Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1

1 CMAP, École Polytechnique, UMR CNRS 7641, 91128 Palaiseau Cedex, France
2 TU München, Zentrum Mathematik-M7, Boltzmannstrasse 3, 85747 Garching, Germany

This contribution is part of the Special Issue: Variational Models in Elasticity
Guest Editors: Lucia De Luca; Marcello Ponsiglione
Link: https://www.aimspress.com/newsinfo/1369.html

Special Issues: Variational Models in Elasticity

We prove the lower semicontinuity of functionals of the form \begin{equation*} \int \limits_\Omega \! V(\alpha) d |E u| \, , \end{equation*} with respect to the weak converge of $\alpha$ in $W^{1,\gamma}(\Omega)$, $\gamma > 1$, and the weak* convergence of $u$ in $BD(\Omega)$, where $\Omega \subset \mathbb{R}^n$. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents $\gamma < n$.
  Article Metrics

Keywords lower semicontinuity; elasto-plasticity; damage; functions of bounded deformation

Citation: Vito Crismale, Gianluca Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1. Mathematics in Engineering, 2020, 2(1): 101-118. doi: 10.3934/mine.2020006


  • 1. Abdelmoula R, Marigo JJ, Weller T (2009) Construction d'une loi de fatigue à partir d'un modèle de forces cohésives: Cas d'une fissure en mode III. C R Mecanique 337: 53-59.    
  • 2. Alessi R, Ambati M, Gerasimov T, et al. (2018) Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21.
  • 3. Alessi R, Crismale V, Orlando G (2019) Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J Nonlinear Sci 29: 1041-1094.    
  • 4. Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214: 575-615.    
  • 5. Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech Mater 80: 351-367.    
  • 6. Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interface Free Bound 1: 17-37.
  • 7. Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57: 149-167.    
  • 8. Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238.    
  • 9. Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press.
  • 10. Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999-1036.    
  • 11. Artina M, Cagnetti F, Fornasier M, et al. (2017) Linearly constrained evolutions of critical points and an application to cohesive fractures. Math Mod Meth Appl Sci 27: 231-290.    
  • 12. Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment Math Univ Carolin 37: 285-304.
  • 13. Bonetti E, Rocca E, Rossi R, et al. (2016) A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM P Surv 54: 54-69.    
  • 14. Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press.
  • 15. Cagnetti F, Toader R (2011) Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach. ESAIM Contr Optim Calc Var 17: 1-27.    
  • 16. Chambolle A, Crismale V (2019) A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378.    
  • 17. Conti S, Focardi M, Iurlano F (2016) Phase field approximation of cohesive fracture models. Ann Inst H Poincaré Anal Non Linéaire 33: 1033-1067.
  • 18. Crismale V (2016) Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Contr Optim Calc Var 22: 883-912.    
  • 19. Crismale V (2017) Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann Mat Pura Appl 196: 641-685.    
  • 20. Crismale V, Lazzaroni G (2016) Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc Var Partial Dif 55: 17.    
  • 21. Crismale V, Lazzaroni G, Orlando G (2018) Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue. Math Mod Meth Appl Sci 28: 1371-1412.    
  • 22. Crismale V, Orlando G (2018) A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Diff 25: 16.    
  • 23. Dal Maso G, DeSimone A, Mora MG (2006) Quasistatic evolution problems for linearly elasticperfectly plastic materials. Arch Ration Mech Anal 180: 237-291.    
  • 24. Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case. Calc Var Partial Dif 55: 45.    
  • 25. Dal Maso G, Orlando G, Toader R (2017) Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv Calc Var 10: 183-207.
  • 26. Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. P Roy Soc Edinb A 137: 253-279.    
  • 27. Davoli E, Roubíček T, Stefanelli U (2019) Dynamic perfect plasticity and damage in viscoelastic solids. ZAMM J Appl Math Mech 99: e201800161.
  • 28. Demyanov A (2009) Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc Var Partial Dif 34: 23-72.    
  • 29. Evans LC, Gariepy RF (1992) Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press.
  • 30. Heinonen J, Kilpeläinen T, Martio O (2006) Nonlinear Potential Theory of Degenerate Elliptic Equations, Mineola: Dover Publications Inc.
  • 31. Horn RA, Johnson CR (2013) Matrix Analysis, 2 Eds., Cambridge: Cambridge University Press.
  • 32. Ibrahimbegovic A (2009) Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Dordrecht: Springer.
  • 33. Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342.    
  • 34. Knees D, Rossi R, Zanini C (2013) A vanishing viscosity approach to a rate-independent damage model. Math Mod Meth Appl Sci 23: 565-616.    
  • 35. Lemaitre J, Chabouche J (1990) Mechanics of Solid Materials, Avon: Cambridge University Press.
  • 36. Lions PL (1985) The concentration-compactness principle in the calculus of variations. The limit case, part I. Rev Mat Iberoam 1: 145-201.
  • 37. Melching D, Scala R, Zeman J (2019) Damage model for plastic materials at finite strains. ZAMM J Appl Math Mech 99: e201800032.
  • 38. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. Int J Plasticity 84: 1-32.    
  • 39. Miehe C, Hofacker M, Schänzel LM, et al. (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M 294: 486-522.
  • 40. Mielke A (2015) Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559.
  • 41. Negri M, Scala R (2017) A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal Real 38: 271-305.    
  • 42. Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: I. Les concepts fondamentaux. CR Mécanique 338: 191-198.
  • 43. Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: II. Les modèles à gradient, CR Mécanique 338: 199-206.
  • 44. Reshetnyak YG (1968) Weak convergence of completely additive vector functions on a set. Siberian Math J 9: 1039-1045.    
  • 45. Rossi R (2018) From visco to perfect plasticity in thermoviscoelastic materials. ZAMM J Appl Math Mech 98: 1123-1189.    
  • 46. Rossi R, Thomas M (2017) Coupling rate-independent and rate-dependent processes: Existence results. SIAM J Math Anal 49: 1419-1494.    
  • 47. Roubíček T, Valdman J (2016) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J Appl Math 76: 314-340.    
  • 48. Roubíček T, Valdman J (2017) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math Mech Solids 22: 1267-1287.    
  • 49. Temam R (1985) Mathematical Problems in Plasticity, Paris: Gauthier-Villars.


This article has been cited by

  • 1. L. De Luca, M. Ponsiglione, Variational models in elasticity, Mathematics in Engineering, 2021, 3, 2, 1, 10.3934/mine.2021015

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved