
Mathematics in Engineering, 2020, 2(1): 125. doi: 10.3934/mine.2020001.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Longtime Reynolds averaging of reduced order models for fluid flows: Preliminary results
1 Dipartimento di Matematica, Università di Pisa, Pisa, I56127, Italy
2 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
3 Univ Rennes & INRIA, CNRS–IRMAR UMR 6625 & Fluminance team, Rennes, F35042, France
^{†}This contribution is part of the Special Issue: Nonlinear models in applied mathematics
Guest Editor: Giuseppe Maria Coclite
Link: https://www.aimspress.com/newsinfo/1213.html
Received: , Accepted: , Published:
Special Issues: Nonlinear models in applied mathematics
Keywords: reduced order model; longtime behavior; Reynolds equations; statistical equilibrium
Citation: Luigi C. Berselli, Traian Iliescu, Birgul Koc, Roger Lewandowski. Longtime Reynolds averaging of reduced order models for fluid flows: Preliminary results. Mathematics in Engineering, 2020, 2(1): 125. doi: 10.3934/mine.2020001
References:
 1. Batchelor GK (1953) The Theory of Homogeneous Turbulence, Cambridge University Press.
 2. Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of Large Eddy Simulation of Turbulent Flows, Berlin: SpringerVerlag.
 3. Berselli LC, Lewandowski R (2019) On the Reynolds timeaveraged equations and the longtime behavior of LerayHopf weak solutions, with applications to ensemble averages. Nonlinearity 32: 45794608.
 4. Berselli LC, Fagioli S, Spirito S (2019) Suitable weak solutions of the NavierStokes equations constructed by a spacetime numerical discretization. J Math Pures Appl 125: 189208.
 5. Rebollo TC, Lewandowski R (2014) Mathematical and Numerical Foundations of Turbulence Models and Applications, New York: Springer.
 6. Constantin P, Foias C (1988) NavierStokes Equations, Chicago: University of Chicago Press.
 7. Couplet M, Sagaut P, Basdevant C (2003) Intermodal energy transfers in a proper orthogonal decompositionGalerkin representation of a turbulent separated flow. J Fluid Mech 491: 275284.
 8. DeCaria V, Layton WJ, McLaughlin M (2017) A conservative, second order, unconditionally stable artificial compression method. Comput Methods Appl Mech Engrg 325: 733747.
 9. DeCaria V, Iliescu T, Layton W, et al. (2019) An artificial compression reduced order model. arXiv preprint arXiv:1902.09061.
 10. Girault V, Raviart PA (1986) Finite Element Methods for NavierStokes Equations, Berlin: SpringerVerlag.
 11. Foiaş C (1972/73) Statistical study of NavierStokes equations. I, Ⅱ. Rend Sem Mat Univ Padova 48: 219348; 49: 9123.
 12. Foias C, Manley O, Rosa R, et al. (2001) NavierStokes Equations and Turbulence, Cambridge: Cambridge University Press.
 13. Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Engrg 195: 60116045.
 14. Guermond JL, Oden JT, Prudhomme S (2004) Mathematical perspectives on large eddy simulation models for turbulent flows. J Math Fluid Mech 6: 194248.
 15. Hesthaven JS, Rozza G, Stamm B (2016) Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Berlin: Springer.
 16. Iliescu T, Wang Z (2014) Are the snapshot difference quotients needed in the proper orthogonal decomposition? SIAM J Sci Comput 36: A1221A1250.
 17. Iliescu T, Liu H, Xie X (2018) Regularized reduced order models for a stochastic Burgers equation Int J Numer Anal Mod 15: 594607.
 18. Jiang N, Layton WJ (2016) Algorithms and models for turbulence not at statistical equilibrium. Comput Math Appl 71: 23522372.
 19. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl Akad Nauk SSR 30: 913.
 20. Kunisch K, Volkwein S (1999) Control of the Burgers equation by a reducedorder approach using proper orthogonal decomposition. J Optim Theory Appl 102: 345371.
 21. Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90: 117148.
 22. Kunisch K, Volkwein S, Xie L (2004) HJBPODbased feedback design for the optimal control of evolution problems. SIAM J Appl Dyn Syst 3: 701722.
 23. Kunisch K, Xie L (2005) PODbased feedback control of the Burgers equation by solving the evolutionary HJB equation. Comput Math Appl 49: 11131126.
 24. Kunisch K, Volkwein S (2008) Proper orthogonal decomposition for optimality systems. ESAIM: Math Model Numer Anal 42: 123.
 25. Lassila T, Manzoni A, Quarteroni A, et al. (2014) Model order reduction in fluid dynamics: Challenges and perspectives. In: Reduced order methods for modeling and computational reduction, Springer, 9: 235273.
 26. Layton WJ (2014) The 1877 Boussinesq conjecture: Turbulent fluctuations are dissipative on the mean flow. Technical Report TRMATH 1407, Pittsburgh Univ.
 27. Layton WJ, Rebholz L (2012) Approximate Deconvolution Models of Turbulence Approximate Deconvolution Models of Turbulence, Heidelberg: Springer.
 28. Lewandowski R (2015) Longtime turbulence model deduced from the NavierStokes equations. Chin Ann Math Ser B 36: 883894.
 29. Lions JL, (1969) Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Paris: Dunod.
 30. Málek J, Nečas J, Rokyta M, et al. (1996) Weak and Measurevalued Solutions to Evolutionary PDEs, London: Chapman & Hall.
 31. Park HM, Jang YD (2000) Control of Burgers equation by means of mode reduction. Int J of Eng Sci 38: 785805.
 32. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5: 136139.
 33. Prodi G (1960) Teoremi ergodici per le equazioni della idrodinamica, In: Sistemi Dinamici e Teoremi Ergodici, Berlin: Springer, 159177.
 34. Prodi G (1961) On probability measures related to the NavierStokes equations in the 3dimensional case. Technical Report AF61(052)414, Trieste Univ.
 35. Quarteroni A, Manzoni A, Negri F (2016) Reduced Basis Methods for Partial Differential Equations, Berlin: Springer.
 36. Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized partial differential equations and applications. J Math Ind 1: 3.
 37. Reynolds O (1895) On the dynamic theory of the incompressible viscous fluids and the determination of the criterion. Philos Trans Roy Soc London Ser A 186: 123164.
 38. Rozza G (2014) Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, In: Separated Representations and PGDbased Model Reduction, Vienna: Springer, 153227.
 39. Sagaut P (2001) Large Eddy Simulation for Incompressible Flows. Berlin: SpringerVerlag.
 40. San O, Maulik R (2018) Neural network closures for nonlinear model order reduction. Adv Comput Math 44: 17171750.
 41. Wells D, Wang Z, Xie X, et al. (2017) An evolvethenfilter regularized reduced order model for convectiondominated flows. Internat J. Numer Methods Fluids 84: 598615.
 42. Xie X, Wells D, Wang Z, et al. (2017) Approximate deconvolution reduced order modeling. Comput Methods Appl Mech Engrg 313: 512534.
 43. Xie X, Mohebujjaman M, Rebholz LG, et al. (2018) Datadriven filtered reduced order modeling of fluid flows. SIAM J Sci Comput 40: B834B857.
 44. Xie X, Mohebujjaman M, Rebholz LG, et al. (2018) Lagrangian datadriven reduced order modeling of finite time Lyapunov exponents. arXiv preprint arXiv:1808.05635.
This article has been cited by:
 1. Ping Guo, Wei Tian, Huimin Li, Guangmin Zhang, Jianhui Li, Global characteristics and trends of research on construction dust: based on bibliometric and visualized analysis, Environmental Science and Pollution Research, 2020, 10.1007/s1135602009723y
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *