, et al. (2017) Targeting the NO/superoxide ratio in adipose tissue: Relevance to obesity and diabetes management. Br J Pharmacol 174: 1570–1590.
-
71. Vergadi E, Ieronymaki E, Lyroni K, et al. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immun 198: 1006–1014.
-
72. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biol Med 25: 434–456.
-
73. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258.
-
74. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: Structure, function and inhibition. Biochem J 357: 593.
- 75. Laubach VE, Foley PL, Shockey KS, et al. (1998) Protective roles of nitric oxide and testosterone in endotoxemia: Evidence from NOS-2-deficient mice. Am J Physiol 275: 2211–2218.
-
76. Yin F, Kang J, Han N, et al. (2015) Effect of dehydroepiandrosterone treatment on hormone levels and antioxidant parameters in aged rats. Genet Mol Res 14: 11300–11311.
-
77. Alagöl H, Erdem E, Sancak B, et al. (1999) Nitric oxide biosynthesis and malondialdehyde levels in advanced breast cancer. Aust N Z J Surg 69: 647–650.
-
78. Karpuzoglu E, Ahmed SA (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15: 177–186.
-
79. Straub RH (2007) The Complex Role of Estrogens in Inflammation. Endocr Rev 28: 521–574.
-
80. Tomaszewska A, Guevara I, Wilczok T, et al. (2003) 17β-estradiol- and lipopolysaccharide-induced changes in nitric oxide, tumor necrosis factor-α and vascular endothelial growth factor release from RAW 264.7 macrophages. Gynecol Obstet Invest 56: 152–159.
-
81. Shimizu T, Szalay L, Choudhry MA, et al. (2005) Mechanism of salutary effects of androstenediol on hepatic function after trauma-hemorrhage: Role of endothelial and inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol 288: G244–G250.
-
82. Cattaneo MG, Vanetti C, Decimo I, et al. (2017) Sex-specific eNOS activity and function in human endothelial cells. Sci Rep 7: 9612.
-
83. Osol G, Ko NL, Mandalà M (2017) Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Curr Hypertens Rep 19: 82.
-
84. Chen R, Tu Y, Lin J, et al. (2010) The nongenomic effects of progesterone in repressing iNOS activation through P38MAPK pathways in gonococci-infected polymorphonuclear leukocytes and the clinical significance. J Huazhong Univ Sci Technol Med Sci 30: 119–125.
-
85. Sulemankhil I, Ganopolsky JG, Dieni CA, et al. (2012) Prevention and treatment of virulent bacterial biofilms with an enzymatic nitric oxide-releasing dressing. Antimicrob Agents Chemother 56: 6095–6103.
-
86. Braeken K, Debkumari B, Fauvart M, et al. (2008) Living on a surface: Swarming and biofilm formation. Trends Microbiol 16: 496.
-
87. Costerton J, Lewandowski Z, Caldwell D, et al. (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745.
-
88. Barraud N, Schleheck D, Klebensberger J, et al. (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191: 7333–7342.
-
89. Barraud N, Storey MV, Moore ZP, et al. (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2: 370–378.
-
90. Povolotsky TL, Hengge R (2012) "Life-style" control networks in Escherichia coli: Signaling by the second messenger c-di-GMP. J Biotechnol 160: 10–16.
-
91. Sancheztorres V, Hu H, Wood TK (2011) GGDEF Proteins YeaI, YedQ, and YfiN Reduce Early Biofilm Formation and Swimming Motility in Escherichia coli. Appl Microbiol Biotechnol 90: 651–658.
-
92. Van Oss CJ (1978) Phagocytosis as a Surface Phenomenon. Annu Rev Microbiol 32: 19–39.
-
93. Hallstoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108.
-
94. Barraud N, Hassett DJ, Hwang SH, et al. (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188: 7344–7353.
-
95. Barraud N, Storey MV, Moore ZP, et al. (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2: 370–378.
- 96. Scarpin KM, Graham JD, Mote PA, et al. (2009) Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. Nucl Recept Signaling 7: e009.
-
97. Falsetta ML, Bair TB, Ku SC, et al. (2009) Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms. Infect Immun 77: 3522–3532.
-
98. Zaitseva J, Granik V, Belik A, et al. (2009) Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370. Res Microbiol 160: 353–357.
-
99. Arora DP, Hossain S, Xu Y, et al. (2015) Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry 54: 3717–3728.
-
100. Beckman JS, Beckman TW, Chen J, et al. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U.S.A 87: 1620–1624.
- 101. Ghaffari A, Miller CC, Mcmullin B, et al. (2006) Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide 14: 21–29.
-
102. Anstey NM, Weinberg JB, Hassanali MY, et al. (1996) Nitric oxide in Tanzanian children with malaria: Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184: 557.
-
103. Schmidt I, Steenbakkers PJM, Camp HJMOD, et al. (2004) Physiologic and Proteomic Evidence for a Role of Nitric Oxide in Biofilm Formation by Nitrosomonas europaea and Other Ammonia Oxidizers. J Bacteriol 186: 2781–2788.
-
104. Yoon MY, Lee KM, Park Y, et al. (2011) Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration. PLoS One 6: e16105.
-
105. Yoon SS, Hennigan RF, Hilliard GM, et al. (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Dev Cell 3: 593–603.
- 106. Casillo A, Papa R, Ricciardelli A, et al. (2017) Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front Cell Infect Microbiol 7: 46.
-
107. Parrilli E, Papa R, Carillo S, et al. (2015) Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement? Int J Immunopathol Pharmacol 28: 104–113.
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *