Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Solitary waves in atomic chains and peridynamical media

1 Technische Universität Braunschweig, Institute of Computational Mathematics, Universitätsplatz 2, 38106 Braunschweig, Germany
2 University of Bath, Department of Mathematical Sciences, Bath, BA2 7AY, United Kingdom
$^\dagger$ This contribution is part of the Special Issue: Hamiltonian Lattice Dynamics
  Guest Editors: Simone Paleari; Tiziano Penati
  Link: http://www.aimspress.com/newsinfo/1165.html

Special Issues: Hamiltonian Lattice Dynamics

Peridynamics describes the nonlinear interactions in spatially extended Hamiltonian systems by nonlocal integro-differential equations, which can be regarded as the natural generalization of lattice models. We prove the existence of solitary traveling waves for super-quadratic potentials by maximizing the potential energy subject to both a norm and a shape constraint. We also discuss the numerical computation of waves and study several asymptotic regimes.
  Article Metrics

Keywords peridynamics; Hamiltonian lattices; solitary waves; variational; asymptotic analysis

Citation: Michael Herrmann, Karsten Matthies. Solitary waves in atomic chains and peridynamical media. Mathematics in Engineering, 2019, 1(2): 281-308. doi: 10.3934/mine.2019.2.281


  • 1. Chen F (2013) Wandernde Wellen in FPU-Gittern. Masters thesis, Saarland University, Germany.
  • 2. Chen F (2017) Traveling waves in two-dimensional FPU lattices. PhD thesis, University of Münster, Germany.
  • 3. Chen F, Herrmann M (2018) KdV-like solitary waves in two-dimensional FPU-lattices. Discrete Contin Dyn Syst A 38: 2305–2332.    
  • 4. Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54: 1811–1842.    
  • 5. English JM, Pego RL (2005) On the solitary wave pulse in a chain of beads. Proc Amer Math Soc 133: 1763–1768.    
  • 6. Filip AM, Venakides S (1999) Existence and modulation of traveling waves in particle chains. Comm Pure Appl Math 52: 693–735.    
  • 7. Friesecke G, Matthies K (2002) Atomic-scale localization of high-energy solitary waves on lattices. Phys D 171: 211–220.
  • 8. Friesecke G, Mikikits-Leitner A (2015) Cnoidal waves on Fermi-Pasta-Ulam lattices. J Dyn Differ Equ 27: 627–652.    
  • 9. Friesecke G, Pego RL (1999) Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12: 1601–1627.
  • 10. Friesecke G, Pego RL (2002) Solitary waves on FPU lattices. II. Linear implies nonlinear stability. Nonlinearity 15: 1343–1359.
  • 11. Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory. Nonlinearity 17: 207–227.
  • 12. Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy. Nonlinearity 17: 229–251.
  • 13. Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Commun Math Phys 161: 391–418.    
  • 14. Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model Sim 12: 953–995.    
  • 15. Herrmann M (2010) Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains. Proc Math Roy Soc Edinb 140: 753–785.    
  • 16. Herrmann M (2011) Action minimizing fronts in general FPU-type chains. J Nonlinear Sci 21: 33–55.    
  • 17. Herrmann M (2017) High-energy waves in superpolynomial FPU-type chains. J Nonlinear Sci 27: 213–240.
  • 18. Herrmann M, Matthies K (2015) Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains. Nonlinearity 28: 2767–2789.    
  • 19. Herrmann M, Matthies K (2017) Stability of High-Energy Solitary Waves in Fermi-Pasta-Ulam-Tsingou Chains. Trans Amer Math Soc, arXiv: 1709.00948.
  • 20. Herrmann M, Matthies K (2017) Uniqueness of solitary waves in the high-energy limit of FPU type chains, In: Gurevich, P., Hell, J., Sandstede, B., et al. Editors, Patterns of Dynamics, Springer, Cham, 3–15.
  • 21. Herrmann M, Matthies K, Schwetlick H, et al. (2013) Subsonic phase transition waves in bistable lattice models with small spinodal region. SIAM J Math Anal 45: 2625–2645.    
  • 22. Herrmann M, Mikikits-Leitner A (2016) KdV waves in atomic chains with nonlocal interactions. Discrete Contin Dyn Syst 36: 2047–2067.
  • 23. Herrmann M, Rademacher JDM (2010) Heteroclinic travelling waves in convex FPU-type chains. SIAM J Math Anal 42: 1483–1504.    
  • 24. Hewer B (2013) Nichtlineare Wellen in nicht-lokalen atomaren Ketten. Bachelors thesis, Saarland University, Germany.
  • 25. Hoffman A, Wayne CE (2008) Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. Nonlinearity 21: 2911–2947.    
  • 26. Hoffman A,Wayne CE (2009) Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model. J Dyn Differ Equ 21: 343–351.    
  • 27. Hoffman A, Wayne CE (2013) A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit, In: Mallet-Paret J., Wu J., Yi Y., et al. Editors, Infinite Dimensional Dynamical Systems, New York: Springer, 185–192.
  • 28. Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. Phys D 358: 33–59.
  • 29. Iooss G, James G (2005) Localized waves in nonlinear oscillator chains. Chaos 15: 015113.    
  • 30. Iooss G, Kirchgässner K (2000) Travelling waves in a chain of coupled nonlinear oscillators. Commun Math Phys 211: 439–464.    
  • 31. James G (2012) Periodic travelling waves and compactons in granular chains. J Nonlinear Sci 22: 813–848.    
  • 32. James G, Pelinovsky D (2014) Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials. Proc R Soc A 470: 20130462.    
  • 33. Mizumachi T (2009) Asymptotic stability of lattice solitons in the energy space. Commun Math Phys 288: 125–144.    
  • 34. Pankov A (2005) Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices. Imperial College Press.
  • 35. Angulo Pava J, Brango BC, Silva JD, et al. (2013) The regularized Boussinesq equation: instability of periodic traveling waves. J Differ Equations 254: 3994–4023.    
  • 36. Pego RL, Van TS (2018) Existence of solitary waves in one dimensional peridynamics. J Elast, arXiv: 1802.00516.
  • 37. Pelinovsky D, Stepanyants Y (2004) Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J Numer Anal 42: 1110–1127.    
  • 38. Schneider G, Wayne CE (1999) Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In: International Conference on Differential Equations, World Sci. Publ., River Edge, NJ, 2000, 390–404.
  • 39. Schwetlick H, Zimmer J (2012) Kinetic relations for a lattice model of phase transitions. Arch Ration Mech Anal 206: 707–724.    
  • 40. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209.    
  • 41. Silling SA (2016) Solitary waves in a peridynamic elastic solid. J Mech Phys Solids 96: 121–132.    
  • 42. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168.    
  • 43. Starosvetsky Y, Vainchtein A (2018) Solitary waves in FPU lattices with alternating bond potentials. Mech Res Commun 93: 148–153.    
  • 44. Stefanov A, Kevrekidis PG (2012) On the existence of solitary traveling waves for generalized Hertzian chains. J Nonlinear Sci 22: 327–349.    
  • 45. Treschev D (2004) Travelling waves in FPU lattices. Discrete Cont Dyn S 11: 867–880.    
  • 46. Truskinovsky L, Vainchtein A (2005) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66: 533–553.    
  • 47. Truskinovsky L, Vainchtein A (2014) Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain. Phys Rev E 90: 042903.    
  • 48. Weinstein MI (1999) Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12: 673–691.    
  • 49. Zabusky NJ, Kruskal MD (1965) Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved