Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data

1 Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China
2 Laboratoire de Mathématiques et Physique Théorique, Université de Tours, 37200 Tours, France

We study existence and stability of solutions of $$ -\Delta u +\frac{\mu}{|x|^{2 }}u+ g(u)= ν \text{ in }\Omega,\ \ \ u=0\text{ on } ∂Ω,$$ where $\Omega$ is a bounded, smooth domain of $\mathbb{ R}^N$, $N\geq 2$, containing the origin, $\mu\geq-\frac{(N-2)^2}{4}$ is a constant, $g$ is a nondecreasing function satisfying some integral growth assumption and the weak ∆2-condition, and ν is a Radon measure in Ω. We show that the situation differs depending on whether the measure is diffuse or concentrated at the origin. When $g$ is a power function, we introduce a capacity framework to find necessary and sufficient conditions for solvability.
  Article Metrics

Keywords Leray-Hardy potential; Radon measure; capacity; weak solution

Citation: Huyuan Chen, Laurent Véron. Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data. Mathematics in Engineering, 2019, 1(3): 391-418. doi: 10.3934/mine.2019.3.391


  • 1. Baras P, Pierre M (1984) Singularité séliminables pour des équations semi linéaires. Ann Inst Fourier Grenoble 34: 185–206.    
  • 2. Bénilan P, Brezis H (2003) Nonlinear problems related to the Thomas-Fermi equation. J Evol Equ 3: 673–770.
  • 3. Bidaut-Véron M, Véron L (1991) Nonlinear elliptic equations on complete Riemannian manifolds and asymptotics of Emden equations. Invent Math 106: 489–539.    
  • 4. Birnbaum Z, Orlicz W (1931) über die Verallgemeinerung des Begriffes der zueinander Konjugierten Potenzen. Stud Math 3: 1–67.    
  • 5. Boccardo L, Orsina L, Peral I (2006) A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete Cont Dyn-A 16: 513–523.    
  • 6. Brezis H (1980) Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems. Proc Internat School, Erice, Wiley, Chichester 53–73.
  • 7. Brezis H, Dupaigne L, Tesei A (2005) On a semilinear elliptic equation with inverse-square potential. Sel Math 11: 1–7.    
  • 8. Brezis H, Marcus M, Ponce A (2007) Nonlinear elliptic equations with measures revisited. Ann Math Stud 163: 55–109.
  • 9. Brezis H, Vázquez J (1997) Blow-up solutions of some nonlinear elliptic problems. Rev Mat Complut 10: 443–469.
  • 10. Brezis H, Véron L (1980) Removable singularities of some nonlinear elliptic equations. Arch Ration Mech Anal 75: 1–6.    
  • 11. Chen H, Véron L (2014) Semilinear fractional elliptic equations with gradient nonlinearity involving measures. J Funct Anal 266: 5467–5492.    
  • 12. Chen H, Quaas A, Zhou F (2017) On nonhomogeneous elliptic equations with the Hardy-Leray potentials. arXiv:1705.08047.
  • 13. Chen H, Zhou F (2018) Isolated singularities for elliptic equations with inverse square potential and source nonlinearity. Discrete Cont Dyn-A 38: 2983–3002.
  • 14. Chen H, Alhomedan S, Hajaiej H, et al. (2017) Fundamental solutions for Schrödinger operators with general inverse square potentials. Appl Anal 1–24.
  • 15. Cignoli R, Cottlar M (1974) An Introduction to Functional Analysis. Amsterdam: North-Holland.
  • 16. Cîrstea F (2014) A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials.Mem Am Math Soc 227: No. 1068.
  • 17. Cîrstea F, Du Y (2007) Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity. J Funct Anal 250: 317–346.    
  • 18. Dupaigne L (2002) A nonlinear elliptic PDE with the inverse square potential. J Anal Math 86: 359-398.    
  • 19. Folland G, Sitaram A (1997) The uncertainty principle: A mathematical survey. J Fourier Anal Appl 3: 207–238.    
  • 20. Frank R (2011) Sobolev inequalities and uncertainty principles in mathematical physics. part I, unpublished notes of a course given at the LMU, Munich. Available From: http://www.math.caltech.edu/ rlfrank/sobweb1.pdf.
  • 21. Gilbarg D, Trudinger N (1983) Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 224.
  • 22. Guerch B, Véron L (1991) Local properties of stationary solutions of some nonlinear singular Schrödinger equations. Rev Mat Iberoamericana 7: 65–114.
  • 23. Krasnosel'skii M, Rutickii Y (1961) Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen.
  • 24. Meyers N (1970) A theory of capacities for potentials of functions in Lebesgue classes. Math Scand 26: 255–292.    
  • 25. Triebel H (1978) Interpolation Theory, Function Spaces, Differential Operators. North-Holland Pub Co.
  • 26. Vàzquez J (1983) On a semilinear equation in RN involving bounded measures. Proc R Soc Edinburgh Sect A: Math 95: 181–202.    
  • 27. Véron L (1981) Singular solutions of some nonlinear elliptic equations. Nonlinear Anal Theory Methods Appl 5: 225–242.    
  • 28. Véron L (1986) Weak and strong singularities of nonlinear ellptic equations. Proc Symp Pure Math 45: 477–495.
  • 29. Véron L (1996) Singularities of Solutions of Second Order Quasilinear Equations. Pitman Research Notes in Mathematics. Series, 353.
  • 30. Véron L (2004) Elliptic equations involving measures, In: Chipot, M., Quittner, P., Editors,Handbook of Differential Equations: Stationary Partial Differential equations. Amsterdam: North-Holland, Vol I, 593–712.
  • 31. Véron L (2013) Existence and stability of solutions of general semilinear elliptic equations with measure data. Adv Nonlinear Stud 13: 447–460.
  • 32. Véron L (2017) Local and Global Aspects of Quasilinear Degenerate Elliptic Equations. Quasilinear Elliptic Singular Problems. World Scientific Publishing Co Pte Ltd, Hackensack, NJ, 457.


This article has been cited by

  • 1. Huyuan Chen, Laurent Véron, Schrödinger operators with Leray-Hardy potential singular on the boundary, Journal of Differential Equations, 2020, 10.1016/j.jde.2020.01.029

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved