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Abstract: In this paper, we propose an immunosuppressive infection model incorporating natural
mortality of immune cells during the time lag needed for the expansion of immune cells. Starting from
a stage structure model for the immune cells with various ages, we use the method of characteristic
lines to derive a delay differential equation for the population of mature immune cells. Then, we use
Lyapunov functional techniques to obtain the global dynamics of the model system. Specifically,
we show that the virus dominant equilibrium is globally asymptotically stable when the delay is
large. Next, we conduct local and global Hopf bifurcation analysis for the proposed model via Hopf
bifurcation theory of delay differential equations. We choose the delay as a bifurcation parameter and
examine the onset and termination of Hopf bifurcations of periodic solutions from the immune control
equilibrium. We also prove that the model has only a finite number of Hopf bifurcation values, and the
periodic solutions with specific oscillation frequencies occur only in bounded delay intervals. Under
some technical conditions, we show that two global Hopf branches bifurcated from different Hopf
bifurcation values may connect to each other and thus be bounded. However, unlike the global Hopf
bifurcation results in the existing literature, the Hopf branches for our model system are not necessarily
bounded, though the delay components are always bounded. Numerical simulation suggests that
bounded and unbounded Hopf branches may co-exist in the bifurcation diagram. Moreover, we
observe a new interesting phenomenon that a global Hopf branch may have uniformly bounded periodic
solutions, bounded delays, but unbounded periods.
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1. Introduction

According to clinical data, drug treatment against persistent human infections sometimes fails to
consistently eradicate the infection from the host [1-3], such as human immunodeficiency virus
(HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). For all these viruses, drug treatment is
not effective, and for HIV, lifelong therapy is commonly required to control viral replication [4, 5].
The main reason is that these viruses are able to suppress and impair immune responses, resulting in
persistent infection [6, 7]. An alternative strategy is to use drug therapies to boost virus-specific
immune response and then induce sustained viral suppression in the absence of drugs. Antiviral
therapy aimed at boosting specific immune responses has attracted more and more attentions recently.
In 2003, Komarova et al. [6] used mathematical models to study immune response dynamics during
therapy in the context of immunosuppressive infections. They showed that a single phase of antiviral
drug therapy is also possible to establish sustained immunity. They assumed that the degree of
immune expansion depends on virus load and the response inhibits virus growth. This assumption is
natural for any branch of the adaptive immune system, such as CD4 T cells, CD8 T cells, or
antibodies. Denote by y(f) and z(f), respectively, the virus population and immune cell population at
time ¢. Komarova et al. [6] proposed the following system of ordinary differential equations:

V(@) =ry (o1 - %) _ oy = by (D).
0z (L.1)
L) =~ R0~ ()

The virus population grows at a rate described by the logistic function. The viral replication rate is a
linear decreasing function of viral loads with a maximum value of r and it vanishes at a viral load K.
The treatment is modeled as a reduction in . Immune cells kill virus at a rate pyz. b and u are the
natural decay rates of viral particles and immune cells, respectively. Immune expansion is modeled
by the growth function 1?;},. When the virus load is low, the level of immune response is simply
proportional to both the viral load and the immune cells. The immune response saturates when the
virus load is sufficiently high. Immune cells are inhibited by the virus at a rate gyz. Komarova et al.
presented a simple relationship between the timing of therapy and efficacy of the drugs. In the presence
of strong viral suppression, they showed that therapy should be stopped relatively early because a
longer duration of treatment may lead to a failure. On the other hand, in the presence of weaker viral
suppression, stopping treatment too early is detrimental, and therapy has to be continued beyond a
time threshold. Essentially, model (1.1) has two stable equilibria: a virus dominant equilibrium with
no sustained immunity and an immune control equilibrium with sustained immunity. This bistability
allows a solution from the basin of the attraction of the virus dominant equilibrium to be lifted to that
of the immune control equilibrium via a single phase of therapy.

Model (1.1) assumes that the immune response is instantaneous. Nevertheless, it has been
established that the immune response process involves a sequence of events such as antigenic
activation, selection, and proliferation of the immune cells [8]. Moreover, oscillatory viral loads and
immune cells were observed from clinical data [9], while the oscillatory behavior is not exhibited in
model (1.1). A natural question is what is the cause of the oscillations. In 2014, Shu et al. [10]
incorporated the time lag during the immune response process into model (1.1). By studying the
dynamics between an immunosuppressive infection and antiviral immune response, they
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demonstrated that the time lag is the main factor causing oscillations. Here, 7 is denoted as the time
lag for the immune system to trigger a sequence of events. The activation rate of immune cells at time
t depends on the virus load and the number of immune cells at time ¢ — 7. The above assumptions lead

to the following system:
Y =ry01 = 22~ py(oeto) - by,
2(0) = cy(t —1)z(t — 1)
1 +dy(t—1)
It was shown that the delayed antiviral immune response may induce sustained periodic oscillations,
transient oscillations and even sustained aperiodic oscillations (chaos), and the model can admit two
stable equilibria and can also allow a stable equilibrium to coexist with a stable periodic solution.

In the aforementioned work, the mortality of the population during the time lag has been ignored.
Consideration of the survival probability during the time lag requires an additional delay-dependent
multiplier in the nonlinear delayed feedback term. The death of the free viral particles depends on the
mature immune cells instead of all the newly generated immune cells. We denote z(¢) as the population
of mature immune cells at time ¢, and consider the following delay differential equation with a delay-
dependent coeflicient:

(1.2)

— qy(0)z(t) — pz(?).

Y'(@) =f(y(0) = py()z(1) = by (D),

(1) =™ Th(y(t = 1)z(t = 7) = qy()2(1) - pz(o).
Here, f(y) describes the virus population growth function; 6 > 0 is the death rate of the immature
immune cells during the time lag; e represents the survival probability of the immature immune
cells surviving 7 time units before becoming mature; 4(y)z denotes the immune cell growth function;
the other parameters have the same meaning as in model (1.2). In addition to more general virus and
immune cell growth functions, model (1.3) differs from model (1.2) in the sense that it introduces an
additional delay-dependent survival probability e™°7. As we shall see later, this quantity will make a
significant difference in the bifurcation analysis. For instance, model (1.3) does not possess any positive
equilibrium for sufficiently large T and its global Hopf branches always have bounded 7 components.
However, for model (1.2), the existence condition of positive equilibrium is independent of 7 and
the global Hopf branches always have unbounded v components. Furthermore, there exists only one
stability switch of positive equilibrium for model (1.2), but the stability of positive equilibrium for our
model (1.3) may switch multiple times.

Actually, the model (1.3) can be derived from a stage structured population model for u(t, a) as

below

(1.3)

Y@ = f(0) = py@)z(t) — by (1),
ou(t,a) + du(t,a) = — (u(a) + ga)y(t)) u(t, a),
with the stage-specific decay rate of immune cells, p(a), inhibition rate of immune cells, g(a),

o o azm, g azm,
,u(a)_{é’ a<T, Q(a)_{O, a<T,

where u(t, a) is the population of immune cells at age a and time ¢. Note that the population of mature
immune cells is z(f) = fT “ u(t, a)da. We integrate along characteristic lines to find

7' (1)

u(t, T) = ut, o) — gy()z(1) — pz(?)
u(t = 7,0)e™" = u(t, 00) — qy(1)z(t) — pz(0).
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Note that u(t, o) = 0 and u(t — 7,0) = h(y(t — 7))z(t — 7). The equation for z(¢) follows.
Throughout this paper, we assume that the virus population growth function f(y) and the immune
expansion rate h(y) satisfy the following conditions:

(Hy) f(y) is continuously differentiable, f(0) = 0 and f’(0) > b; there exists ¥ > O such that f(¥) = 0,
and (y — ) f(y) < 0 for positive y # y; f'(y) < 0 fory € [0, y].

(Hy) h(y) is continuously differentiable, h(0) = 0 and #’(0) > ¢; K’ (y) > 0 and h”’(y) < O forall y > 0.

The assumptions (H;)-(H;) are biological conditions for infection dynamics. For instance, f(0) = 0
means no new infection in the absence of virus; f’(0) > b indicates that the intrinsic growth rate is
greater than the decay rate. Similarly, £(0) = 0 implies that immune cells cannot reproduce without the
presence of virus; h’'(0) > g guarantees that the initial expansion rate is greater than the inhibition rate.
The rest of this paper is organized as follows. We first present some preliminary results concerning
the well-posedness of model (1.3), and describe global dynamics of the ordinary differential equation
system (2.4) in Section 2. Local and global stability analysis of equilibria as well as local and global
Hopf bifurcation analysis are given in Section 3. In Section 4, numerical simulations based on the
bifurcation analysis are reported and discussed. Finally, we give a brief summary in Section 5.

2. Preliminaries

To establish the well-posedness of model (1.3), we choose the phase space C X C, where C is the
Banach space of continuous functions on [—7, 0] defined by C := {¢ : [-7,0] — R is continuous}, and
the norm is defined by ||¢|| = sup ¢(6). The nonnegative cone of C is denoted by C*. As usual, ¢, € C

—-7<60<0

is defined by ¢,(0) = ¢(t + ) for 6 € [—7, 0]. For biological applications, the initial condition of (1.3)
is given as
(vo,20) € X :=C" xC".

The existence and uniqueness of the solution of model (1.3) follows from the standard theory of
functional differential equations [11]. Using the same manner as in proving [12, Proposition 2.1], we
can easily show that the solution of (1.3) with initial conditions in X is nonnegative, which implies
that X is positively invariant under the solution map of (1.3).

Next, we shall prove that all solutions of (1.3) are ultimately bounded. It follows from the first
equation in (1.3) that y'(¢) < f(y), which yields lim sup y(¢) < y. By the nonnegativity of the solution

of (1.3) and (H;)-(H,), we obtain

t—00

(y(t) + h,l(jo)z(t + T)) <My + (e_‘ST h{l(((})}))y - 1) py(H)z(t) — by(t) — h/f(l()))z(t +7)
< My - y((0) + h,](?o)z(t + 1)),

where M = max f(y) and y = min{b, u}. Thus,
y=

p My
h’(O)Z(t + T)) < 7,

lim sup (y(t) +

—o0
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which implies that y(¢) and z(¢) are ultimately bounded in X. To summarize, we obtain the following
proposition.
Proposition 2.1. The solutions of model (1.3) with the initial conditions in X are nonnegative, and the
region
p My
¥(0) < —}
h'(0) 4

is positively invariant and absorbing in X; namely, all solutions ultimately enter T'.

r- {<¢, W) €X 1 Igll < 3. p(-1) +

Clearly, model (1.3) always has a trivial equilibrium E, = (0, 0). Since f’(0) > b, there also exists
a boundary equilibrium E;, = (¥,0), where ¥ is the unique positive root of f(y) = by. We call E, the
virus dominant equilibrium (VDE). Assume that E* = (y*, z") is a positive equilibrium with y* > 0 and
Z" > 0, then it must satisfy the following equilibrium equations

k _ b *
e—ﬁ‘rh(y*) — qy* +/-l, Z* — f(y ) - y . (21)
py
Obviously, z* > 0 if and only if y* < . Hence, E* exists if and only if y* is a positive root of
h
(y) — qe5‘r (22)
y+ulq
with y* < §. It is easily to calculate that sign (ﬁ%)/ = sign g(y), where g(y) = (y)(y + g) — h(y).

Note that g(0) > 0, g(c0) < 0 and g’(y) = h”"(y)(y + u/q) < 0. There exists a unique y. > 0 such that
g0y.) =0,and (y — y.)g(y) < O for y # y.. Therefore, yﬁ(:/)q is strictly increasing on [0, y.), and strictly
decreasing on (y., o). We denote

_ hye) h(y)
s = = sup .
Yetu/q 0 ytulg

(2.3)

If s < ge", (2.2) has no positive root. If s > ge’", (2.2) has exactly two positive roots (counting
multiplicity) yj and y; such that yj < y. < y;. These two roots coincide (i.e., y; = y5 = y.) if and only if
s = ge°". Throughout this paper, we make the following assumption to ensure the existence of positive
roots for (2.2).

(H3) s > g and 7 < Tyyqy, Where Tyqx = 3 In >

If (H;) is violated, there does not exist any positive equilibrium for our model and the boundary
equilibrium is locally asymptotically stable. Summarizing the above analysis, we obtain the following
result.

Proposition 2.2. Assume that (H,)-(H3) are satisfied.

(i) If y} = § holds, then there are two equilibria: Eq = (0,0) and E}, = (3,0).

(ii) If y] <y < y; or y| =y, < ¥ holds, then there are three equilibria: Ey, E; and E} = (y},2)).
(iii) If y] < y5 < ¥ holds, then there are four equilibria: Ey, E;, E} and ES = (y},25).

When 7 = 0, model (1.3) reduces to an ODE system which generalizes (1.1)
Y@ =f((®) — py®)z(t) - by(D),
Z(1) =h(y()z(t) — qy(D)z(t) — pz(1).

We next provide a complete description about its global dynamics.

(2.4)
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Lemma 2.3. System (2.4) has no closed orbits.

Proof. Using an argument similar to Proposition 2.1, we can show that

_ 2. - P %
ro—{(¢,w>eR+.¢Sy, o+ maY S 7}

is positively invariant and absorbing in R2. Thus, it suffices to show that System (2.4) has no closed
orbits in I'.
Let (P(y,2), Q(y, 2)) denote the vector field of (2.4), then we have
oBP) 9B _ 1 f0)

1
= —(£=2), where B =—.
o 7z Z(t)( y )'s where B(y,z) =

Note that (H;) implied that (%)’ < O forall y <y. Thus, f”%@ + a(gLZQ) < 0in I'y. The nonexistence of
closed orbits for (2.4) follows from the classical Dulac-Bendixson criterion. This ends the proof. O

We linearize system (2.4) at Ey = (0, 0) and calculate that the two eigenvalues are f'(0) — b > 0 and
—u < 0. Thus, Ej is a saddle point. For the linearized system at E;, = (¥, 0), the two eigenvalues are

A =f(§—-b<0 and A, = h(y) — gy — u.

From the proof of Proposition 2.2, we know h(y) —gy —pu < 0if y < yjory > y3, and h(y) — gy —u > 0
provided that y; < § < yj. This shows that Ej is stable if y] > § or y; < §, and E}, is a saddle point if
y] < ¥ <yj. For the linearized system at E| = (y], z}), the associated characteristic equation is

A+ (= O + pi + DA+ pyizi(H () — @) = 0.

It follows from (2.1) and (H,) that —f"(y}) + pzj + b = —f'(y}) + f(y])/y] > 0. This, together with
R (y])—q > 0, implies that all eigenvalues must have negative real parts, and hence E7 is asymptotically
stable. At E7 = (¥}, 25), the two eigenvalues A; and A, satisfy

7 * f(y*) * % ’ *
A+ =10 - y_*z <0, 4y = py,5,(H(yy) —g) < 0.
2
This implies that one eigenvalue must be positive and the other negative. Thus, EJ is a saddle point
whenever it exists. Summarizing the above analysis, we obtain the following global stability results on
model (2.4).

Theorem 2.4. Assume that (H,)-(H,) are satisfied and s > q.

(i) If y; > ¥ holds, then E, is a saddle point and E, attracts all solutions with initial conditions in
{0(®), 2(1) € RS 2 y(0) > 0,2(0) > 0}.

(ii) If y} < § <y holds, then both Ey and E}, are saddle points and E7 attracts all solutions with initial
conditions in {(y(t), z(1)) € Ri :y(0) > 0,z(0) > 0}

(iii) If y} <y, < J holds, then both E and E are saddle points, and for any initial condition (y(0), z(0))
with y(0) > 0, the solution of (2.4) approaches either E, or E7, the stable manifold of E3 separate the
basins of attraction of Ej, and E7.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2082-2102.
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3. Dynamics of (1.3)
In this section, we study the dynamics of model (1.3) with 7 > 0.

3.1. Global stability of the boundary equilibria

By linearizing (1.3) at Ey = (0, 0), we find two eigenvalues f’(0) — b > 0 and —u < 0. Hence, E| is
a saddle point. The characteristic equation associated with the linearization of model (1.3) at Ej, is

A= f' @) +b)(A+q5+p—ehFe™) =0.
One eigenvalue is 4; = f'(¥) — b < 0. Hence E,, is locally asymptotically stable if all zeros of
Ap() = A+ gy +p— e hF)e ™

have negative real parts. By [13, Lemma 6], there exists at least one positive eigenvalue if gy + u <
e™"h(y), or equivalently, y; < § < y;. On the other hand, if g7 + u > ¢ °"h(§), that is, either § < y; or
y > y5, then all eigenvalues have negative real parts. For the critical case ¢y + u = e °"h(§); namely,
either y = yj or y = y;, one eigenvalue is 0, and all other eigenvalues have negative real parts. By
using the method of normal forms, we obtain that E}, is locally asymptotically stable. To summarize,
we have the following result on the local stability of Ey and E,.

Theorem 3.1. Consider model (1.3) under the assumptions (H,)-(H3). Ey is a saddle point. If either
¥ <yjory >y;, then E, is locally asymptotically stable; while E}, is unstable if y; <y < y}.

To establish the global stability of E;, we first show that the infection is persistent.

Lemma 3.2. liminf y(¢) > O for any solution of (1.3) with the initial condition in X; = {(¢,¢¥) € X :
t—00

¢(0) > 0,y(0) = O}.

Proof. We claim that lim sup y(¢) > 0. If not, then y(f) — 0 as t — oco. It then follows from (1.3) that

>0

z(t) — 0 as t — oo. This contradicts to the fact that E, is unstable. Thus, y(#) is weakly persistent. By
using [14, Theorem 3.4.6] and Proposition 2.1, there exists a global attractor for the solution semiflow
of (1.3). This, together with [15, Theorem 2.3], implies that y(¢) is actually strongly persistent; that is,
lig inf y(¢) > 0. |

Our next result is concerned with global stability of E,.

Theorem 3.3. Assume that (H,)-(H3) hold. Then E}, of model (1.3) is globally asymptotically stable in
the region X, provided that T > 1), where T, := éln Z;—SLy Moreover, the condition T > T, implies that
y<y.

Proof. By Proposition 2.1 and Theorem 3.1, it suffices to show that E}, is globally attractive in X; N T,
which is a positively invariant set of (1.3). Let (y(¢), z(¢)) be a solution of (1.3) with the initial condition
in X, it follows from Lemma 3.2 that y(f) > O for ¢+ > 0. Motivated by the earlier work in [16], we
construct a Lyapunov functional L : X; NI" = R by

0
L(yi z0) = yi(0) = §1n(y,(0)) + cz/(0) + ce™ f h(y(6))z:(6)db,

-7
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where c is a constant to be determined later. Calculating the time derivative of L along the solution,
and using b = f(3)/9, h(y) < h’(0)y for all y > 0, we obtain

dL
dr :%(Y = 5) = b(y =) + (pF — cw)z + ceTh(y)z ~ (cq + pyz,
s(@ B %)(y =5) + (p¥ = ez + (ce” ' (0) — cq = p)yz.

Assumption (H;) implies that (j% - %)(y —%) < O0forall y < ¥. Since h'(0)e™" — g > 0, the condition
T > T, is the same as % < W' We may choose a constant ¢ € [%y’ m] such that dL/dt < 0.
Moreover, dL/dt = 0 if and only if y(r) = ¥ and z(¢r) = 0. Thus the maximal compact invariant set in
{dL/dt = 0} is the singleton {E,}. By the LaSalle invariance principle [11], E,, is globally attractive in
X, NT. Since X; NI is absorbing in X;, we conclude that E}, is globally attractive in X;. By Theorem
3.2, E, is globally asymptotically stable in X, if 7 > 7.

If T > 75, then e W (0)§ — gy —p < 0 = e h(y}) — qv} —p < e W (0)y} — gy} — pu. Since
e™"h'(0) > g, we obtain j < yi. |

Here, we remark that if yj = y5 < §, then two positive equilibria E} and E’ coincide, and E} is
locally asymptotically stable.

3.2. Stability of the positive equilibria and Hopf bifurcation

In this subsection, we investigate the stability of £} and identify parameter regions in which the
time delay can destabilize E7, lead to Hopf bifurcation and induce sustained oscillations.

The characteristic equation associated with the linearization of system (1.3) at equilibrium E} (i =
1,2)is

A = 22+ ayd + ag; + (by A+ bo)e ™ =0, 3.0
where . *
s = (E22 = OphODe™ = payis s =L = o)+ > 0

bo; = (f'07) - = Ya(y)e™ + pyiZih (y)e™, by = —h(y)e™ " < 0.

We first investigate the stability of E7, regarding 7 as the bifurcation parameter. In the proof of Theorem
2.4, we have demonstrated that, when 7 = 0, all eigenvalues of (3.1) with i = 1 lie to the left of the
imaginary axis and E is locally asymptotically stable. As 7 increases, E] may lose its stability only
when some eigenvalues cross the imaginary axis to the right. In view of

aps +boy = pyiZi(W (e — ) > 0,

0 1s not an eigenvalue for any 7 > 0. For simplicity, we drop the subscript 1 in the following arguments.
Substituting A = iw(w > 0) into (3.1) and separating the real and imaginary parts, we obtain

w?* — ay = by cos(wt) + byw sin(wT),

—ajw = biw cos(wT) — by sin(wT).

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2082-2102.
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Squaring and adding both the above equations lead to
G(w,7) = w*' + o1 (D’ + co(7) = 0, 3.2)

where
FO7)
Y

Then iw (w > 0) is an imaginary root of (3.1) if and only if G(w,7) = 0. Since c;(r) > 0 for all
0 < 7 £ Ty We know that G(w, 7) = 0 has exactly one positive root if and only if ¢o(7) < 0, or
equivalently, ay < by.

If ay < by, the implicit function theorem implies that there exists a unique C' function w = w*(r)
such that G(w*(1),7) = 0 for 0 < 7 < 7,4, For iw*(7) to be a root of (3.1), w*(7) needs to satisfy the
system

ci(r) = ( — f'OD) +2pqyiz; > 0, co(r) = aj — by,

b1w(1)* + (a1by — aph))w(7) .

b w(t)? + b} B

(bo — a1b))w(7)* — aphy
b%u)(T)2 + bg

sin(w(7)7) =

g1(7),
3.3)

cos(w(T)7) = 1= (7).

Set
I={7t:0<71 <71, satisfies ay < by}. (3.4

For 7 € I, let 6(7) be the unique solution of sin# = g; and cos 6 = g, in (0, 2x]; that is,

o) = arccos g,(7), if w(t)* <ag- a};ﬂ’
= 21 — arccos go(7),  if w(r)® > ag — a;],_lo-

Following Beretta and Kuang [17], we define

o(t) + 2
Su(r) =7 - QDFAT o e T with neN. (3.5)
w(7)
One can check that +iw*(7*) are a pair of purely imaginary eigenvalues of (3.1) if and only if 7" is a
zero of function S ,,(7) for some n € N. From [17, Theorem 2.2], we have

dRed e,
Sign [ 26 (T)| | = sign| Z (w* ("), 7)) Sign 8/ ().
dr =7 ow

Note that %(w*(r*), 7") > 0, thus we have the following result concerning the transversality condition.

Lemma 3.4. Assume that S, (t) has a positive root T € I for some n € N, then a pair of simple purely
imaginary roots +iw*(t*) of (3.1) exist at T = 7%, and

dReA
Sign( eA(r)

I T:T*) = Sign S (7).

Moreover, this pair of simple purely imaginary roots +iw*(t*) cross the imaginary axis from left to
right at T = v if S| (") > O, and from right to left if S, (7*) < 0.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2082-2102.



2091

It is easily seen that S (1) > S ,,(7) for all T € I,n € N. When 7 = 0, the asymptotic stability of E7]
implies that S ((0) < 0. Denote

T =supl :=sup{rt:0 <1 <71, satisfies ay < by}. 3.6)

If T < Ty then ¢p(f) = 0, and thus w(t) — 0 as 7 — 7. This, together with (3.3), yields
lim sin6(7) = 0 and lim cos §(t) = —1. Therefore, lim 6(r) = 7, lim §,(7) = —oo.

1~ o7~

If supSo(r) < 0, S,(r) has no zeros in [ for all n € N, which excludes the existence of purely
Tel

imaginary eigenvalues and thus implies that E} is locally asymptotically stable for all 7 € [0, 7]
If supSo(7) = 0, So(7) has a double zero in I, denoted by 7., and S((7.) = 0. This, together with

Tel
Lemma 3.4, implies that the transversality condition at 7, is not satisfied and all eigenvalues remain to

the left of the pure imaginary axis. Thus, E7 is still locally asymptotically stable for 7 € [0, 7.].
If sup So(r) > 0, it then follows from §((0) < 0 and lim S ,(r) = —oo that §((7) has at least two

Tel
zeros in I. For simplicity, we assume that

(Hy) sup So(r) > 0 and all zeros of S ,(7) with odd multiplicity are simple.
Tel

Under assumption (Hy), each S ,(7) has even number of simple zeros. Now, we collect all simple zeros
of §,,(t) with n > 0 and list them in increasing order: 0 < 79 < 7) < --- < Tox_; < T (K € N¥). For each
integer 0 <i < K — 1, we apply Lemma 3.4 to obtain S, (7;,) > O and S/, (72x—;—1) < O for some m € N.
Therefore, the pair of simple conjugate purely imaginary eigenvalues +iw(7;) crosses the imaginary
axis from left to right, and the pair of simple conjugate purely imaginary eigenvalues +iw(Tox—;-1)
crosses the imaginary axis from right to left. Thus, system (1.3) undergoes a Hopf bifurcation at E}
when 7 = 7; (0 < j < 2K - 1). Moreover, E7 is asymptotically stable for 7 € [0, 7o) U (T2x-1, Tpax], and
unstable for 7 € (1g, T2x_1).

For each k = 0,--- ,2K — 1, there exists n; such that 7 is a simple zero of S, (7). Let T} be
the period of periodic solution bifurcated at 7,. Applying the Hopf bifurcation theorem for delay
differential equations [11, 18], we have

2 27Ty
k= w(Ty) B O(ty) + 2mmr

This, together with 6(7;) € (0,2x], implies that T} > 7 if n; = 0, and "5 < T} < ;—i if np > 0. To

r+1
summarize, we have the following results on stability of E} and Hopf bifurcation.

Theorem 3.5. Assume that (H,)-(H3) hold, y| <y and T < Ty Let I, S ,(7), Tyax, T be defined in (3.4),
(3.5), (H3) and (3.6), respectively.
(i) If either I = () or sup S o(7) < 0, then E7 is locally asymptotically stable for all T € [0, T4.].

el

(ii) If (Hy) holds, then there exist exactly 2K local Hopf bifurcation values, namely, 0 < 1o < 1) < --- <
Tox-1 < T such that model (3.1) undergoes a Hopf bifurcation at Ey whent = 7, for 0 < j <2K-1. E}
is locally asymptotically stable for T € [0, T¢)U(Tak-1, Tmaxl, and unstable for T € (1o, T2g_1). Moreover,
the period T of periodic solution bifurcated at 7, satisfies Ty > 1y if T is a simple zero of S (1), and

. T oo . .
nkil <T; < n—’; if T is a simple zero of S, (7) with ny > 0.
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Theorem 3.6. Assume that (H,)-(H3) are satisfied. If y; < y5 < ¥ holds, then EJ is unstable for all
7 > 0. Moreover, if ap, < by, then the characteristic equation (3.1) with i = 2 has no purely imaginary
eigenvalues.

Proof. Note that in (3.1) with i = 2, Ay(0) = py;z5(W'(y3)e™® — g) < 0. For any T > 0, we know
that Ay(c0) > 0, thus as long as EJ exists, the associated characteristic equation must have at least one
positive real root and hence EJ is always unstable for 7 > 0.

Using a similar argument in the study of root distribution for (3.1) at E7, we note that ¢;,(7) >
0, cop(r) = aé,z - bé’z and ag, + by, = pyZzz(h’(yZ)e‘& —¢q) < 0. Thus, G(w, 7) in (3.2) has no positive
zeros if agp < by,. Therefore, (3.1) with i = 2 has no purely imaginary eigenvalues if ag, < by>. O

Since E7 is unstable (and thus biologically irrelevant) whenever it exists, we name E7, instead of
E3, the immune control equilibrium (ICE).

3.3. Onset and termination of Hopf branches

Note that Theorem 3.5 states that if y; < § and (Hy) holds, then periodic solutions can bifurcate
from E} when 7 is near the local Hopf bifurcation values 7,k = 0,1,2,...,2K — 1. For integer n > 0,
we denote

Ji={ro, 71, ok}, =it e S,(n) =0}, J' =T\ Jp. (3.7)

According to Theorem 3.5, J, has even number of bifurcation values, and the period of any periodic
solution bifurcated near a bifurcation point in J° is bounded from both below and above, while the
periodic solution bifurcated near a bifurcation point in Jy has a lower bound for its period. As we
shall see later in the numerical simulation, it seems impossible to find an upper bound for such period.
In what follows, we will restrict our investigation on the set J° and assume that J° # 0. Especially,
we will discuss the global continuation of periodic solutions bifurcated from the point (E7, 7;) with
7 € JO as the bifurcation parameter 7 varies. We shall use the global Hopf bifurcation theorem for
delay differential equations [19] and show that model (1.3) admits periodic solutions globally for all
7 € (1,7), where 7 = min J° and 7 = max J°.
Let x(t) = (y(11), z(71))T, model (1.3) can be rewritten as a general functional differential equation:

X =F(x,1,T), (t,.,T) e R, XxI xR, (3.8)
where x,(0) = x(¢ + 6) for § € [-1,0], and x; € X := C([-1,0],R?), and
_ Tf(x1:(0)) = prx1,(0)x2,(0) — brx1,(0)
Fonn ) = ( reThxy (= 1)aa(=1) = gy (0022(0) — s (0) ) 39

with x; = (xy;, x;) € X. Identifying the subspace of X consisting of all constant functions with R?, we
obtain a restricted function

Tf(x1) — pTX1X; — bTX] )

F(x,7,T):=F =
(X, T, ) |R§xl><R+ ( Te—&‘rh(xl)xz — qTX1X) — UTX)

Obviously, F is twice continuously differentiable, i.e., the congition (Al)in [19] holgs. We A(Elenote the
set of stationary solutions of system (3.8) by E(F) = {(x,7,T) € R2 x I xR, : F(x,7,T) = 0}. It
follows from Proposition 2.2 that (i) if y] < § <y} holds,

E(F) ={(Ey, 7, T),(Ep, 7, T),(E], T, T); (r,T) € I X R, };
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(i) if y} < y; < ¥ holds,
E(F) ={(Ey, 7. T),(Ep, 7, T),(E}, 7, T),(E5, 7, T); (r,T) € xR, }.
For any stationary solution (x, 7, T), the characteristic function is
AG~r)(d) = Ad — DF(X, 7, T)(e*1d).

Note that if either y] < § < y; or y] < y; < ¥ holds, 0 is not a eigenvalue of any stationary solution
of (3.8) and hence the condition (A2) in [19] holds. It can be checked easily from (3.9) that the
smoothness condition (A3) in [19] is satisfied.

Theorem 3.5 implies that if y; < j and (Hy4) holds, then for each integer 0 < k < 2K — 1 the
stationary solution (E7, T4, 27/(wyT¢)) 1s an isolated center of (3.8), where w;, = w(ty) is the unique
posmve zero of G(w, 7) in (3 2), and there is only one purely imaginary characteristic value of the form
imQ2r/ T) withm = land T = 2rt/(wiTr). Moreover, if follows from Lemma 3.4 that the crossing
number £ (E7, Tx, 2/ (wy ) at each of these centers is
dReA(T)) ):{—1, 0<k<K-1, G.10)

dr T 1,

2
E}, 7, ——) = —Sign
Gi(EY kwka) g( K<k<?2K-1.

Thus the condition (A4) in [19] holds. We then define a closed subset Z(F) of X X I X R, by
X(F) =Cl{(x,7,T) € X X I xR, : xis a nontrivial T-periodic soltuion of (3.8)},

and for each integer 0 < k < 2K — 1, let C(E7, 1, 27/(wy7r)) denote the connected component of
(EY, T, 2m/(witi)) in Z(F). By Theorem 3.5, C(E7, 7k, 27/(wyTx)) is a nonempty subset of Z(F).

To find the interval of 7 in which periodic solutions exist, we shall further investigate the properties
of periodic solutions of (3.8).

Lemma 3.7. All nonconstant and nonnegative periodic solutions of (3.8) are uniformly bounded.
Actually, we have 0 < y(1),z(t) < M for any t € R, where M = max{y, W' (0)M;/(py)}.

Proof. Since y(t) is nonconstant and nonnegative, there exists 7, > 0 such that y(zy) > 0. Integrating
the equation for y’(f) gives

' .
o7y = y(t) + f PO () > 0, £ > 1y,
0]

Hence, y(t) > O for all # > #,. Since y is periodic, we have y(¢) > O for all # > 0. Similarly, if z(¢y) > 0
for some 7, > 0, we integrate the equation for z'(¢) to obtain

t t -
efto[qY(S)"'ﬂ]dSZ(t) — Z(tO) + f efro[Q)(5>+ﬂ]dse—5‘rh(y(r _ T))Z(r _ T)dr >0
4]
for all # > #,. This together with periodicity of z implies that z(#) > O for all ¢ > 0.
By Proposition 2.1, we have limsupy(r) < y. We claim y(r) < M for all + > 0. Otherwise, if

—o0

y(t;) > M for some t; > 0, then
lim y(t; + nT) = y(t;) > M,
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where T is the period of the nonconstant and nonnegative periodic solutions. This contradicts the fact
that y(7) is eventually bounded above by M as t — oco. Thus, M is the upper bound of y(¢). Similarly,
from Proposition 2.1, we have limsup z(#) < h'(0)M;/(py) < M. This implies that z(¢) is uniformly

—00

bounded by M. m|
Lemma 3.8. System (3.8) has no nontrivial periodic solution of period 1.

Proof. Note that any nontrivial 1-periodic solution x(#) of system (3.8) is also a nontrivial periodic
solution of model (2.4), which does not admit any nontrivial periodic solution via Lemma 2.3. O

We are now in the position to state our result concerning the properties of the global Hopf branches.

Theorem 3.9. Assume that (H,)-(H,), either y; < § < y5 ory] <y, < ¥ holds, T < Ty, J° # 0 and
ap2 < bop. Then for system (3.8), we have the following results:

(i) The connected component C(E}, Ty, 2/ (wiTy)) is bounded for all T € JO.

(i) Let n > 1. If J,, has 2k, bifurcation values, ordered as v, < --- < Tno,, then for each i =
L,---,ky, there exists j > k, such that t,; and 7, are connected by a global Hopf branch.
Similarly, for each j =k, +1,---,2k,, there exists i < k, such that v, ; and 7, ; are connected by

a global Hopf branch. Especially, if k, = 1, then the two bifurcation values of J, are connected.

(iii) For each T € (min J,, max J,) with integer n > 1, system (3.8) has at least one periodic solution
with period in (1/(n + 1), 1/n).

Proof. Lemma 3.7 implies that the projection of C(E7, 7y, 2m/(wiT))) onto X is bounded. Note that
system (3.8) has no periodic solutions of period 1, and thus no periodic solutions of period 1/n; or
1/(nx + 1) for any positive integer n;. It follows from Lemma 3.8 that the period T of a periodic
solution on the connected component C(E", 74, 2m/(w;Tx)) satisfies

1 1

<T < —
ne+ 1 Ny

with 7, € J,, and n;, > 1. Hence, the projection of C(E7, 7y, 27/(wi7y)) onto the T-space is bounded
for 7, € J°. Note that 7 € I and [ is a bounded interval. Therefore, C(E*, T4, 27t/ (w;T)) is bounded in
X x I xR, for any 7, € J°. This proves (i).

From the proof of Theorems 3.1 and 3.6, we know that the stationary solutions (Ey, 7,T), (Ep, 7, T)
and (E3, 7, T) cannot be a center for any 7 and T if either y] < j < yj ory] < y; < yholds and ap, < b.
It then follows from the global bifurcation theorem [19, Theorem 3.3] that & := C(E7, T, 27/ (wyTi)) N
E(F) is finite and

>, a@nT)=0.
Gr.T)es
If J,, has 2k, bifurcation values, ordered as 7,,; < - -+ < T,2,, then by (3.10), {,(x, 7,,;, T) = —1 for each
i=1,---,ky,and {i(x,7,,,T) = 1foreach j =k, + 1,---,2k,. This together with the above equation
implies (ii).

Note that 7,; = minJ, and 7,2, = maxJ,. The 7 projection of the global bifurcation branch

bifurcated from 7, ; includes (7,1, Tux,+1), While the 7 projection of the global bifurcation branch
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bifurcated from 7,5, includes (7,4, Tn2x,)- Thus, for any 7 € (7,1, T,21), System (3.8) has at least one
periodic solution. According to the proof of (i), the period of this periodic solution lies in
(1/(n+ 1), 1/n). Thus, (iii) is proved.

O

4. Numerical exploration

In this section, we present some numerical simulations to demonstrate our theoretical results. We
will use the Matlab package DDE-BIFTOOL developed by Engelborghs et al. [20, 21] to sketch the
global Hopf branches C(E?, 74, 21/(wiTy)) for 0 < k < 2K — 1. Following the study of ODE model
in [6], we choose

y cy
=ry(l — ), h(y)= ,
J) =ry( K) ) T+ dy
and set the parameter values as follows:
r=6 day_l, K = 3 virus mm™>, p=1 mm® cells™ day_l,
b=3 day_l, c =4 mm’ virus_lday_l, d = 0.5 mm® virus™', “4.1)

§=0.03day”!, gq=1mm’virus''day™, u=0.5day".

Here, the units for viral loads y and immune cell density z are virus per mm? and cells per mm?,

respectively. The delay 7 has the unit in days. It is easy to calculate
7 =17.1939 < 7,0, = 19.1788 < 7, = 36.6204.

From Proposition 2.2, there are exactly two equilibria Ey = (0,0) and E, = (1.5,0) when 7 > 7,4y,
and, if 7 < 7y, there exists a third equilibrium E} = (y],z}), where y},z] depend on 7. This is the
unique positive equilibrium when 7 € [0, 7] and there exists another positive equilibrium EJ = (y3, z5)
when 7 € (7., T,ax); see Figure 1. Here, 7, is the critical value when y; = ; that is,

1 In cy
Te = — ~ ~
0 (gy+ (1 +dy)

At T = T, the two positive equilibria coincide: yj = y5.

Theorem 3.1 implies that Ej is a saddle point, and E,, is locally asymptotically stable for 7 > 7,
and unstable for T < 7,, Moreover, by Theorem 3.3, E}, is globally asymptotically stable in the region
X, provided that 7 > 7,. It can be verified that the conditions of case (ii) in Theorem 3.5 are satisfied
only if 0 < 7 < 7. By Theorem 3.5, we know that there are exactly 4 local Hopf bifurcation values
with K = 2, namely,

= 17.9666.

7o~ 0.2994 < 11 ~ 8.9274 < 1, ~ 13.9287 < 73 ~ 17.0322,
as shown in Figure 2. Correspondingly,
wy =~ 0.9537 > w; =~ 0.7540 > w, ~ 0.4994 > w; ~ 0.1069.

Clearly, E7 is stable for 7 € [0, 7o) U (73, Tuax] and unstable for 7 € (7o, 73), which implies that 7y and
75 are stability switches. Remark that 73 < 7,.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2082-2102.



2096

Figure 1. The graphs of yj(7), y5(7) and J(7), which characterize the existence of positive

equilibria.

S,

s.(7)

-10 -

)

16

Figure 2. The graphs of S,(r)(n = 0, 1, 2). This gives the solution 7;, j =0, 1,2, 3.
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In Figure 3, we plot the four global Hopf branches C(E7;, 74, 2/(wity)) with 0 < k < 3. Tt is
observed that the branches C(E7, ¢, 27/(w; 7)) and C(ET, 15, 27 /(w,T,)) are bounded and connected,
which agrees with Theorem 3.9. The periodic solutions on these global Hopf branches are plotted on
the phase plane of y and z; see Figures 4-6. As we know, the stability of the periodic solution is
completely determined by the associated principal Floquet multiplier: if the principal Floquet

multiplier is larger than 1, then the corresponding periodic solution is unstable, otherwise, the
bifurcated periodic solution is stable [11].

15
C(El,TO,Zﬂ'/(wOTO))
t>,’ 1+ C(El,TS, 27r/(w373)) *
£
£
=
x
g O 5 B * *
C(El,'rl, 27r/(wl'rl))=C(El,7'2, 27r/(w272))
To T Ty T3
0 L
0 4 8 12 16

T

Figure 3. All global Hopf branches of model (1.3) with parameter values given in (4.1).

0 014 0.‘8 1.2
y
Figure 4. The periodic solutions on the global Hopf branch C(E7, 1o, 27/(woTo))-
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281

241

16 : :
0.3 0.5

Figure 5. The periodic solutions on the global Hopf branch C(E7, 7,2n/(wiT1)) =
C(E}, 12, 21/ (waT2)).

24r

1.2}

0.8 : : : :
0.4 0.6 0.8 1

y
Figure 6. The periodic solutions on the global Hopf branch C(E?, 73, 271/(w573)).
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By using DDE-BIFTOOL, we can further calculate the associated principal Floquet multipliers;
see Figure 7. Note that the periodic solution on the first branch C(E7, 7y, 271/ (wqTy)) is stable for small
7, and becomes unstable as 7 increases; the periodic solution on the second branch
C(E7, 11,21/(wT1))—0r equivalently, the third branch C(E7, 12, 271/(w,7,))—is always unstable; the
periodic solution on the fourth branch C(E7], 73,27/(ws73)) is stable for 7 near 73, and becomes
unstable as 7 decreases. Moreover, for any 7 € (11, 7,), model (1.3) has at least one periodic solution
on the second (or third) global Hopf branch with period in the interval (7/2, 7), as shown in Figure 8.

@ 40
=3
=
Eaof
(4]
]
o
ke
LL
2201
o
K3
£
a
[
1t Y Fop———— o [
07, 5 71 10 T, 15 T3

T

Figure 7. The principal Floquet multipliers of periodic solutions on all Hopf branches of
model (1.3).

120 ¢
©
i<}
G 60
o |
I
I
I
|
I
20’ :,
/"’l I
| | |
o | | 1 |
T 5 71 10 T, 15 T3

Figure 8. The periods of periodic solutions on the global Hopf branches of model (1.3).
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It is interesting to note from Figure 3 that the first and the fourth Hopf branches do not connect.
This phenomenon is quite different from that in the existing literature. We have proved that both the
periodic solutions and delays on any global Hopf branch are uniformly bounded. According to the
global Hopf bifurcation theory [19], either the first and the fourth Hopf branches connect, or these two
branches have unbounded periods. From Figure 8, we observe that the periods of periodic oscillations
on the fourth branch C(E7, 13, 21/(w373)) seem to be unbounded. To further explore this interesting
phenomenon, we numerically sketch in Figure 9 a bifurcation diagram for model (1.3). It is suggested
that model (1.3) can have chaotic solutions and thus allow aperiodic oscillations when 7 lies in the
interval where the first and fourth Hopf branches disappear. Figure 9 also confirms that 7y and 73
are stability switches: (i) when 7 crosses 7, from left to right, the positive equilibrium E} becomes
unstable, while a stable periodic solution bifurcates; and (ii) when 7 crosses 73 from left to right, £}
regains its stability while there exists a stable periodic solution when 7 is close to 73 from the left. It
should be mentioned that the bifurcation diagram has a jump at 7,,,,, which is due to the fact that there
exists no positive equilibrium when 7 > 7,,,, but the positive equilibrium at T = 7, is nonzero.

z (ceIIs/mm3)

To 5 15 Tmax 20

Figure 9. Bifurcation diagram of (1.3) with 7 as the bifurcation parameter.

5. Summary and discussion

Considering the fact the immune response process involves a sequence of events such as antigenic
activation, selection, and proliferation of the immune cells and the mortality of immune cells during
the time lag, we derive an immunosuppressive infection model from a stage structured population
model. We find that the time lag 7 plays a key role in the infection and immune response dynamics.
As 7 increases, the model dynamics shifts through four possible outcomes: (i) virus persists without
immune response when 7 > 7,,,,; (ii) the outcome is initial condition dependent and delay dependent,
either the immunity can be completely destroyed, or the immune mediated control can be established
when T € (7., Tja,]; (ii1) immune response controls the virus when 7 € [0, 7¢) U (T2¢-1, 7.); and (iv)
sustained oscillation appears or chaotic dynamics occurs when 7 € (1, T2x-1). Our theoretical results

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2082-2102.
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coincide with the phenomenon of oscillatory viral loads and immune cells observed in clinical data [9].

From numerical simulation, we also observe an unbounded global Hopf bifurcation branch with
bounded periodic solutions, bounded delays, but unbounded periods. To the best of our knowledge,
this phenomenon is new, because, in the existing literature, either the global Hopf branch is bounded
or it is unbounded with unbounded delays. A detailed theoretical study of this interesting numerical
phenomenon should enrich the global Hopf bifurcation theory for delay differential equations, and we
leave it as a future work.
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