-
Mathematics in Engineering, 2019, 1(3): 447-488. doi: 10.3934/mine.2019.3.447.
Research article Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions
1 Center for Theoretical Physics of Complex Systems, Institute for Basic Sciences, Daejeon, Korea
2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
3 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
$^\dagger$This contribution is part of the Special Issue: Hamiltonian Lattice Dynamics
Guest Editors: Simone Paleari; Tiziano Penati
Link: http://www.aimspress.com/newsinfo/1165.html
Received: , Accepted: , Published:
Special Issues: Hamiltonian Lattice Dynamics
Keywords: classical many-body systems; variational equations; ordinary differential equations; symplectic integrators; Lyapunov exponent; computational efficiency; optimization
Citation: Carlo Danieli, Bertin Many Manda, Thudiyangal Mithun, Charalampos Skokos. Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions. Mathematics in Engineering, 2019, 1(3): 447-488. doi: 10.3934/mine.2019.3.447
References:
- 1. Fermi E, Pasta P, Ulam S, et al.(1955) Studies of the nonlinear problems, Los Alamos Report LA-1940.
-
2. Ford J (1992) The Fermi-Pasta-Ulam problem: Paradox turns discovery. Phys Rep 213: 271–310.
-
3. Campbell DK, Rosenau P, Zaslavsky GM (2005) Introduction: The Fermi-Pasta-Ulam problem: The first fifty years. Chaos 15: 015101.
-
4. Lepri S, Livi R, Politi A (2003) Universality of anomalous one-dimensional heat conductivity. Phys Rev E 68: 067102.
-
5. Lepri S, Livi R, Politi A (2005) Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices. Chaos 15: 015118.
-
6. Antonopoulos C, Bountis T, Skokos Ch (2006) Chaotic dynamics of N-degree of freedom Hamiltonian systems. Int J Bifurcation Chaos 16: 1777–1793.
- 7. Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.
- 8. Zabusky NJ, Deem GS (1967) Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior. J Comput Phys 2: 126–153.
- 9. Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30pages.
-
10. Paleari S, Penati T (2008) Numerical methods and results in the FPU problem. Lect Notes Phys 728: 239–282.
-
11. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109: 1492–1505.
-
12. Abraham E, Anderson PW, Licciardello DC, et al. (1979) Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys Rev Lett 42: 673–676.
-
13. Shepelyansky DL (1993) Delocalization of quantum chaos by weak nonlinearity. Phys Rev Lett 70: 1787–1790.
-
14. Molina MI (1998) Transport of localized and extended excitations in a nonlinear Anderson model. Phys Rev B 58: 12547–12550.
-
15. Clément D, Varon AF, Hugbart M, et al. (2005) Suppression of transport of an interacting elongated Bose-Einstein condensate in a random potential. Phys Rev Lett 95: 170409.
-
16. Fort C, Fallani L, Guarrera V, et al. (2005) Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide. Phys Rev Lett 95: 170410.
-
17. Schwartz T, Bartal G, Fishman S, et al. (2007) Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446: 52–55.
-
18. Lahini Y, Avidan A, Pozzi F, et al. (2008) Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys Rev Lett 100: 013906.
-
19. Billy J, Josse V, Zuo Z, et al. (2008) Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453: 891–894.
-
20. Roati JG, D'Errico C, Fallani L, et al. (2008) Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453: 895–898.
-
21. Fallani L, Fort C, Inguscio M (2008) Bose-Einstein condensates in disordered potentials. Adv At Mol Opt Phys 56: 119–160.
-
22. Flach S, Krimer DO, Skokos Ch (2009) Universal spreading of wave packets in disordered nonlinear systems. Phys Rev Lett 102: 024101.
-
23. Vicencio RA, Flach S (2009) Control of wave packet spreading in nonlinear finite disordered lattices. Phys Rev E 79: 016217.
-
24. Skokos Ch, Krimer DO, Komineas S, et al. (2009) Delocalization of wave packets in disordered nonlinear chains. Phys Rev E 79: 056211.
-
25. Skokos Ch, Flach S (2010) Spreading of wave packets in disordered systems with tunable nonlinearity. Phys Rev E 82: 016208.
-
26. Laptyeva TV, Bodyfelt JD, Krimer DO, et al. (2010) The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL 91: 30001.
-
27. Modugno G (2010) Anderson localization in Bose-Einstein condensates. Rep Prog Phys 73: 102401.
- 28. Bodyfelt JD, Laptyeva TV, Gligoric G, et al. (2011) Wave interactions in localizing media - a coin with many faces, Int J Bifurcat Chaos 21: 2107.
-
29. Bodyfelt JD, Laptyeva TV, Skokos Ch, et al. (2011) Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Phys Rev E 84: 016205.
-
30. Laptyeva TV, Bodyfelt JD, Flach S (2012) Subdiffusion of nonlinear waves in two-dimensional disordered lattices. EPL 98: 60002.
-
31. Pikovsky AS, Shepelyansky DL (2008) Destruction of Anderson localization by a weak nonlinearity. Phys Rev Lett 100: 094101.
-
32. Skokos Ch, Gkolias I, Flach S (2013) Nonequilibrium chaos of disordered nonlinear waves. Phys Rev Lett 111: 064101.
-
33. Senyangue B, Many Manda B, Skokos Ch (2018) Characteristics of chaos evolution in one- dimensional disordered nonlinear lattices. Phys Rev E 98: 052229.
- 34. Kati Y, Yu X, Flach S (2019) Density resolved wave packet spreading in disordered Gross-Pitaevskii lattices. In preparation.
- 35. Benettin G, Galgani L, Giorgilli A, et al. (1980) Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application. Meccanica 15: 21–30.
-
36. Benettin G, Galgani L, Giorgilli A, et al. (1980) Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15: 9–20.
-
37. Skokos Ch (2010) The Lyapunov characteristic exponents and their computation. Lect Notes Phys 790: 63–135.
-
38. Mulansky M, Ahnert K, Pikovsky A, et al. (2009) Dynamical thermalization of disordered nonlinear lattices. Phys Rev E 80: 056212.
-
39. Sales MO, Dias WS, Neto AR, et al. (2018) Sub-diffusive spreading and anomalous localization in a 2D Anderson model with off-diagonal nonlinearity. Solid State Commun 270: 6–11.
- 40. Hairer E, Lubich C, Wanner G (2002) Geometric Numerical Integration. Structure-Preservings Algorithms for Ordinary Differential Equations. Springer-Verlag Berlin Heidelberg. Vol 31.
- 41. McLachlan RI, Quispel GRW (2002) Splitting methods. Acta Numer 11: 341–434.
-
42. McLachlan RI, Quispel GRW (2006) Geometric integrators for ODEs. J Phys A Math Gen 39: 5251–5285.
- 43. Forest E (2006) Geometric integration for particle accelerators. J Phys A Math Gen 39: 5351-5377.
- 44. Blanes S, Casas F, Murua A (2008) Splitting and composition methods in the numerical integration of differential equations. Bol Soc Esp Mat Apl 45: 89–145.
-
45. Benettin G, Ponno A (2011) On the numerical integration of FPU-like systems. Phys D 240: 568–573.
-
46. Antonopoulos Ch, Bountis T, Skokos Ch, et al. (2014) Complex statistics and diffusion in nonlinear disordered particle chains. Chaos 24: 024405.
-
47. Antonopoulos Ch, Skokos Ch, Bountis T, et al. (2017) Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics. Chaos Solitons Fractals 104: 129–134.
-
48. Tieleman O, Skokos Ch, Lazarides A (2014) Chaoticity without thermalisation in disordered lattices. EPL 105: 20001.
-
49. Skokos Ch, Gerlach E, Bodyfelt JD, et al. (2014) High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete non linear Schrödinger equation. Phys Lett A 378: 1809–1815.
-
50. Gerlach E, Meichsner J, Skokos C (2016) On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder. Eur Phys J Spec Top 225: 1103–1114.
-
51. Danieli C, Campbell DK, Flach S (2017) Intermittent many-body dynamics at equilibrium. Phys Rev E 95: 060202.
-
52. Thudiyangal M, Kati Y, Danieli C, et al. (2018) Weakly nonergodic dynamics in the Gross-Pitaevskii lattice. Phys Rev Lett 120: 184101.
-
53. Thudiyangal M, Danieli C, Kati Y, et al. (2019) Dynamical glass phase and ergodization times in Josephson junction chains. Phys Rev Lett 122: 054102.
- 54. Danieli C, Thudiyangal M, Kati Y, et al. (2018) Dynamical glass in weakly non-integrable many-body systems. arXiv:1811.10832.
-
55. Laskar J, Robutel P (2001) High order symplectic integrators for perturbed Hamiltonian systems. Celest Mech Dyn Astr 80: 39–62.
-
56. Senyange B, Skokos Ch (2018) Computational efficiency of symplectic integration schemes: Application to multidimensional disordered Klein-Gordon lattices. Eur Phys J Spec Top 227: 625–643.
-
57. Blanes S, Casas F, Farrés A, et al. (2013) New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl Numer Math 68: 58–72.
- 58. Skokos Ch, Gerlach E (2010) Numerical integration of variational equations. Phys Rev E 82: 036704.
- 59. Gerlach E, Skokos Ch (2011) Comparing the efficiency of numerical techniques for the integration of variational equations: Dynamical systems, differential equations and applications, Discrete & Continuous Dynamical Systems-Supplement 2011, Dedicated to the 8th AIMS Conference, 475–484.
-
60. Gerlach E, Eggl S, Skokos Ch (2012) Efficient integration of the variational equations of multidimensional Hamiltonian systems: Application to the Fermi-Pasta-Ulam lattice. Int J Bifurcation Chaos 22: 1250216.
-
61. Carati A, Ponno A (2018) Chopping time of the FPU α-model. J Stat Phys 170: 883–894.
-
62. Flach S, Ivanchenko MV, Kanakov OI (2005) q-Breathers and the Fermi-Pasta-Ulam problem. Phys Rev Lett 95: 064102.
-
63. Flach S, Ivanchenko MV, Kanakov OI, et al. (2008) Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem. Am J Phys 76: 453.
-
64. Flach S, Ponno A (2008) The Fermi-Pasta-Ulam problem: periodic orbits, normal forms and resonance overlap criteria. Phys D 237: 908–917.
-
65. Garcia-Mata I, Shepelyansky DL (2009) Delocalization induced by nonlinearity in systems with disorder. Phys Rev E 79: 026205.
- 66. Hairer E, Nørsett SP, Wanner G (1993) Solving Ordinary Differential Equations I: Nonstiff Problems, 2Ed., Berlin: Springer, Vol. 14.
- 67. Barrio R (2005) Performance of the Taylor series method for ODEs/DAEs. Appl Math Comput 163: 525–545.
- 68. Abad A, Barrio R, Blesa F, et al. (2012) Algorithm 924: TIDES, a Taylor series integrator for differential equations. ACM Math Software 39: 5.
- 69. Taylor series Integrator for Differential Equations. Available from: https://sourceforge.net/projects/tidesodes/.
- 70. Gröbner W (1967) Die Lie-Reihen und ihre Anwendungen. Berlin: Deutscher Verlag der Wissenschaften.
- 71. Blanes S, Casas F (2016) A Concise Introduction to Geometric Numerical Integration. In series of Monographs and Research Notes in Mathematics, Chapman and Hall/CRC.
- 72. Hanslmeier A, Dvorak R (1984) Numerical integration with Lie series. Astron Astrophys 132: 203–207.
-
73. Eggl S, Dvorak R (2010) An introduction to common numerical integration codes used in dynamical astronomy. Lect Notes Phys 790: 431–480.
- 74. Fortran and Matlab Codes. Available from: http://www.unige.ch/˜hairer/software.html .
- 75. Boreux J, Carletti T, Hubaux C (2010) High order explicit symplectic integrators for the Discrete Non Linear Schrödinger equation. Report naXys 09, arXiv:1012.3242.
-
76. Laskar J (2003) Chaos in the solar system. Ann Henri Poincaré 4: 693–705.
- 77. Leimkuhler B, Reich S (2004) Simulating Hamiltonian Dynamics. UK: Cambridge University Press, Vol. 14.
- 78. Lasagni FM (1988) Canonical Runge-Kutta methods. ZAMP 39: 952–953.
-
79. Sanz-Serna JM (1988) Runge-Kutta schemes for Hamiltonian systems. BIT Numer Math 28: 877–883.
-
80. Yoshida H (1990) Construction of higher order symplectic integrator. Phys Lett A 150: 262–268.
-
81. Suzuki M (1990) Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys Lett A 146: 319–323.
-
82. Yoshida H (1993) Recent progress in the theory and application of symplectic integrators. Celest Mech Dyn Astr 56: 27–43.
-
83. Ruth RD (1983) A canonical integration technique. IEEE Trans Nucl Sci 30: 2669–2671.
-
84. McLachlan RI (1995) Composition methods in the presence of small parameters. BIT Numer Math 35: 258–268.
-
85. Farrés A, Laskar J, Blanes S, et al. (2013) High precision symplectic integrators for the solar system. Celest Mech Dyn Astr 116: 141–174.
- 86. Iserles A, Quispel GRW (2018) Why geometric numerical integration? In: Ebrahimi-Fard, K., Barbero Liñán, M. Editors, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, Springer, Cham.
-
87. Forest E, Ruth RD (1990) Fourth-order symplectic integration. Phys D 43: 105–117.
-
88. Kahan W, Li RC (1997) Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math Comput Am Math Soc 66: 1089–1099.
-
89. Sofroniou M, Spaletta G (2005) Derivation of symmetric composition constants for symmetric integrators. Optim Method Soft 20: 597–613.
- 90. Blanes S, Moan PC (2001) Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J Comput Appl Math 142: 313–330.
-
91. Hillebrand M, Kalosakas G, Schwellnus A, et al. (2019) Heterogeneity and chaos in the Peyrard- Bishop-Dauxois DNA model. Phys Rev E 99: 022213.
-
92. Laskar J, Vaillant T (2019) Dedicated symplectic integrators for rotation motions. Celest Mech Dyn Astr 131: 15.
- 93. Koseleff PV (1996) Exhaustive search of symplectic integrators using computer algebra. Integr Algorithms Classical Mech 10: 103–120.
-
94. Benettin G, Galgani L, Giorgilli A, et al. (1976) Kolmogorov entropy and numerical experiments. Phys Rev A 14: 2338–2345.
- 95. All simulations were performed on the IBS-PCS cluster, which uses Intel(R) Xeon(R) E5-2620 v3 processors. All codes were written in Fortran90 language and were compiled by using the gfortran compiler ( https://gcc.gnu.org/ ) with O3 optimization flag. No advanced vectorization mode has been implemented.
- 96. All simulations were performed on a workstation using 3.00 GHz Intel Xeon E5-2623 processors. All codes were written in Fortran90 language and were compiled by using the gfortran compiler ( https://gcc.gnu.org/ ) with O3 optimization flag. No advanced vectorization mode has been implemented.
-
97. Rasmussen K, Cretegny T, Kevrekidis PG, et al. (2000) Statistical mechanics of a discrete nonlinear system. Phys Rev Lett 84: 3740–3743.
-
98. Skokos Ch, Manos T (2016) The Smaller (SALI) and the Generalized (GALI) alignment indices: Efficient methods of chaos detection. Lect Notes Phys 915: 129–181.
-
99. Achilleos V, Theocharis G, Skokos Ch (2016) Energy transport in one-dimensional disordered granular solids. Phys Rev E 93: 022903.
-
100. Livi R, Pettini M, Ruffo S, et al. (1987) Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics. J Stat Phys 48: 539–559.
-
101. Binder P, Abraimov D, Ustinov AV, et al. (2000) Observation of breathers in Josephson ladders. Phys Rev Lett 84: 745–748.
-
102. Blackburn JA, Cirillo M, Grønbech-Jensen N (2016) A survey of classical and quantum interpretations of experiments on Josephson junctions at very low temperatures. Phys Rep 611: 1–34.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *