
Mathematical Biosciences and Engineering, 2020, 17(3): 20822102. doi: 10.3934/mbe.2020111
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global dynamics of an immunosuppressive infection model with stage structure
1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China
2 Department of Mathematics, Tongji University, Shanghai 200092, China
Received: , Accepted: , Published:
Special Issues: Modeling, Analysis and Computation in Mathematical Biology
References
1. F. C. Bekkering, C. Stalgis, J. G. McHutchison, J. T. Brouwer, A. S. Perelson, Estimation of early hepatitis C viral clearance in patients receiving daily interferon and ribavirin therapy using a mathematical model, Hepatology, 33 (2001), 419423.
2. A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferonα therapy, Science, 282 (1998), 103107.
3. S. A. Whalley, J. M. Murray, D. Brown, G. J. M. Webster, V. C. Emery, G. M. Dusheiko, et al., Kinetics of acute hepatitis B virus infection in humans, J. Exp. Med., 193 (2001), 847854.
4. T. W. Chun, L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. Mican, M. Baseler, et al., Presence of an inducible HIV1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 1319313197.
5. A. S. Perelson, Modelling viral and immune system dynamics, Nat. Rev. Immunol., 2 (2002), 2836.
6. N. L. Komarova, E. Barnes,P. Klenerman, D. Wodarz, Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success, Proc. Natl. Acad. Sci. USA, 100 (2003), 18551860.
7. E. S. Rosenberg, M. Altfeld, S. H. Poon, M. N. Phillips, B. M. Wilkes, R. L. Eldridge, et al., Immune control of HIV1 after early treatment of acute infection, Nature, 407 (2000), 523526.
8. A. Fenton, J. Lello, M. B. Bonsall, Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence, Proc. R. Soc. B, 273 (2006), 20832090.
9. G. M. Ortiz, J. Hu, J. A. Goldwitz, R. Chandwani, M. Larsson, N. Bhardwaj, et al., Residual viral replication during antiretroviral therapy boosts human immunodeficiency virus type 1specific CD8+ Tcell responses in subjects treated early after infection, J. Virol., 76 (2002), 411415.
10. H. Shu, L. Wang, J. Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model, J. Math. Biol., 68 (2014), 477503.
11. J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, SpringerVerlag, New York, 1993.
12. X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLVI infection model: stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 22142235.
13. H. Shu, X. Hu, L. Wang, J. Watmough, Delay induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 12691298.
14. J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988.
15. H. Thieme, Uniform persistence and permanence for nonautonomous semiflows in population biology, Math. Biosci., 166 (2000), 173201.
16. H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 12801302.
17. E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 11441165.
18. B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
19. J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 47994838.
20. K. Engelborghs, T. Luzyanina, G. Samaey, DDEBIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differential equations, Technical Report TW330, K. U. Leuven, Belgium, 2001.
21. K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDEBIFTOOL, ACM Trans. Math. Software, 28 (2002), 121.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)