Review Topical Sections

Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones

  • Received: 03 August 2017 Accepted: 09 October 2017 Published: 20 September 2017
  • Cellular stress caused by protein misfolding, aggregation and redox imbalance is typical of neurodegenerative disorders such as Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Activation of quality control systems, including endoplasmic reticulum (ER)-mediated degradation, and reactive oxygen species (ROS) production are initially aimed at restoring homeostasis and preserving cell viability. However, persistent damage to macromolecules causes chronic cellular stress which triggers more extreme responses such as the unfolded protein response (UPR) and non-reversible oxidation of cellular components, eventually leading to inflammation and apoptosis. Cell fate depends on the intensity and duration of stress responses converging on the activation of transcription factors involved in the expression of antioxidant, autophagic and lysosome-related genes, such as erythroid-derived 2-related factor 2 (Nrf2) and transcription factor EB respectively. In addition, downstream signaling pathways controlling metabolism, cell survival and inflammatory processes, like mitogen activated protein kinase and nuclear factor-kB, have a key impact on the overall outcome.
    Molecular chaperones and ER stress modulators play a critical role in protein folding, in the attenuation of UPR and preservation of mitochondrial and lysosomal activity. Therefore, the use of chaperone molecules is an attractive field of investigation for the development of novel therapeutic strategies and disease-modifying drugs in the context of neurodegenerative diseases such as PD and ALS.

    Citation: Giulia Ambrosi, Pamela Milani. Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones[J]. AIMS Molecular Science, 2017, 4(4): 424-444. doi: 10.3934/molsci.2017.4.424

    Related Papers:

  • Cellular stress caused by protein misfolding, aggregation and redox imbalance is typical of neurodegenerative disorders such as Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Activation of quality control systems, including endoplasmic reticulum (ER)-mediated degradation, and reactive oxygen species (ROS) production are initially aimed at restoring homeostasis and preserving cell viability. However, persistent damage to macromolecules causes chronic cellular stress which triggers more extreme responses such as the unfolded protein response (UPR) and non-reversible oxidation of cellular components, eventually leading to inflammation and apoptosis. Cell fate depends on the intensity and duration of stress responses converging on the activation of transcription factors involved in the expression of antioxidant, autophagic and lysosome-related genes, such as erythroid-derived 2-related factor 2 (Nrf2) and transcription factor EB respectively. In addition, downstream signaling pathways controlling metabolism, cell survival and inflammatory processes, like mitogen activated protein kinase and nuclear factor-kB, have a key impact on the overall outcome.
    Molecular chaperones and ER stress modulators play a critical role in protein folding, in the attenuation of UPR and preservation of mitochondrial and lysosomal activity. Therefore, the use of chaperone molecules is an attractive field of investigation for the development of novel therapeutic strategies and disease-modifying drugs in the context of neurodegenerative diseases such as PD and ALS.


    加载中
    [1] Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67: 225-257. doi: 10.1146/annurev.physiol.67.040403.103635
    [2] Nassif M, Matus S, Castillo K, et al. (2010) Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid Redox Sign 13: 1955-1989. doi: 10.1089/ars.2009.2991
    [3] Schapira AH, Olanow CW, Greenamyre JT, et al. (2014) Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 384: 545-555.
    [4] Massano J, Bhatia KP (2012) Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harbor Perspect Med 2: a008870.
    [5] Chaudhuri KR, Odin P, Antonini A, et al. (2011) Parkinson's disease: the non-motor issues. Parkinsonism Relat D 17: 717-723. doi: 10.1016/j.parkreldis.2011.02.018
    [6] Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson's--divergent causes, convergent mechanisms. Science 304: 1120-1122.
    [7] Spillantini MG, Schmidt ML, Lee VM, et al. (1997) Alpha-synuclein in Lewy bodies. Nature 388: 839-840.
    [8] Baba M, Nakajo S, Tu PH, et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152: 879-884.
    [9] Cox D, Carver JA, Ecroyd H (2014) Preventing alpha-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. BBA 1842: 1830-1843.
    [10] Bonifati V, Rizzu P, van Baren MJ, et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256-259.
    [11] Andersson FI, Werrell EF, McMorran L, et al. (2011) The effect of Parkinson's-disease-associated mutations on the deubiquitinating enzyme UCH-L1. J Mol Biol 407: 261-272. doi: 10.1016/j.jmb.2010.12.029
    [12] Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889-909. doi: 10.1016/S0896-6273(03)00568-3
    [13] Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson's disease. Movement Disord 25: S32-39. doi: 10.1002/mds.22798
    [14] Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11: 986-998.
    [15] Al-Chalabi A, Jones A, Troakes C, et al. (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta neuropathol 124: 339-352.
    [16] Rosen DR, Siddique T, Patterson D, et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59-62. doi: 10.1038/362059a0
    [17] Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130-133.
    [18] Arai T, Hasegawa M, Akiyama H, et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602-611. doi: 10.1016/j.bbrc.2006.10.093
    [19] Deng HX, Zhai H, Bigio EH, et al. (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Annals Neurol 67: 739-748.
    [20] Nishimura AL, Mitne-Neto M, Silva HC, et al. (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75: 822-831.
    [21] Parkinson N, Ince PG, Smith MO, et al. (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67: 1074-1077. doi: 10.1212/01.wnl.0000231510.89311.8b
    [22] Deng HX, Chen W, Hong ST, et al. (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477: 211-215. doi: 10.1038/nature10353
    [23] Johnson JO, Mandrioli J, Benatar M, et al. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68: 857-864. doi: 10.1016/j.neuron.2010.11.036
    [24] Maruyama H, Morino H, Ito H, et al. (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465: 223-226. doi: 10.1038/nature08971
    [25] Fecto F, Yan J, Vemula SP, et al. (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68:1440-1446. doi: 10.1001/archneurol.2011.250
    [26] Rubino E, Rainero I, Chio A, et al. (2012) SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79: 1556-1562. doi: 10.1212/WNL.0b013e31826e25df
    [27] Teyssou E, Takeda T, Lebon V, et al. (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol 125: 511-522. doi: 10.1007/s00401-013-1090-0
    [28] Li J, Li W, Jiang ZG, et al. (2013) Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14: 24438-24475. doi: 10.3390/ijms141224438
    [29] Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev: 360438.
    [30] Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev: 428010.
    [31] Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drug Aging 18: 685-716 doi: 10.2165/00002512-200118090-00004
    [32] Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97: 1634-1658. doi: 10.1111/j.1471-4159.2006.03907.x
    [33] Milani P, Ambrosi G, Gammoh O, et al. (2013) SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxidative Med Cell Longev:836760.
    [34] Parakh S, Spencer DM, Halloran MA, et al. (2013) Redox regulation in amyotrophic lateral sclerosis. Oxidative Med Cell Longev: 408681.
    [35] Streck EL, Czapski GA, Goncalves et al. (2013) Neurodegeneration, mitochondrial dysfunction, and oxidative stress. Oxidative Med Cell Longev: 826046.
    [36] Varcin M, Bentea E, Michotte Y, et al. (2012) Oxidative stress in genetic mouse models of Parkinson's disease. Oxidative Med Cell Longev: 624925.
    [37] Navarro A, Boveris A, Bandez MJ, et al. (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radical Biol Med 46: 1574-1580. doi: 10.1016/j.freeradbiomed.2009.03.007
    [38] Alam ZI, Jenner A, Daniel SE, et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69: 1196-1203.
    [39] Abe T, Isobe C, Murata T, et al. (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease. Neurosci Lett 336: 105-108. doi: 10.1016/S0304-3940(02)01259-4
    [40] Kikuchi A, Takeda A, Onodera H, et al. (2002) Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiol Dis 9: 244-248. doi: 10.1006/nbdi.2002.0466
    [41] Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2'-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson's disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 469: 159-163. doi: 10.1016/j.neulet.2009.11.065
    [42] Nikam S, Nikam P, Ahaley SK, et al. (2009) Oxidative stress in Parkinson's disease. Indian J Clin Biochem 24: 98-101. doi: 10.1007/s12291-009-0017-y
    [43] Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762: 1051-1067. doi: 10.1016/j.bbadis.2006.03.008
    [44] Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Boil Med 48: 629-641. doi: 10.1016/j.freeradbiomed.2009.11.018
    [45] Ferrante RJ, Browne SE, Shinobu LA, et al. (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064-2074.
    [46] Cutler RG, Pedersen WA, Camandola S (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52: 448-457. doi: 10.1002/ana.10312
    [47] Pedersen WA, Fu W, Keller JN, et al. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44: 819-824.
    [48] Abe K, Pan LH, Watanabe M, et al. (1995) Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 199: 152-154. doi: 10.1016/0304-3940(95)12039-7
    [49] Beal MF, Ferrante RJ, Browne SE, et al. (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42: 644-654. doi: 10.1002/ana.410420416
    [50] Shaw PJ, Ince PG, Falkous G, et al. (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38: 691-695. doi: 10.1002/ana.410380424
    [51] Fitzmaurice PS, Shaw IC, Kleiner HE, et al. (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19: 797-798.
    [52] Said Ahmed M, Hung WY, Zu JS, et al. (2000) Increased reactive oxygen species in familial amyotrophic lateral sclerosis with mutations in SOD1. J neurol Sci 176: 88-94. doi: 10.1016/S0022-510X(00)00317-8
    [53] Milani P, Amadio M, Laforenza U, et al. (2013) Posttranscriptional regulation of SOD1 gene expression under oxidative stress: Potential role of ELAV proteins in sporadic ALS. Neurobiol Dis 60: 51-60.
    [54] Cereda C, Leoni E, Milani P, et al. (2013) Altered intracellular localization of SOD1 in leukocytes from patients with sporadic amyotrophic lateral sclerosis. PlOS One 8: e75916. doi: 10.1371/journal.pone.0075916
    [55] Smith RG, Henry YK, Mattson MP, et al. (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44: 696-699. doi: 10.1002/ana.410440419
    [56] Ihara Y, Nobukuni K, Takata H, et al. (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27: 105-108. doi: 10.1179/016164105X18430
    [57] Kirby J, Halligan E, Baptista MJ, et al. (2005) Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128: 1686-1706.
    [58] Mimoto T, Miyazaki K, Morimoto N, et al. (2012) Impaired antioxydative Keap1/Nrf2 system and the downstream stress protein responses in the motor neuron of ALS model mice. Brain Res 1446: 109-118. doi: 10.1016/j.brainres.2011.12.064
    [59] Petri S, Korner S, Kiaei M (2012) Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS. Neurol Res Int: 878030.
    [60] Sarlette A, Krampfl K, Grothe C, et al. (2008) Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropath Exp Neurol 67: 1055-1062. doi: 10.1097/NEN.0b013e31818b4906
    [61] Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signaling 21: 396-413. doi: 10.1089/ars.2014.5851
    [62] Begum G, Harvey L, Dixon CE, et al. (2013) ER stress and effects of DHA as an ER stress inhibitor. Translational Stroke Res 4: 635-642. doi: 10.1007/s12975-013-0282-1
    [63] Bellucci A, Navarria L, Zaltieri M, et al. (2011) Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson's disease. J Neurochem 116: 588-605. doi: 10.1111/j.1471-4159.2010.07143.x
    [64] Colla E, Jensen PH, Pletnikova O, et al. (2012) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32: 3301-3305. doi: 10.1523/JNEUROSCI.5368-11.2012
    [65] Nishitoh H, Kadowaki H, Nagai A, et al. (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22: 1451-1464. doi: 10.1101/gad.1640108
    [66] Atkin JD, Farg MA, Soo KY, et al. (2014) Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis. J Neurochem 129: 190-204. doi: 10.1111/jnc.12493
    [67] Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15: 233-249.
    [68] Mercado G, Valdes P, Hetz C (2013) An ERcentric view of Parkinson's disease. Trends Mol Med 19: 165-175. doi: 10.1016/j.molmed.2012.12.005
    [69] Hoozemans JJ, van Haastert ES, Eikelenboom P, et al. (2007) Activation of the unfolded protein response in Parkinson's disease. Biochem Bioph Res Commun 354: 707-711. doi: 10.1016/j.bbrc.2007.01.043
    [70] Slodzinski H, Moran LB, Michael GJ, et al. (2009) Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin Neuropathol 28: 333-343.
    [71] Holtz WA, Turetzky JM, Jong YJ, et al. (2006) Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 99: 54-69. doi: 10.1111/j.1471-4159.2006.04025.x
    [72] Dukes AA, Van Laar VS, Cascio M, et al. (2008) Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J Neurochem 106: 333-346. doi: 10.1111/j.1471-4159.2008.05392.x
    [73] Tinsley RB, Bye CR, Parish CL, et al. (2009) Dopamine D2 receptor knockout mice develop features of Parkinson disease. Ann Neurol 66: 472-484. doi: 10.1002/ana.21716
    [74] Mercado G, Castillo V, Soto P, et al. (2016) ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway. Brain Res 1648: 626-632. doi: 10.1016/j.brainres.2016.04.042
    [75] Walker AK, Atkin JD (2011) Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life 63: 754-763.
    [76] Hetz C, Thielen P, Matus S, et al. (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23: 2294-2306. doi: 10.1101/gad.1830709
    [77] Wang L, Popko B, Roos RP (2014) An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum Mol Genet 23: 2629-2638. doi: 10.1093/hmg/ddt658
    [78] Carreras-Sureda A, Pihan P, Hetz C (2017) The Unfolded Protein Response: At the Intersection between Endoplasmic Reticulum Function and Mitochondrial Bioenergetics. Front Oncol 7: 55.
    [79] Erpapazoglou Z, Mouton-Liger F, Corti O (2017) From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochem Int.
    [80] Eletto D, Chevet E, Argon Y, et al. (2014) Redox controls UPR to control redox. J Cell Sci 127: 3649-3658. doi: 10.1242/jcs.153643
    [81] Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454: 455-462.
    [82] Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164: 341-346. doi: 10.1083/jcb.200311055
    [83] Cuozzo JW, Kaiser CA (1999) Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1: 130-135. doi: 10.1038/11047
    [84] Perri E, Parakh S, Atkin J (2017) Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Exp Opin Targets 21: 37-49. doi: 10.1080/14728222.2016.1254197
    [85] Perri ER, Thomas CJ, Parakh S, et al. (2015) The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Front Cell Dev Biol 3: 80.
    [86] Chaudhari N, Talwar P, Parimisetty A, et al. (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8: 213.
    [87] Chiribau CB, Gaccioli F, Huang CC, et al. (2010) Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 30: 3722-3731. doi: 10.1128/MCB.01507-09
    [88] Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279: 45495-45502. doi: 10.1074/jbc.M406933200
    [89] Lu M, Lawrence DA, Marsters S, et al. (2014) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345: 98-101.
    [90] Li G, Mongillo M, Chin KT, et al (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell biol 186: 783-792.
    [91] Marciniak SJ, Yun CY, Oyadomari S, et al. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Gene Dev 18: 3066-3077. doi: 10.1101/gad.1250704
    [92] Chen G, Bower KA, Ma C, et al. (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18: 1162-1164.
    [93] McNeill A, Magalhaes J, Shen C, et al. (2014) Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137: 1481-1495.
    [94] Prell T, Lautenschlager J, Weidemann L, et al. (2014) Endoplasmic reticulum stress is accompanied by activation of NF-kappaB in amyotrophic lateral sclerosis. J Neuroimmunol 270: 29-36. doi: 10.1016/j.jneuroim.2014.03.005
    [95] Yang W, Tiffany-Castiglioni E, Koh HC, et al. (2009) Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicol Lett 191: 203-210. doi: 10.1016/j.toxlet.2009.08.024
    [96] Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37-40. doi: 10.1038/35065000
    [97] Darling NJ, Cook SJ (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. BBA 1843: 2150-2163.
    [98] Davis RJ (2000): Signal transduction by the JNK group of MAP kinases. Cell 103: 239-252.
    [99] Abais JM, Xia M, Zhang Y, et al. (2014) Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxid Redox Signaling 22: 1111-1129.
    [100] Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32: 577-595. doi: 10.1007/s11064-006-9128-5
    [101] Nijholt DA, Nolle A, van Haastert ES, et al. (2013) Unfolded protein response activates glycogen synthase kinase-3 via selective lysosomal degradation. Neurobiol Aging 34: 1759-1771. doi: 10.1016/j.neurobiolaging.2013.01.008
    [102] Meares GP, Mines MA, Beurel E, et al. (2011) Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells. Exp Cell Res 317: 1621-1628. doi: 10.1016/j.yexcr.2011.02.012
    [103] Giordano S, Darley-Usmar V, Zhang J (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2: 82-90. doi: 10.1016/j.redox.2013.12.013
    [104] Loos B, Engelbrecht AM, Lockshin RA, et al. (2013) The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy 9: 1270-1285. doi: 10.4161/auto.25560
    [105] Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7: 910-911. doi: 10.4161/auto.7.8.15761
    [106] Deegan S, Saveljeva S, Logue SE, et al. (2014) Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy 10: 1921-1936. doi: 10.4161/15548627.2014.981790
    [107] Madeo F, Eisenberg T, Kroemer G (2009) Autophagy for the avoidance of neurodegeneration. Gene Dev 23: 2253-2259. doi: 10.1101/gad.1858009
    [108] Cai Y, Arikkath J, Yang L, et al. (2016) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12: 225-244.
    [109] Cortes CJ, Miranda HC, Frankowski H, et al. (2014) Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 17: 1180-1189. doi: 10.1038/nn.3787
    [110] Palmieri M, Impey S, Kang H, et al. (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20: 3852-3866. doi: 10.1093/hmg/ddr306
    [111] Brehme M, Voisine C, Rolland T, et al. (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9: 1135-1150. doi: 10.1016/j.celrep.2014.09.042
    [112] Genereux JC, Qu S, Zhou M, et al. (2014) Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J.
    [113] Montane J, Cadavez L, Novials A (2014) Stress and the inflammatory process: a major cause of pancreatic cell death in type 2 diabetes. Diabetes, metab syndrome obesity: targets ther 7: 25-34.
    [114] Song W, Wang F, Savini M, et al. (2013) TFEB regulates lysosomal proteostasis. Hum Mol Genet 22: 1994-2009.
    [115] Tan YL, Genereux JC, Pankow S, et al. (2014) ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher's disease. Chem Biol 21: 967-976. doi: 10.1016/j.chembiol.2014.06.008
    [116] Wei H, Kim SJ, Zhang Z, et al. (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17: 469-477.
    [117] Sybertz E, Krainc D (2014) Development of targeted therapies for Parkinson's disease and related synucleinopathies. J Lipid Res 55: 1996-2003. doi: 10.1194/jlr.R047381
    [118] Duplan E, Giaime E, Viotti J, et al. (2013) ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J Cell Sci 126: 2124-2133. doi: 10.1242/jcs.127340
    [119] Yokota T, Sugawara K, Ito K, et al. (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312: 1342-1348. doi: 10.1016/j.bbrc.2003.11.056
    [120] Sajjad MU, Green EW, Miller-Fleming L, et al. (2014) DJ-1 modulates aggregation and pathogenesis in models of Huntington's disease. Hum Mol Genet 23: 755-766.
    [121] Shendelman S, Jonason A, Martinat C, et al. (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLOS Biol 2: e362. doi: 10.1371/journal.pbio.0020362
    [122] Jarvela TS, Lam HA, Helwig M, et al. (2016) The neural chaperone proSAAS blocks alpha-synuclein fibrillation and neurotoxicity. P Natl Acad Sci UAS 113: E4708-4715. doi: 10.1073/pnas.1601091113
    [123] Carra S, Rusmini P, Crippa V, et al. (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Phil Trans R Soc B 368: 20110409.
    [124] Chaari A, Hoarau-Vechot J, Ladjimi M (2013) Applying chaperones to protein-misfolding disorders: molecular chaperones against alpha-synuclein in Parkinson's disease. Int J Boil macromolecules 60: 196-205. doi: 10.1016/j.ijbiomac.2013.05.032
    [125] Fontaine SN, Martin MD, Dickey CA (2016) Neurodegeneration and the Heat Shock Protein 70 Machinery: Implications for Therapeutic Development. Curr Top Med Chem 16: 2741-2752. doi: 10.2174/1568026616666160413140741
    [126] Lindberg I, Shorter J, Wiseman RL (2015) Chaperones in Neurodegeneration. J Neurosci 35: 13853-13859. doi: 10.1523/JNEUROSCI.2600-15.2015
    [127] Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperon 12: 51-58. doi: 10.1379/CSC-236R.1
    [128] Galbiati M, Crippa V, Rusmini P, et al. (2014) ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 79: 70-78. doi: 10.1016/j.neuint.2014.10.007
    [129] Papsdorf K, Richter K (2014) Protein folding, misfolding and quality control: the role of molecular chaperones. Essays Biochem 56: 53-68. doi: 10.1042/bse0560053
    [130] Baluchnejadmojarad T, Roghani M, Nadoushan MR, et al. (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23: 132-135. doi: 10.1002/ptr.2564
    [131] Choi BS, Kim H, Lee HJ, et al. (2014) Celastrol from 'Thunder God Vine' protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson's disease. Neurochem Res 39: 84-96. doi: 10.1007/s11064-013-1193-y
    [132] Inden M, Kitamura Y, Takeuchi H, et al. (2007) Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 101: 1491-1504. doi: 10.1111/j.1471-4159.2006.04440.x
    [133] Jiang HQ, Ren M, Jiang HZ, et al. (2014) Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurosci 277: 132-138.
    [134] Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease. Brain 136: 3038-3050.
    [135] Ono K, Ikemoto M, Kawarabayashi T, et al. (2009) A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P + A53T transgenic mice. Parkinsonism Relat D 15: 649-654.
    [136] Ozsoy O, Seval-Celik Y, Hacioglu G, et al. (2011) The influence and the mechanism of docosahexaenoic acid on a mouse model of Parkinson's disease. Neurochem Int 59: 664-670. doi: 10.1016/j.neuint.2011.06.012
    [137] Richter F, Fleming SM, Watson M, et al. (2014) A GCase chaperone improves motor function in a mouse model of synucleinopathy. Neurotherapeutics 11: 840-856. doi: 10.1007/s13311-014-0294-x
    [138] Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci 12: 627-636. doi: 10.1038/nn.2297
    [139] Kameta N, Masuda M, Shimizu T (2012) Soft nanotube hydrogels functioning as artificial chaperones. ACS Nano 6: 5249-5258. doi: 10.1021/nn301041y
    [140] Song W, Soo Lee S, Savini M, et al. (2014) Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 8: 10328-10342. doi: 10.1021/nn505073u
    [141] Wang W, Sreekumar PG, Valluripalli V, et al. (2014) Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. J Controlled release 191: 4-14. doi: 10.1016/j.jconrel.2014.04.028
    [142] Liao YH, Chang YJ, Yoshiike Y, et al. (2012) Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-beta fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8: 3631-3639. doi: 10.1002/smll.201201068
    [143] Palmal S, Maity AR, Singh BK, et al. (2014) Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 20: 6184-6191. doi: 10.1002/chem.201400079
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5091) PDF downloads(1089) Cited by(5)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog